ISSN 1004-4140
CN 11-3017/P

综合物探方法在高压架空线路下方采空区探测中的应用

车传强, 陈波, 谢明佐, 燕宝峰, 王琼, 张捷, 万文宣

车传强, 陈波, 谢明佐, 等. 综合物探方法在高压架空线路下方采空区探测中的应用[J]. CT理论与应用研究, 2022, 31(1): 23-31. DOI: 10.15953/j.1004-4140.2022.31.01.03.
引用本文: 车传强, 陈波, 谢明佐, 等. 综合物探方法在高压架空线路下方采空区探测中的应用[J]. CT理论与应用研究, 2022, 31(1): 23-31. DOI: 10.15953/j.1004-4140.2022.31.01.03.
CHE C C, CHEN B, XIE M Z, et al. Application of integrated geophysics method in goaf detection under high voltage overhead lines[J]. CT Theory and Applications, 2022, 31(1): 23-31. DOI: 10.15953/j.1004-4140.2022.31.01.03. (in Chinese).
Citation: CHE C C, CHEN B, XIE M Z, et al. Application of integrated geophysics method in goaf detection under high voltage overhead lines[J]. CT Theory and Applications, 2022, 31(1): 23-31. DOI: 10.15953/j.1004-4140.2022.31.01.03. (in Chinese).

综合物探方法在高压架空线路下方采空区探测中的应用

详细信息
    作者简介:

    车传强: 男,内蒙古电力科学研究院教授级高级工程师,主要从事高压电气试验方面研究,E-mail:15335577550@126.com

    陈波: 男,内蒙古电力科学研究院高级工程师,主要从事高压电气试验方面研究,E-mail:chenbo0472@163.com

  • 中图分类号: P  631

Application of Integrated Geophysics Method in Goaf Detection Under High Voltage Overhead Lines

  • 摘要:

    利用物探方法准确高效地探测输电线路下方采空区的位置和范围对电网安全、稳定地运行具有十分重要的意义。根据采空区的地球物理性质,常使用电阻率法、电磁法、地震法等对其进行探测,但是,由于工区的干扰以及物探资料解释的多解性,单一的探测方法常常难以取得理想的效果。本文综合利用电测深法和浅层地震反射方法对高压架空线路下方采空区进行探测,研究表明电阻率法和地震法互相验证和补充,有效减少单一物探方法解释时的多解性,提高探测的分辨率和解释成果的可靠程度,为圈定采空区提供有效的依据。

    Abstract:

    It is very important for the safe and stable operation of power grid to detect the location and scope of mined-out area under transmission line accurately and efficiently by comprehensive geophysical method. According to the geophysical properties of goaf, resistivity method, electromagnetic method and seismic method are often used to detect goaf, but due to the actual interference and geophysical multi-solution, a single geophysical exploration method is often difficult to achieve ideal results. In this paper, the symmetrical quadrupole section resistivity method and shallow seismic reflection method are used to detect the mined-out area under the high-voltage overhead line. The study shows that the resistivity method and seismic method are mutually validated and complementary, which effectively reduces the multi-resolution of single geophysical method interpretation, and improves the detection resolution and the reliability of interpretation results. It provides an effective basis for delineating goaf.

  • 坏死性筋膜炎(necrotizing fasciitis,NF)是危及生命的侵袭性软组织感染,其坏死区域主要累及筋膜及肌肉。这是一种罕见的疾病,常好发于躯干、会阴及四肢,而对于颈部坏死性筋膜炎(cervical necrotizing fasciitis,CNF)来说,由于发病部位的血供丰富,因此其发病率更低,仅占NF的1%~10%[1]。牙源性以及扁桃体感染是常见的发病原因,颌下以及咽旁间隙是最好发的感染部位,发生于鼻咽部较为罕见。

    CNF如果不及时诊断以及治疗,病变区域有可能沿着颈深区域向纵隔蔓延,从而导致严重的后果。不受控制的高血糖会导致患者的免疫系统随着年龄的增长越来越虚弱,这往往是该疾病的主要诱发因素[2]。由于CNF在发病初期并无特异性的体征以及实验室指标的异常,因此影像学检查,尤其是CT检查在该病的精准诊断中显得尤为重要。

