• 中国科技核心期刊
ISSN 1004-4140
CN 11-3017/P

基于CT表现的孤立性肺结节良恶性预测模型的研究

易芹芹, 周宙, 黄国鑫

易芹芹, 周宙, 黄国鑫. 基于CT表现的孤立性肺结节良恶性预测模型的研究[J]. CT理论与应用研究, 2019, 28(6): 677-683. DOI: 10.15953/j.1004-4140.2019.28.06.05
引用本文: 易芹芹, 周宙, 黄国鑫. 基于CT表现的孤立性肺结节良恶性预测模型的研究[J]. CT理论与应用研究, 2019, 28(6): 677-683. DOI: 10.15953/j.1004-4140.2019.28.06.05
YI Qinqin, ZHOU Zhou, HUANG Guoxin. A Predicting Model to Estimate the Probability of Malignancy in Solitary Pulmonary Nodules Basing on CT Images[J]. CT Theory and Applications, 2019, 28(6): 677-683. DOI: 10.15953/j.1004-4140.2019.28.06.05
Citation: YI Qinqin, ZHOU Zhou, HUANG Guoxin. A Predicting Model to Estimate the Probability of Malignancy in Solitary Pulmonary Nodules Basing on CT Images[J]. CT Theory and Applications, 2019, 28(6): 677-683. DOI: 10.15953/j.1004-4140.2019.28.06.05

基于CT表现的孤立性肺结节良恶性预测模型的研究

基金项目: 

深圳市科技计划项目(JCYJ20150403101028197)。

详细信息
    作者简介:

    易芹芹(1987-),女,深圳市人民医院(暨南大学第二临床医学院)放射科主治医师,主要研究方向为肺结节的影像学诊断,Tel:0755-25533018,E-mail:359808772@qq.com;黄国鑫*(1971-),男,深圳市人民医院(暨南大学第二临床医学院)放射科主任医师,主要研究方向为胸部疾病影像学诊断,Tel:0755-25533018,E-mail:498559883@qq.com。

  • 中图分类号: TR812

A Predicting Model to Estimate the Probability of Malignancy in Solitary Pulmonary Nodules Basing on CT Images

  • 摘要: 目的:筛选并分析影响肺结节良恶性的因素,建立预测模型、验证该模型并与梅奥模型、Brock模型对比。方法:回顾性分析2015年1月至2017年12月深圳市人民医院有病理结果的孤立性肺结节病例319例,其中229例作为建模组(A组),90例作为验证组(B组),分析A组病例性别、年龄、直径、吸烟史、毛刺、位于上叶、边界不清楚、分叶征、空泡征、血管集束征、胸膜凹陷征、含磨玻璃密度及钙化,通过单因素分析及Logistic回归分析,筛选出独立影响因子,并建立回归方程。用B组资料进行验证并将B组资料分别代入本研究模型、梅奥模型及Brock模型进行对比。结果:单因素分析示年龄、直径、毛刺、上叶、边界不清楚、分叶、空泡、血管集束征、胸膜凹陷征、是否含有磨玻璃密度在良恶性结节中的差异具有统计学意义(P<0.05),Logistic回归分析示有毛刺、有分叶、边界不清楚和含有磨玻璃密度为恶性孤立性肺结节的独立影响因素,并据此建立的回归方程ROC曲线下面积为0.894,其灵敏度为91.3%,特异度为77.3%,阳性似然比为4.02,阴性似然比为0.11,阳性预测值为80.8%,阴性预测值为89.5%;本研究模型与梅奥模型的差异有统计学意义(P=0.0049),与Brock模型差异没有统计学意义(P=0.79)。结论:有毛刺、有分叶、边界不清楚和含有磨玻璃密度为恶性孤立性肺结节的独立影响因素,据此建立的回归方程具有较高的诊断效能。本研究建立的模型诊断效能优于梅奥模型,与Brock模型诊断效能相当。
    Abstract: Objective: To establish a predicting model using multivariate logistic regression analysis for estimating the probability of malignancy in solitary pulmonary nodules, and to compare our model with Mayo model and Brock model. Methods: From January 2015 to December 2017, 319 patients with SPNs identified by histopathology in Shenzhen peoples' hospital were analyzed retrospectively. Among 319 cases, 229 patients were in modeling group (group A), and 90 patients were in validating group (group B). We analyzed gender, age, diameter, smoking history, spiculation, upper location, unclear border, lobulation, vacuole sign, vessel convergence sign, pleural indentation, ground glass opacity and calcification in patients of group A, selected independent influencing factors by univariate analysis and multivariate logistic regression analysis and established a predicting model. Our model was verified with the date of group B, and was compared with Mayo model and Brock model. Results: The age, diameter, upper location, unclear border, lobulation, vacuole sign, vessel convergence sign, pleural indentation, and ground glass opacity were shown statistically significance between malignant and benign SPNs in univariate analysis (P<0.05). The spiculation, unclear border, lobulation, and ground glass opacity were independent influencing factors in multivariate logistic regression analysis. When group B data was substituted into the established formula, the area under the ROC curve was 0.894, sensitivity was 91.3%, specificity was 77.3%, positive likely ratio was 4.02, negative likely ratio was 0.11, positive predictive value was 80.8%, negative predictive was 89.5%. The difference between our model and Mayo model was statistically significant (P=0.0049). The difference between our model and Brock model was not statistically significant (P=0.79). Conclusion: The spiculation, unclear border, lobulation, and ground glass opacity are independent influencing factors between benign and malignant solitary pulmonary nodules. This logistic regression equation has favorable effective functions for the diagnosis of SPNs. For patients in this study, our model is better than Mayo model, and is same as Brock model.
  • 期刊类型引用(9)

