Evaluation of the Accuracy of Infer Read Software in Measuring the Volume of Pure Ground Glass Nodules in the Lung
-
摘要: 目的:探讨人工智能(AI)肺结节检测软件对肺纯磨玻璃结节(pGGN)体积自动测量的准确性及测量误差的影响因素。方法:选择2021年1月1日至31日在本院行常规胸部CT扫描的患者90例,共计170个pGGN病灶。将CT扫描原始数据(含1 mm薄层图像)传送至AI服务器进行肺结节体积自动测量并记录其测量数据;由两名资深胸部影像诊断医师以手动进行pGGN逐层测量相加得出体积数值,并以3次测量平均值作为“金标准”数据与AI测量结果进行比较;并分析pGGN体积大小、位置、毗邻等因素对AI测量误差的影响。采用SPSS 26.0进行统计分析。结果:本研究90例患者中共计170个pGGN,右肺上叶者49个(28.82%),右肺中叶者21个(12.35%),右肺下叶者27个(15.89%),左肺上叶者49个(28.82%),左肺下叶者24个(14.12%)。在pGGN的毗邻关系中,完全位于肺实质内无毗邻关系者82个(48.24%),贴近血管者29个(17.06%),贴近胸膜者59个(34.70%)。①两名观察者之间、同一观察者不同时间点对pGGN手动测量的体积数值均无差异;②对相同pGGN体积的测量,使用AI自动测量与人工手动测量的结果亦无差异,且二者相关性很高(r=0.981),一致性也很高(ICC值为0.987);③pGGN的体积大小、发生位置、毗邻关系对AI体积测量的误差均无统计学意义。结论:InferRead肺结节检测软件对肺pGGN三维体积测量具有良好的准确性,可适用于临床肺结节诊断与相关研究。Abstract: Objective: To discuss the accuracy of the automatic measurement of the volume of pure ground glass nodules (pGGN) by the artificial intelligence pulmonary nodule detection software and the influencing factors of the measurement error. Methods: 170 pGGNs from 90 patients who underwent routine chest CT scan from January 1 to 31, 2021 in our hospital were selected in this retrospective study. The original CT scan data (including 1 mm thin-slice images) was sent to the AI server of Inference Technology to automatically measure the volume of lung nodules and record the measurement data. Two senior chest imaging diagnosticians manually carried out pGGNs layer-by-layer measurement and added the volume value, then took the average of three measurements as the "gold standard" data to compare with the AI measurement results, and then analyzed the influence of pGGN location, size, proximity and other factors on the AI measurement error. SPSS 26.0 was used for statistical analysis. Results: Among the total 170 pGGNs in the 90 patients in this study, 49 (28.82%) were in the right upper lobe, 21 (12.35%) were in the right middle lobe, 27 (15.88%) were in the right lower lobe, and left upper lobe 49 patients (28.82%) were involved, and 24 patients were in the lower lobe of the left lung (14.12%). Among the adjacent relationships of pGGN, 82 (48.24%) were completely located in the lung parenchyma without adjacency, 29 (17.06%) were close to the blood vessel, and 59 (34.70%) were close to the pleura. (1) There was no statistically significant difference in the volume values of pGGNs between two observers and the same observer at different time points. (2) For the measurement of the same pGGN, there was no statistically significant difference between the results of automatic measurement by AI and manual measurement and the correlation between the two was quite high (r=0.981), and the agreement was also very high (ICC value is 0.987). (3) The size, location, and adjacent relationship of pGGN lesions were not statistically significant for the error of AI volume measurement. Conclusions: The InferRead lung nodule measurement software shows high accuracy in the measurement of lung pGGN three-dimensional volume, which can be applied in clinical lung nodule diagnosis and related research. (2) For the measurement of the same pGGN volume, there was no difference between the results of automatic measurement by AI and manual measurement, and the correlation between them was quite high (r = 0.981), and the consistency was high (ICC value is 0.987). (3) The volume size, occurrence position and adjacent relationship of pGGN have no statistical significance on the error of AI volume measurement. Conclusion: The InferRead lung nodule detection software shows high accuracy in measuring the three-dimensional volume of lung pGGN, and can be applied to clinical diagnosis and related research of lung nodules.