    患者男性,58岁,1年余前无明显诱因出现左侧头痛,伴有左耳流脓,无鼻塞、流涕、涕中带血,无耳痛、耳内流血等不适。于当地医院诊断为“慢性化脓性中耳炎”,予以抗炎治疗后头痛稍有减轻。此后患者上述症状持续存在,均予以抗炎治疗,但头痛并未缓解。

    10月前患者自觉上述症状加重,并出现左侧面瘫及吞咽困难,之后对症治疗后均未见好转。既往双侧慢性化脓性中耳炎50余年;糖尿病史5年,合并糖尿病性视网膜病史,平时胰岛素控制;高血压病史4年。

    血常规:红细胞3.70×1012/L(下降),血红蛋白108 g/L(上升),红细胞压积32.6%(下降),淋巴细胞15.9%(下降),其余正常。血生化:谷丙转氨酶6.3 U/L(下降),谷草转氨酶10.6 U/L(下降),总胆汁酸6.8 umol/L(上升),总蛋白61.3 g/L(下降),白蛋白33.6 g/L(下降),肌酐101 umol/L(上升),葡萄糖4.39 mmol/L,糖化血红蛋白21.9%(上升),其余正常。肿瘤指标:AFP、CEA、CA199、CA125、CA724、PSA、fPSA、fPSA/PSA、CTFRA21-1、SCC、CA50均阴性。

    CT图像显示鼻咽腔基本对称,双侧咽隐窝略变浅(图1);两侧咽旁间隙及咽后间隙软组织肿胀,颅底斜坡骨质破坏,蓝色箭头处可见无强化的筋膜征象(图1(d))。

    图  1  CT图像及增强
    Figure  1.  CT plain and contrast enhanced images

    MRI图像示鼻咽腔基本对称,双侧咽隐窝略变浅(图2);两侧咽旁间隙及咽后间隙软组织肿胀,肌间脂肪消失,增强后咽旁间隙可见散乱不均匀的异常强化,病变沿肌间隙走行,鼻咽粘膜未见异常增厚。蓝色箭头见颅骨斜坡右侧及左下可见稍长T1稍短T2信号影,增强后强化不均匀,周围见强化的软组织信号影(图2(e)和图2(f)),两侧乳突气房可见液性信号影。

    图  2  MRI图像及增强
    Figure  2.  MRI plain and contrast enhanced images

    PET/CT图像显示FDG异常代谢区域位于鼻咽深部软组织伴邻近颅底斜坡骨质破坏(图3),鼻咽粘膜未见异常代谢(图3(a)~图3(f));头颈部PET图像显示颈部未见肿大淋巴结影(图3(g))。CT、MRI以及PET/CT检查,均误诊为鼻咽癌。

    图  3  PET/CT图像
    Figure  3.  PET/CT images

    患者行鼻内镜下鼻咽部肿物活检术,于鼻咽部可见包裹性脓腔及坏死组织,取部分病理组织送病理及脓性分泌物送细菌培养,广泛彻底清除病灶至正常黏膜。

    病理诊断:局部见炎性渗出,局部纤维结缔组织增生及粘液变性,胶原变性。

    患者出院1月后门诊复查,疼痛及吞咽困难的症状缓解,面瘫有所好转。半年后电话跟踪随访,患者疼痛及吞咽困难的症状消失,面瘫基本缓解,仅左眼睑闭合不佳。

    NF是一种组织坏死并且进展迅速的疾病,病原体入侵软组织并且引起血管血栓,最终导致脂肪组织、筋膜及皮肤坏死[3]。CNF更是一种罕见的累及颈部筋膜的微生物感染,它的易感因素包括糖尿病、不良的口腔卫生、酗酒、肿瘤以及静脉吸毒[4]

    CNF最常见原因是牙源性感染(27.5%),其次是扁桃体疾病(22.5%)、皮肤感染(8.75%)和腮腺感染(6.25%)[5]。最常见的并发症是气道阻塞以及下行性坏死性纵隔炎[6]。纵隔炎的预后非常差,因此它与感染性休克一样都是CNF最为严重的并发症[7-8]