    1. 聂法健,郭志华,吴罕,侯丽莉,李真,刘振洋,王艳平. 浊积岩油藏优势渗流通道精准识别——以胜利油区牛庄洼陷牛20区块为例. 石油地质与工程. 2024(03): 9-13 . 百度学术
    2. Huiqing Liu,Heping Xie,Fei Wu,Cunbao Li,Renbo Gao. A novel box-counting method for quantitative fractal analysis of threedimensional pore characteristics in sandstone. International Journal of Mining Science and Technology. 2024(04): 479-489 . 必应学术
    3. 刘亚玲,黎广荣,周义朋,孙占学,赵凯,刘金辉,徐玲玲. 新疆512矿床砂岩型铀矿孔隙特征及渗流模拟. 地质科技通报. 2024(04): 205-218 . 百度学术
    4. 段欣睿,李学丰,樊国伟,郭阳. 改进OTSU算法的砂土CT图像分割及组构分析. 西北工程技术学报. 2024(03): 252-259 . 百度学术
    5. 吕远强,叶万军,赵金刚,姜海波,蒋蓓茹,张雪丽. 冻融循环作用下裂隙岩石损伤扩展演化特征. 河北大学学报(自然科学版). 2024(06): 581-592 . 百度学术
    6. 王乐华,胡永搏,付寅韬,李建林,许晓亮. 3D打印技术在岩石力学试验中的应用与展望. 土木工程学报. 2023(11): 137-154 . 百度学术
    7. 罗加荣. 过程法模拟构建数字岩心. 工程地球物理学报. 2021(01): 147-152 . 百度学术
    8. 卢亚敏,苏克凡,付帆飞,黄宝琦,刘乐军,王娜. X射线CT扫描与三维重建技术在南海北部岩心Core 01中的应用及沉积环境初探. 海洋地质与第四纪地质. 2021(04): 215-221 . 百度学术
    9. 杨坤,王付勇,曾繁超,赵久玉,王聪乐. 基于数字岩心分形特征的渗透率预测方法. 吉林大学学报(地球科学版). 2020(04): 1003-1011 . 百度学术

    其他类型引用(20)

计量
  • 文章访问数:  442
  • HTML全文浏览量:  11
  • PDF下载量:  13
  • 被引次数: 29
出版历程
  • 收稿日期:  2019-07-09
  • 网络出版日期:  2021-11-07
  • 发布日期:  2019-12-24

目录

    HUANG Guoxin

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    /

    返回文章
    返回
    x 关闭 永久关闭