-
Keywords:
- artificial intelligence /
- ground-glass nodule /
- volume /
- accuracy
-
尘肺病是我国危害严重的一类职业病,诊断和分期主要依靠高仟伏胸片,在临床诊断中需要X胸片和CT结合[1],CT在尘肺病的早期诊断、肺气肿分布范围和大小以及小阴影类型和密集度等检出率明显优于高仟伏X线胸片[2]。肺功能检查用于检测呼吸道的通畅程度、肺容量的大小及气体交换能力已作为评估尘肺病患者的肺功能的“金标准”[3]。
目前已有研究表明肺气肿程度与通气及弥散功能相关指标呈负相关;小阴影密集度越高及分布肺区越多,患者肺功能越差[4-5],但两者与肺功能之间的相关性对比暂无研究,因此本文研究尘肺患者合并不同程度肺气肿及小阴影密集度与肺功能的相关性。
1. 对象与方法
在关于慢性阻塞性肺疾病(chronic obstructive pulmonary disease,COPD)合并肺气肿与肺功能的影响研究中,将CT值<-950 HU定义为低密度衰减容量(low attenuation volume,LAV)[6],以低密度衰减区占肺容积的百分比(LAV%)作为评估尘肺患者肺气肿的严重程度。
张雨洁等[7]将LAV%=15% 作为轻度及重度肺气肿的界限,而Frith等[8]研究提出当肺组织损伤大于30% 肺功能才表现异常,因此本研究参考这两项研究,96名患者分为A组:LAV%<15%,B组:LAV%>15% 且<30%;C组:LAV%>30%。
1.1 研究对象
选择2015至2020年间我院收治已确诊尘肺(符合GBZ 70-2015《职业性尘肺病的诊断》标准)的患者96例,年龄25~81岁,平均年龄(42.37+6.51)岁,接触粉尘的时间2~35年。
纳入标准:患者病情稳定,非感染期,剔除存在肺结核、支气管扩张、重症肺炎、胸腔积液、肺部肿瘤或占位性病变、胸部外伤畸形、气胸和胸膜病变等肺部并发症等。患者均进行胸部CT检查和肺功能检查且要统一检查设备。
1.2 方法
1.2.1 CT检查
采用64排螺旋CT(GE Optima CT 680)进行薄层扫描,每个层面清晰显示支气管及肺纹理,组织间对比良好。扫描参数:管电压120 kV,自动毫安(50~100 mA),层厚0.625 mm×64,螺距1.375︰1。深吸气末屏气扫描,扫描后肺窗由lung算法显示。
1.2.2 肺功能测定
采用肺功能测定仪(Type Master Screen-Body/Dift)进行肺功能测定,严格执行质量控制标准,确保用力肺活量外推容积<5% 或<150 mL,呼气时间≥6 s,曲线起始无犹豫,PEF尖峰迅速出现,呼气无中断,无咳嗽,曲线平滑,流量环闭合。
弥散、残气检测采用一口气法,执行国际标准(ATS/ERS),憋气时间10 s,肺功能测量值包括第1 s用力呼气容积(forced expiratory volume in the first second,FEV1)、第1 s用力呼气量占用力肺活量比值(ratio of forced expiratory volume to forced vital capacity in the first second,FEV1%)、用力肺活量(forced vital capacity,FVC)、一氧化碳弥散量(carbon monoxide diffusion capacity,DLCO)、功能残气量(residual volume,RV)、肺总量(total lung capacity,TLC)、残气量与肺总量的比值(residual volume/Total lung capacity,RV/TLC)、呼气峰值流速(peak expiratory flow,PEF)、75% 肺活量时的最大呼气流速(maximum expiratory flow after 75% of the FVC has not been exhaled,MEF75%)、50% 肺活量时的最大呼气流速(maximum expiratory flow after 50% of the FVC has not been exhaled,MEF50%)和25% 肺活量时的最大呼气流速(maximum expiratory flow after 25% of the FVC has not been exhaled,MEF25%)。
1.2.3 LAV%