    由于CNF预后不良,及时诊断并且早期干预就显得尤为重要。压痛、发热和皮肤红斑是早期NF的常见体征[9]。回顾本病例,可能是由于发病位置的特殊(鼻咽部),患者并无上诉症状,而是表现为左侧头痛伴左耳流脓。

    Wong等[10]为了对包括CNF在内的NF进行早期诊断,提出了坏死性感染实验室风险指标(LRINEC)评分。LRINEC评分是以6项实验室指标的异常进行评分,其中包括血清C反应蛋白(>150 mg/L)、白细胞(WBC)计数(>15000/μL)、血红蛋白(<13.5 g/dL)、血清钠水平(<135 mmol/L)、血清肌酐水平(142 mmol/L)和血清葡萄糖水平(10 mmol/L)。LRINEC评分大于等于8分,发生NSTI的风险为75%。虽然之后一些研究对LRINEC评分进行评估,证实了该评分在NF感染初期诊断中的有效性,但是近期的一些研究又发现该指标的敏感性较差,并不能作为排除NF的有效手段[11,12-13]。通过回顾本例患者的实验室指标也验证了这一结论,患者的LRINEC评分仅为2分,远没有达到诊断NF的水平。

    对于临床体征及实验室指标均不明确的早期NF患者,影像学检查可以发挥重要作用。如怀疑为NF,CT扫描是一个有价值的影像学工具。一项关于坏死性筋膜炎的CT研究发现,CT的敏感性达到了100%,特异性为98%,因此CT阴性结果可以有效的排除坏死性筋膜炎,CT阳性结果对诊断坏死性筋膜炎具有很高的价值[14]。当CT图像中出现脂肪受累、沿着筋膜平面走行的液体以及气体聚集,尤其是增强图像出现无强化的筋膜增厚等征象,需要考虑NF[14]

    而MR则被认为是诊断NF最佳的影像学检查,当T2加权像上出现深筋膜增厚>3 mm并伴有多个肌筋膜室受累,此为诊断NF的重要征象[15]。虽然MRI的表现优于CT,但是MRI在某些紧急情况下难以进行,因此不建议将其作为首选的影像学检查技术[11]。我们回顾该患者CT及MRI图像,图像中虽然出现两侧咽旁间隙及咽后间隙肿胀,伴双侧欠对称,咽隐窝变浅,合并颅底骨破坏等表现,这些都是与鼻咽癌相同的征象,但是图像中另外可见典型的深筋膜增厚的表现,尤其是MR上可见散乱不均匀的异常强化,病变沿肌间隙走行,这些均提示需要与坏死性筋膜炎进行鉴别。

    在该患者的PET/CT图像上,虽然鼻咽部肿胀伴有较大范围的FDG代谢增高,同时合并颅底骨的破坏,但是FDG异常代谢的区域主要局限在鼻咽深部区域,粘膜并未见FDG异常代谢,这点从MR中信号正常的鼻咽粘膜中得到了印证(图2(c)和图2(d))。

    本例患者通过鼻咽肿物活检术发现鼻咽部包裹性浓腔及坏死组织,并且病灶进行广泛彻底地清除,完成对CNF的诊断以及治疗。术后患者症状明显缓解,出院后继续接受头孢曲松抗感染治疗。

    目前NF的诊断主要依赖症状学、实验室指标、影像学以及侵入性诊断。然而早期的NF体征与症状几乎没有特异性,通常难以明确诊断。因此当出现肿胀、发热以及与症状不成比例的剧烈疼痛时,需要高度怀疑NF。既往LRINEC评分曾经作为NF诊断的重要依据,但是该评分诊断的敏感性较低,并不能作为排除NF的有效手段。当NF诊断不明确时,影像学检查可以提供相对有价值的信息。

    一项包含23项研究总计纳入5982名患者的META分析评估了体格检查、影像学检查以及LRINEC评分在NF诊断中的准确性[13]。该研究发现影像学检查具有敏感性及特异性,尤其是CT的敏感性为88.5%,特异性为93.3%;而体格检查以及LRINEC评分敏感性较差,均不能应用于排除NF。侵入性诊断——手术探查是诊断NF的金标准,当手指可轻易分离筋膜(手指实验阳性)、组织缺血坏死以及恶臭分泌物,均提示NF的诊断[16]。由于该例患者CNF发生于鼻咽部,需要与以下疾病进行鉴别。

