ISSN 1004-4140
CN 11-3017/P
胡文韬, 劳慧, 邱奥, 等. 全数字PET关键器件硅光电倍增器研究进展[J]. CT理论与应用研究(中英文), 2024, 33(4): 417-428. DOI: 10.15953/j.ctta.2024.015.
引用本文: 胡文韬, 劳慧, 邱奥, 等. 全数字PET关键器件硅光电倍增器研究进展[J]. CT理论与应用研究(中英文), 2024, 33(4): 417-428. DOI: 10.15953/j.ctta.2024.015.
HU W T, LAO H, QIU A, et al. Advance in Silicon Photomultiplier for all Digital Positron Emission Tomography[J]. CT Theory and Applications, 2024, 33(4): 417-428. DOI: 10.15953/j.ctta.2024.015. (in Chinese).
Citation: HU W T, LAO H, QIU A, et al. Advance in Silicon Photomultiplier for all Digital Positron Emission Tomography[J]. CT Theory and Applications, 2024, 33(4): 417-428. DOI: 10.15953/j.ctta.2024.015. (in Chinese).

全数字PET关键器件硅光电倍增器研究进展

Advance in Silicon Photomultiplier for all Digital Positron Emission Tomography

  • 摘要: 近年来,硅光电倍增器(SiPM)凭借其出色的性能表现,已经成为正电子发射断层成像(PET)中的首选光电转换器件。SiPM具有单光子分辨能力和低于100 ps的时间分辨率,使得精确测量光子到达时间成为可能,催生了飞行时间PET、光子计数计算机断层扫描、正电子素寿命显像等新兴应用领域,这些应用又对SiPM的性能提出了更高的挑战。因此,如何将SiPM性能推进至其物理极限已成为新一代SiPM的研究的关键方向。在传统的SiPM架构中,信号经过多次处理和模数转换,带来噪声增加和时间性能恶化的问题,从而限制了SiPM的性能潜力。随着半导体制造工艺的快速发展,SiPM可在标准CMOS工艺节点上制造,标志着可以将数字逻辑集成在SiPM器件内,这是SiPM领域的一次重大突破,使我们能在单一SiPM内实现更精确的时间、能量、位置信息获取,为推进SiPM达到性能极限提供了一条可能的途径。本文综述SiPM的发展历史、工作原理和性能参数,分析传统SiPM的局限性,梳理数字SiPM研究的关键问题,介绍当前几种数字化SiPM架构,最后对数字SiPM的关键技术进行了总结和展望。

     

    Abstract: In recent years, Silicon Photomultipliers (SiPMs) have emerged as preferred photoelectric conversion devices in Positron Emission Tomography (PET) due to their outstanding performance. SiPMs possess single-photon resolution capability and time resolution below 100 ps, enabling precise photon arrival time measurements. These advances paved the way for emerging applications such as Time-of-Flight PET (TOF-PET), Photon Counting CT, and Positron Emission Lifetime Imaging, presenting new challenges to SiPM performance, the advancing of which to their physical limits has become a key focus area in next-generation SiPM research. In traditional SiPM architectures, signal processing and analog-to-digital conversion introduce noise and degrade time performance, thereby limiting the full SiPM potential. With the recent and rapid development of semiconductor manufacturing processes, SiPMs could be manufactured on standard CMOS process nodes, which marks a significant breakthrough in the SiPM field, allowing for the integration of digital logic within SiPM devices. This advancement opens the possibility of achieving more precise time, energy, and position information within a single SiPM, thereby providing potential possibilities to push SiPMs to their performance limits. In this study, we reviewed the development history, working principles, and performance parameters of SiPMs. We analyzed the limitations of traditional SiPMs, outlined key aspects of digital SiPM research, and introduced various current digital SiPM architectures. Finally, we summarized and anticipated key technologies in digital SiPMs.

     

/

返回文章
返回