采用GE AW 4.6工作站及特定分析软件将深吸气末0.625 mm层厚的图像进行后处理,设定肺气肿的测量阈值为<-950 HU[6],肺部CT图像由气管纵向水平的冠状面上用等分点的水平线将左右肺各分为上、中、下3个肺野,取得全肺、左右肺及各个肺野低密度衰减区占肺容积百分比(low attenuation volume,LAV%)(图1),其中A组42名,B组29名,C组25名。同一患者肺部三维图像经后处理软件分析后得到的各肺野LAV%(表1)。
图 1 分别为A、B、C组部分尘肺患者肺部CT冠状位图像及轴位图像,冠状位图像由气管纵向水平上用等分点的水平线将左右肺各分为上、中、下3个肺野,蓝色区域为肺气肿低衰减区三维图像Figure 1. Coronal and axial CT images of some patients with pneumoconiosis in groups A, B, and C. The left and right lungs were divided into upper, middle, and lower lung fields from the vertical level of the trachea using equidistant horizontal lines; blue areas present emphysema as three-dimensional images of low-attenuation areas表 1 各肺野LAV% 数据表Table 1. LAV% data for each lung field数据范围 右肺 左肺 右肺 上野 中野 下野 左肺 上野 中野 下野 -1024~-950/% 24.030 24.120 22.428 25.237 23.080 23.053 19.105 26.269 -950~3071/% 75.970 75.881 77.572 74.763 76.920 76.947 80.895 73.731 Total/L 4.300 0.984 1.456 1.860 3.384 0.843 1.128 1.413 1.2.4 小阴影密集度
由3位有尘肺病诊断资格的影像科医师进行阅片,肺部CT图像由气管纵向水平的冠状面上用等分点的水平线将左右肺各分为上、中、下3个肺野,取得CT图像的全肺、左右肺及各个肺野的小阴影密集度(small shadow density,SSD),其中SSD的评分方法参考GBZ 70-2015《职业性尘肺病诊断》[9]及翟荣存等[10]胸片密集度分级方法应用于CT,将SSD分为0、1、2和3级4个等级。
1.2.5 统计学方法
使用SPSS 23.0软件包,非正态肺部计量资料M(Q25,Q75)表示,组间比较采用2个独立样本非参数检验,LAV%、SSD与肺功能的相关性采用Spearman相关分析或Pearson相关性分析,以P<0.05为差异有统计学意义。
2. 结果
2.1 各肺及肺野SSD、LAV% 间的比较
对96名尘肺患者左右肺、左右肺上、中、下肺野及上、中、下3个肺野间SSD、LAV% 进行组间两两对比,其中左右肺、左右肺上、中、下肺野SSD组间差异无统计学意义;左右肺3个肺野间SSD进行组间对比差异有统计学意义;A、B、C三组组间全肺总体SSD间对比差异均无统计学意义(表2)。
表 2 A、B、C组组间总体SSD间差异性分析Table 2. Comparison of the total SSD among groups A, B, and C项目 SSD A B B C A C M(Q25,Q75) 2(1,3) 2(2,3) 2(2,3) 2(1,3) 2(1,3) 2(1,3) Z -0.454 -0.373 -0.537 P 0.650 0.767 0.591 注:M(Q25,Q75)为A、B、C三组总体小阴影密集度中位数及四分位数,组间对比不符合正态分布采用非参数检验得到P>0.05,
3组总体小阴影密集度对比差异无统计学意义。2.2 SSD与肺功能的相关性
全肺SSD与FEV1、TLC、PEF、MEF75%、MEF25%呈负相关,与RV/TLC呈正相关(r=-0.248、-0.244、-0.268、-0.217、-0.246、0.219)。右上中、左中下肺野SSD与FVC呈负相关(r=-0.209、-0.294、-0.258、-0.278);右下肺野SSD与FVC、TLC、PEF、MEF25%呈负相关(r=-0.291、-0.232、-0.209、-0.213);左上肺野SSD与RV/TLC呈正相关(r=0.204)。