    鼻咽癌病理类型目前以未分化癌及鳞状细胞癌为主,EB病毒感染与鼻咽癌发病率密切相关。早期鼻咽癌基本无症状,也可能因为咽鼓管阻塞引起一系列症状,其中包括鼻塞、鼻出血、中耳炎、听力下降等。影像学表现:CT及MR表现基本相似,表现为鼻咽部两侧欠对称,局部见软组织肿块突入鼻腔内,咽隐窝变浅或消失;当咽旁间隙受累时,其脂肪间隙消失,再向外可累及翼腭窝及颞下窝,向后可累及颅底;增强扫描多表现为不均匀强化。PET/CT表现为FDG高代谢。

    鼻咽淋巴瘤是仅次于鼻咽癌第2常见的鼻咽部恶性肿瘤,它的发病率与EB病毒感染也密切相关。影像学表现,它好发于鼻咽顶壁咽扁桃体和咽鼓管扁桃体附近粘膜内聚集的淋巴小结,往往表现为一种弥漫对称分布的肿块[17]。同时它通常沿着粘膜或脂肪间隙扩散至口咽部及下咽扁桃体,极少累及深层结构,因此鼻咽淋巴瘤很少累及颅底。增强扫描多为均匀性的强化表现,PET/CT也表现为FDG高代谢。

    鼻咽部坏死性筋膜炎缺乏早期诊断的特征性表现,但是影像学检查,尤其是CT对该病的早期诊断具有重要价值。

  • 图  1   地表受采空区影响出现塌陷

    Figure  1.   Surface subsidence caused by goaf

    图  2   电阻率四极测深工作装置示意图(图中A、B为供电电极,M、N为测量电极)

    Figure  2.   Schematic diagram of resistivity quadrupole sounding working device (A and B are power supply electrodes, M and N are measuring electrodes)

    图  3   工区物探测线布置示意图

    Figure  3.   Schematic diagram of geophysical survey line layout

    图  4   D220-1线电剖面视电阻率断面等值线图

    Figure  4.   Cross section of apparent resistivity of D220-1 line profile

    图  5   D220-2线电测深电阻率断面等值线图

    Figure  5.   Cross section of apparent resistivity of D220-2 line profile

    图  6   D220-3线电测深电阻率断面等值线图

    Figure  6.   Cross section of apparent resistivity of D220-3 line profile

    图  8   D500-3线电测深电阻率断面等值线图

    Figure  8.   Cross section of apparent resistivity of D500-3 line profile

    图  7   D500-2线电测深视电阻率断面等值线图

    Figure  7.   Cross section of apparent resistivity of D500-2 line profile

    图  9   D500-4线电测深电阻率断面等值线图

    Figure  9.   Cross section of apparent resistivity of D500-4 line profile

    图  10   J1线叠加剖面解释示意图

    Figure  10.   Sketch map of J1 line stacking section interpretation

    图  11   J8线叠加剖面解释示意图

    Figure  11.   Sketch map of J8 line stacking section interpretation

    图  12   J9线叠加剖面解释示意图

    Figure  12.   Sketch map of J9 line stacking section interpretation

    图  13   J10线叠加剖面解释示意图

    Figure  13.   Sketch map of J10 line stacking section interpretation

    图  14   工区综合解释成果图

    Figure  14.   Comprehensive interpretation result map

  • [1] 张俊英, 王翰锋, 张彬, 等. 煤矿采空区勘查与安全隐患综合治理技术[J]. 煤炭科学技术, 2013,41(10): 76−80.

    ZHANG J Y, WANG H F, ZHANG B, et al. Comprehensive management technology of coal mine goaf exploration and safety hazards[J]. Coal Science and Technology, 2013, 41(10): 76−80. (in Chinese).

    [2] 曹新款. 采空区高压输电线路铁塔地基稳定性评价[J]. 煤炭工程, 2018,50(5): 50−52.