A组全肺、右上中、左上、B组总体、右上中下肺野、左上中下肺野、C组全肺、右上、左上SSD与肺功能各指标间无相关性,A组右下肺野、左中肺野SSD与FEV1、FVC呈负相关(r=-0.330、-0.388、-0.317、-0.501),A组左下肺野SSD与FVC呈负相关(r=-0.385);C组左右肺中下肺野SSD均与DLCO呈正相关(r=0.511、0.420、0.492、0.648);C组左下肺野SSD与RV呈负相关(r=-0.563)(表3~表5)。
表 3 A组各肺野SSD、LAV% 与肺功能指标的相关性分析Table 3. Analysis of correlation between SSD and LAV% of the lung field and lung function indexes in group AA组 右上 右中 右下 左上 左中 左下 SSD LAV% SSD LAV% SSD LAV% SSD LAV% SSD LAV% SSD LAV% FEV1 -0.099 0.019 -0.157 -0.093 -0.330* -0.073 -0.228 0.132 -0.317* -0.203 -0.172 0.065 FEV1% 0.159 -0.068 0.037 0.060 -0.124 -0.159 -0.037 0.005 -0.085 -0.337* -0.076 0.082 FVC -0.258 0.020 -0.374* -0.034 -0.388* -0.047 -0.296 0.084 -0.501** -0.231 -0.385* 0.123 DLCO 0.035 -0.022 -0.007 -0.055 0.053 0.119 -0.077 -0.091 0.011 -0.233 -0.079 0.268 RV -0.079 0.192 -0.124 -0.048 0.027 0.070 -0.036 0.194 -0.082 0.082 -0.019 -0.060 TLC -0.004 0.256 -0.030 -0.030 -0.152 0.080 -0.010 0.386* -0.082 0.262 -0.002 0.008 RV/TLC 0.140 0.089 0.058 -0.199 0.187 -0.162 0.176 -0.025 0.164 0.179 0.171 -0.148 PEF 0.020 -0.034 -0.144 -0.145 -0.267 -0.083 -0.091 0.134 -0.250 -0.253 -0.122 0.057 MEF75% -0.055 -0.059 -0.055 -0.127 -0.262 -0.250 -0.061 0.048 -0.225 -0.322* -0.106 0.097 MEF50% -0.057 -0.018 -0.057 -0.032 -0.249 -0.189 -0.110 0.048 -0.213 -0.310* -0.165 0.114 MEF25% -0.116 0.040 -0.116 0.218 -0.251 0.107 -0.095 0.121 -0.227 -0.253 -0.286 0.106 注:* 为P<0.05,**为P<0.01。 表 4 B组各肺野SSD、LAV% 与肺功能指标的相关性分析Table 4. Analysis of correlation between SSD and LAV% of the lung field and lung function indexes in group BB组 右上 右中 右下 左上 左中 左下 SSD LAV% SSD LAV% SSD LAV% SSD LAV% SSD LAV% SSD LAV% FEV1 -0.053 0.247 -0.149 -0.036 -0.096 -0.314 -0.123 0.102 -0.009 -0.211 -0.080 -0.521* FEV1% -0.024 0.314 -0.190 0.025 -0.075 -0.304 -0.074 0.128 -0.104 -0.133 -0.147 -0.615* FVC -0.179 -0.078 -0.263 -0.177 -0.079 -0.133 -0.209 -0.038 -0.009 -0.111 -0.161 -0.407* DLCO 0.062 0.157 -0.365 -0.269 -0.154 0.020 0.041 -0.025 0.239 -0.227 -0.288 -0.224 RV -0.170 -0.095 -0.024 -0.112 0.048 0.035 -0.227 -0.025 -0.069 -0.138 0.009 0.009 TLC -0.149 0.155 -0.056 -0.020 -0.268 -0.270 -0.219 0.196 0.147 -0.038 -0.041 -0.113 RV/TLC 0.170 -0.092 0.187 -0.179 0.191 0.450* 0.118 -0.148 0.039 0.051 0.120 0.321 PEF 0.085 0.215 -0.153 -0.015 -0.235 -0.152 -0.044 0.060 0.028 -0.121 -0.140 -0.280 MEF75% 0.072 0.266 -0.055 0.084 -0.002 -0.155 -0.033 0.060 0.021 -0.133 0.013 -0.478* MEF50% 0.048 0.201 -0.067 -0.112 0.015 -0.243 -0.018 0.037 -0.004 -0.259 -0.043 -0.533* MEF25% -0.152 0.199 -0.214 0.024 -0.162 -0.180 -0.238 0.012 -0.176 -0.201 -0.174 -0.479* 注:* 为P<0.05。 表 5 C组各肺野SSD、LAV% 与肺功能指标的相关性分析Table 5. Analysis of correlation between SSD and LAV% of the lung field and lung function indexes in group CC组 右上 右中 右下 左上 左中 左下 SSD LAV% SSD LAV% SSD LAV% SSD LAV% SSD LAV% SSD LAV% FEV1 0.324 -0.453* 0.242 -0.435* -0.126 -0.555* 0.030 -0.575* 0.053 -0.554* 0.149 -0.519* FEV1% 0.302 -0.513* 0.209 -0.420* -0.007 -0.532* 0.076 -0.552* 0.068 -0.581* 0.205 -0.389* FVC -0.138 0.010 -0.181 -0.086 -0.284 -0.205 0.036 -0.137 -0.042 -0.156 -0.102 -0.291 DLCO 0.338 -0.282 0.511* -0.506* 0.420* -0.503* 0.395 -0.326 0.492* -0.523* 0.648* -0.410* RV -0.358 0.065 -0.315 0.221 0.260 0.347 -0.191 0.268 -0.199 0.490* -0.563* 0.325 TLC -0.033 -0.285 0.043 0.085 -0.362 -0.110 -0.248 -0.414* -0.136 -0.203 -0.136 -0.233 RV/TLC 0.150 0.042 0.048 0.130 -0.134 0.211 0.242 0.151 0.197 0.299 0.115 0.332 PEF 0.250 -0.535* 0.069 -0.324 -0.211 -0.469* -0.111 -0.575* -0.069 -0.476* 0.003 -0.530* MEF75% 0.161 -0.498* -0.036 -0.297 -0.266 -0.423* -0.199 -0.529* -0.178 -0.395 -0.053 -0.496* MEF50% 0.136 -0.376 -0.077 -0.229 -0.338 -0.329 -0.201 -0.367 -0.153 -0.286 -0.139 -0.431* MEF25% 0.040 -0.312 -0.031 -0.202 -0.377 -0.298 -0.221 -0.306 -0.114 -0.239 -0.141 -0.404* 注:* 为P<0.05。 2.3 LAV%与肺功能的相关性
右肺上中下肺野、左肺上下及中下肺野LAV% 组间差异有统计学意义,左右肺、左肺上中肺野LAV% 间差异无统计学意义。A、B、C组中各肺野LAV% 间对比差异有统计学意义。