    CAO X K. Stability evaluation of iron tower foundation of high voltage transmission line in goaf[J]. Coal engineering, 2018, 50(5): 50−52. (in Chinese).

    [3] 杨勇, 陈清通. 综合物探方法在房采采空区勘查中的应用研究[J]. 中国煤炭, 2017,43(8): 47−51. doi: 10.3969/j.issn.1006-530X.2017.08.012

    CHEN Y, CHEN Q T. Research on the application of comprehensive geophysical prospecting method in the exploration of mined out areas[J]. China Coal, 2017, 43(8): 47−51. (in Chinese). doi: 10.3969/j.issn.1006-530X.2017.08.012

    [4] 王东伟, 刘亚文, 李玉辉, 等. 高密度电法在煤矿采空区探测中的研究与应用[J]. 中国煤炭, 2014,40(6): 38−40. doi: 10.3969/j.issn.1006-530X.2014.06.010

    WANG D W, LIU Y W, LI Y H, et al. Research and application of high density electrical method in goaf detection of coal mine[J]. China Coal, 2014, 40(6): 38−40. (in Chinese). doi: 10.3969/j.issn.1006-530X.2014.06.010

    [5] 李宏杰. 浅层地震和瞬变电磁法在采空区探测中的应用研究[J]. 煤矿开采, 2013,18(1): 17−19, 27. doi: 10.3969/j.issn.1006-6225.2013.01.006

    LI H J. Application of shallow seismic and transient electromagnetic method in goaf exploration[J]. Coal Mining, 2013, 18(1): 17−19, 27. (in Chinese). doi: 10.3969/j.issn.1006-6225.2013.01.006

    [6] 戴前伟, 侯智超, 柴新朝. 瞬变电磁法及 EH-4 在钼矿采空区探测中的应用[J]. 地球物理学进展, 2013,28(3): 1541−1546. doi: 10.6038/pg20130350

    DAI Q W, HOU Z C, CHAI X C. Plication of TEM and EH-4 in the exploration of goaf of molybdenum mine[J]. Geophysical Progress, 2013, 28(3): 1541−1546. (in Chinese). doi: 10.6038/pg20130350

    [7]

    ZHAO J. The application of transient electromagnetic method in the detection of water accumulation in coal mining area[J]. World Nonferrous Metals, 2017.

    [8]

    LIANG R U, ZHONG W, ZHU Y, et al. The application of precise processing technique for transient electromagnetic data to detection of goaf in coal mine[J]. Geophysical & Geochemical Exploration, 2012, 20(6).

    [9] 乌力吉门都. 官板乌素煤矿 6 煤层大采高下围岩类型评价[J]. 山东工业技术, 2017,(16): 95, 157.

    WU L J M D. Evaluation of surrounding rock type under large mining height of No. 6 Coal Seam in guanbanwusu coal mine[J]. Shandong Industrial Technology, 2017, (16): 95, 157. (in Chinese).

    [10] 刘斌, 关民全. 地震反射波在煤层赋存情况及煤层特殊地质现象中的特征[J]. 西部探矿工程, 2013,25(11): 128−131. doi: 10.3969/j.issn.1004-5716.2013.11.041

    LIU B, GUAN M Q. Characteristics of seismic reflection wave in coal seam occurrence and special geological phenomena[J]. Western Exploration Engineering, 2013, 25(11): 128−131. (in Chinese). doi: 10.3969/j.issn.1004-5716.2013.11.041

    [11] 杜琦伟. 煤层反射波的地震响应特征[J]. 山西建筑, 2015,41(21): 66−67. doi: 10.3969/j.issn.1009-6825.2015.21.037

    DU Q W. Seismic response characteristics of coal seam reflection wave[J]. Shanxi Jianshe, 2015, 41(21): 66−67. (in Chinese). doi: 10.3969/j.issn.1009-6825.2015.21.037

    [12] 王善勋, 杨文锋, 张卫敏, 等. 瞬变电磁法在煤矿采空区探测中的应用研究[J]. 工程地球物理学报, 2012,9(4): 400−405. doi: 10.3969/j.issn.1672-7940.2012.04.006