A组左上肺野LAV% 与TLC呈正相关,左中肺野LAV% 与FEV1%、MEF75%、MEF50%呈负相关,左中肺野与FEV1、MEF75%、MEF50% 呈负相关;B组左下肺野LAV% 与FEV1、FEV1%、MEF75%、MEF50%、MEF25% 呈负相关,右下肺野LAV% 与RV/TLC呈正相关;C组左右肺上肺野LAV% 与FEV1、 FEV1%、PEF、MEF75% 呈负相关,左下肺野LAV% 与FEV1、FEV1%、DLCO、PEF、MEF75%、MEF50%、MEF25% 呈负相关,右下肺野LAV% 与FEV1、FEV1%、DLCO、PEF、MEF75% 呈负相关,左中肺野LAV% 与FEV1、FEV1%、DLCO、PEF呈负相关,与RV呈正相关;右中肺野LAV% 与FEV1、FEV1%、DLCO呈负相关(表3~表5)。
3. 讨论
尘肺是一种对社会和患者家庭带来沉重负担及严重威胁患者身体健康的一种职业病。尘肺患者早期多无症状,胸部CT影像学可表现为小阴影、大阴影、肺气肿、胸膜改变及蜂窝状等,且CT征象与肺功能分级呈正相关。由于目前临床有部分尘肺患者影像学肺组织损伤程度较轻,但肺功能测值却严重受损,而部分患者CT影像学阴影明显,肺功能检查却无明显改变,呈现肺功能与阴影影像学改变的不匹配,因此本研究探索比较肺部CT阴影及肺气肿表现对肺功能的影响,以期找出对尘肺患者肺功能损伤高效、适用的评估方法,提高基层对尘肺的认识、指导临床诊疗。
肺气肿是肺部的一种病理状态,主要病理改变为细支气管远端持续气道异常扩大,同时支气管壁不同程度破坏,严重影响患者的生活质量。早期诊断肺气肿对改善尘肺患者预后非常重要。对本研究中96名患者SSD纵向分布对比后发现几乎所有患者肺气肿分布在上肺野居多,中肺野次之,下肺野分布最少,可能与下肺野胸膜腔分压较中上肺野小,此压力梯度造成上肺野气体潴留较多;此外肺血管重塑易发生于上肺的说法也是肺气肿形成的重要原因[11]。
全肺、左右肺及各肺野LAV% 与FEV1、FEV1%、PEF、MEF75%、MEF50%、MEF25% 间均呈负相关,随LAV% 升高,肺功能上述指标呈明显下降趋势,肺通气功能下降,可能与随着肺气肿程度加重,气道壁破坏纤维化更加严重,导致气流受限从而使通气功能下降有关;与RV、RV/TLC呈正相关,即随着LAV% 的升高,肺容积参数增大,与肺气肿时终末细支气管远端过度扩张导致残气量及肺容积增大有关,与既往研究一致[12-13]。
不同肺野组间比较结果显示下肺野LAV% 与FEV1、PEF、MEF75%、MEF50%、MEF25% 等指标相关性均大于上中肺叶,一定程度说明下叶肺气肿对肺通气功能影响更大,考虑与下肺呼吸动度较中上肺大,下肺病变对肺顺应性影响更大有关。C组中除左、右肺上肺野LAV% 与DLCO无相关性外,其余各肺野LAV% 均与DLCO有较强的相关性,96名患者中、下肺野LAV% 与DLCO相关性均大于上肺叶,可能与当肺气肿多分布于上叶时气体交换少,导致通气/血流比例失调,从而不会引起肺弥散功能变化有关,说明中、下肺野与肺弥散功能相关性较高。
综合以上结果提示下叶肺部病变特别是存在肺气肿时更容易导致肺功能指标的变化,从而反映肺损伤的程度,此研究与王雷等[13]、兰长青等[14]研究结果部分一致。
本研究中A组仅左中肺野LAV% 与FEV1%、MEF75%、MEF50% 有弱负相关性,表明当LAV%<15% 时,肺气肿与肺功能之间的相关性较小,说明多层螺旋CT及后处理技术较肺功能更早的发现肺气肿,并能快速对肺气肿进行定位定量分析[15]。B组中仅左下肺野LAV%与FEV1、FEV1%、MEF75%、MEF50%、MEF25% 呈负相关,右下肺野与RV/TLC呈正相关,表明下肺野肺气肿较上中肺野更早反映肺功能变化及肺组织损伤程度。
与X线相比,CT扫描所见阴影要比X线平片显示范围广,尤其对纵隔和心影后的特殊部位的小阴影显示更有优势。也有研究表明CT与X线胸片对总体小阴影密集度的判定存在高度一致,但对于上、下肺野的病变显示多于X线胸片,右中肺野病变显示少于X线胸片,考虑与上、下肺野体积所占总体积比例小,病变数量相对较少,CT在横断面更能清楚显示小阴影数量,导致CT对小阴影密集度判定比X线胸片更准确;右中肺野因与右侧胸大肌重叠导致小阴影密集度增高[16]。
本研究96名患者上肺野SSD值普遍较中下肺野SSD值大,小阴影多分布于上肺野,可能与上肺及肺的后部淋巴引流缓慢使粉尘清除能力较弱粉尘沉积有关[17-18]。全肺总体SSD与FEV1、PEF、MEF75%、MEF25% 呈负相关,与RV/TLC呈正相关,说明随着肺部小阴影密集度的升高,会逐渐引起肺通气功能下降,且可能合并小气道的病变,与粉尘滞留在肺泡与支气管内不断被巨噬细胞吞噬、释放,反复炎性渗出导致肺小血管、肺泡间隔等纤维化引起肺通气功能下降。