    WANG S X, YANG W F, ZHANG W M, et al. Research on the application of transient electromagnetic method in coal mine goaf detection[J]. Journal of Engineering Geophysics, 2012, 9(4): 400−405. (in Chinese). doi: 10.3969/j.issn.1672-7940.2012.04.006

    [13] 李坤鹏, 邵军. 综合勘探方法在石膏矿采空区勘查中的应用[J]. 资源信息与工程, 2018,33(3): 47−48. doi: 10.3969/j.issn.2095-5391.2018.03.022

    LI K P, SHAO J. Application of comprehensive exploration method in exploration of gypsum mine goaf[J]. Resource Information and Engineering, 2018, 33(3): 47−48. (in Chinese). doi: 10.3969/j.issn.2095-5391.2018.03.022

    [14] 薛国强, 潘冬明, 于景邨. 煤矿采空区地球物理探测应用综述[J]. 地球物理学进展, 2018, 33(5): 1-11.

    XUE G Q, PAN D M, YU J C. Review of geophysical exploration application in coal mine goaf[J]. Progress in Geophysics, 2018, 33(5): 1-11. (in Chinese).

    [15] 李启成, 郭雷. 视电阻率法与视比值参数法的理论与实践[J]. 地球物理学进展, 34(1): 326-330.

    LI Q C, GUO L. Theory and practice of apparent resistivity method and apparent ratio parameter method[J]. Progress in Geophysics, 34(1): 326-330. (in Chinese).

    [16] 唐汉平. 复杂地震地质条件下煤矿采空区三维地震勘探技术[J]. 中国煤炭, 2013,39(12): 35−37, 87. doi: 10.3969/j.issn.1006-530X.2013.12.010

    TANG H P. 3D seismic exploration technology of coal mine goaf under complex seismic geological conditions[J]. China Coal, 2013, 39(12): 35−37, 87. (in Chinese). doi: 10.3969/j.issn.1006-530X.2013.12.010

    [17]

    ROBSON A G, KING R C, HOLFORD S P. 3D seismic analysis of gravity-driven and basement influenced normal fault growth in the deepwater Otway Basin, Australia[J]. Journal of Structural Geology, 2016: 89.

    [18]

    The seismic reflection method and some of its constraints[J]. Handbook of Geophysical Exploration: Seismic Exploration, 2007, 37: 7-109.

    [19]

    CHEN Z Q, YANG H F, WANG J B, et al. Application of high-precision 3D seismic technology to shale gas exploration: A case study of the large Jiaoshiba shale gas field in the Sichuan Basin[J]. Natural Gas Industry B, 2016, 3(2): 117-128.

    [20] 董功, 平德, 张凤岭, 等. Sun Blade 2500工作站常见故障及处理方法[J]. 物探装备, 2011,21(1): 43−47. doi: 10.3969/j.issn.1671-0657.2011.01.012

    DONG G, PING D, ZHANG F L, et al. Sun blade 2500 workstation common faults and solutions[J]. Geophysical Equipment, 2011, 21(1): 43−47. (in Chinese). doi: 10.3969/j.issn.1671-0657.2011.01.012

    [21] 孙林. 高密度电阻率法与浅层地震在探测煤田采空区中的应用[J]. 物探与化探, 2012,36(S1): 88−91.

    SUN L. Application of high density resistivity method and shallow seismic in detecting Goaf in coalfield[J]. Geophysical and Geochemical Exploration, 2012, 36(S1): 88−91. (in Chinese).

    [22] 薛良方, 郭璟鑫. 综合物探法在采空区探测中的应用[J]. 中国石油和化工标准与质量, 2018,38(13): 112−113. doi: 10.3969/j.issn.1673-4076.2018.13.055

    XUE L F, GUO J X. Application of comprehensive geophysical method in goaf detection[J]. China Petroleum and Chemical Industry Standards and Quality, 2018, 38(13): 112−113. (in Chinese). doi: 10.3969/j.issn.1673-4076.2018.13.055

图(14)
计量
  • 文章访问数:  1032
  • HTML全文浏览量:  207
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-02
  • 网络出版日期:  2021-11-05
  • 刊出日期:  2022-01-31

目录

/

返回文章
返回
x 关闭 永久关闭