在A、B、C三组中仅A组右下肺野、左中肺野与FEV1、FVC呈弱负相关性,A组左下肺野SSD与FVC呈负相关,C组右中肺野、左中下肺野SSD与DLCO呈正相关,研究结果表明当LAV%<30%时小阴影密集度对肺功能影响较小,即使CT表现为弥漫性小阴影,但肺功能仍可无明显异常;仅当LAV>30% 时,小阴影密集度与弥散功能有一定相关性。C组小阴影密集度、肺气肿与肺功能间相关性均较A组和B组强,表明当LAV%>30% 时,肺通气功能会受到严重损伤超过肺组织代偿能力后出现肺功能指标异常。
综上所述,CT定量分析评价肺气肿是可行的,LAV% 与FEV1、FEV1%、DLCO、PEF、MEF75%、MEF50%、MEF25% 呈负相关,LAV% 与肺功能的相关性较SSD强,LAV% 一定程度上可反映尘肺患者肺损伤程度,且肺气肿比小阴影密集度与肺功能相关性更好,结合CT影像检查能够更精准的诊断尘肺病,评估肺损伤程度,并在尘肺病的临床诊断与治疗评估上也有重要的指导价值。
-
表 1 AI与人工测量值的差异性及相关性比较
Table 1 The differences and related comparisons between AI and manual measurements
性质 参数 AI测量 人工测量 P 差异性 P50(P25,P75) 264.59(158.08,544.77) 263.43(159.60,527.56) 0.703 相关性 相关系数r 1 0.981 0.000 注:AI与人工测量差异性比较采用Wilcoxon秩和检验,P=0.703>0.05,差异无统计学意义。二者相关性比较采用 Spearman分析,具有显著相关性;二者相关系数为0.981。 表 2 AI与人工测量一致性比较
Table 2 The consistency comparisons between AI and manual measurements
项目 同类相关性 95%置信区间 使用真值0的F检验 下限 上限 值 自由度1 自由度2 显著性 单个测量 0.987 0.983 0.99 154.651 169 169 0 平均测量 0.994 0.991 0.995 154.651 169 169 0 注:AI与“金标准”一致性比较采用组内相关系数(ICC)一致性检验,结果显示:二者ICC值为0.987,一致性较好。 表 3 不同因素对AI测量误差的影响
Table 3 The effects of different factors on AI measurement errors
变量 分组 测量误差 Z P 体积 体积≤523.6 mm3(n=125) -0.553(-8.313,9.327) -0.769 0.442 体积>523.6 mm3(n=45) 3.847(-32.743,77.457) 位置 右肺上叶(n=49) 1.208(-4.947,14.561) 5.575 0.233 右肺中叶(n=21) -8.990(-22.598,12.897) 右肺下叶(n=27) 1.203(-8.542,16.477) 左肺上叶(n=49) -0.253(-12.017,12.932) 左肺下叶(n=24) -2.240(-20.935,12.388) 毗邻 肺实质(n=82) -0.745(-11.519,14.643) 0.438 0.803 贴近血管(n=29) 0.010(-6.762,15.200) 胸膜下(n=59) -0.253(-10.637,9.273) -
[1] SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA: A Cancer Journal for Clinicians, 2021, 71(3): 209−249. doi: 10.3322/caac.21660
[2] 吴林玉, 叶剑锋, 郑思思, 等. 应用人工智能对肺结节直径测量: 观察者内、观察者间差异[J]. 医学影像学杂志, 2020,30(1): 47−51. WU L Y, YE J F, ZHENG S S, et al. Differences in measurement of lung nodule diameter using artificial intelligence: Intraobserver and interobserver differences[J]. Journal of Medical Imaging, 2020, 30(1): 47−51. (in Chinese).
[3] MARTEN K, AUER F, SCHMIDT S, et al. Inadequacy of manual measurements compared to automated CT volumetry in assessment of treatment response of pulmonary metastases using RECIST criteria[J]. European Radiology, 2006, 16(4): 781−790. doi: 10.1007/s00330-005-0036-x
[4] PIANYKH O S, LANGS G, DEWEY M, et al. Continuous learning AI in radiology: Implementation principles and early applications[J]. Radiology, 2020, 297(1): 6−14. doi: 10.1148/radiol.2020200038
[5] REYES M, MEIER R, PEREIRA S, et al. On the Interpretability of artificial intelligence in radiology: Challenges and opposrtunities[J]. Radiology: Artificial Intelligence, 2020, 2(3): e190043−e190043. doi: 10.1148/ryai.2020190043
[6] HENSCHKE C I. Early lung cancer action project: Overall design and findings from baseline screening[J]. Cancer, 2000, 89(S11): 2474−2482. doi: 10.1002/1097-0142(20001201)89:11+<2474::AID-CNCR26>3.0.CO;2-2
[7] KANG S, KIM T H, SHIN J M, et al. Optimization of a chest computed tomography protocol for detecting pure ground glass opacity nodules: A feasibility study with a computer-assisted detection system and a lung cancer screening phantom[J]. PLoS One, 2020, 15(5): e0232688−e0232688. doi: 10.1371/journal.pone.0232688
[8] XU Y M, ZHANG T, XU H, et al. Deep learning in CT images: Automated pulmonary nodule detection for subsequent management using convolutional neural network[J]. Cancer Management and Research, 2020, 12: 2979−2992. doi: 10.2147/CMAR.S239927
[9] 朱江涛. 三维CT测量肺小结节体积的可重复性评价[D]. 苏州: 苏州大学, 2007: 20-24. [10] 孙炎冰, 陶广昱, 陈群慧, 等. 人工智能CT定量分析肺磨玻璃密度结节初探[J]. 中国医学计算机成像杂志, 2018,24(5): 383−387. doi: 10.3969/j.issn.1006-5741.2018.05.004 SUN Y B, TAO G Y, CHEN Q H, et al. Quantitative CT image features of ground glass opacity nodules: Initiative analysis with artificial intelligence[J]. Chinese Computed Medical Imaging, 2018, 24(5): 383−387. (in Chinese). doi: 10.3969/j.issn.1006-5741.2018.05.004
[11] 李梦琦, 韩融城, 宋文静,等. CT三维容积分析在实性肺结节恶性风险度评估中的价值[J]. 中国肺癌杂志, 2016,19(5): 279−285. doi: 10.3779/j.issn.1009-3419.2016.05.05 LI M Q, HAN R C, SONG W J, et al. Three dimensional volumetric analysis of solid pulmonary nodules on chest CT: Cancer risk assessment[J]. Chinese Journal of Lung Cancer, 2016, 19(5): 279−285. (in Chinese). doi: 10.3779/j.issn.1009-3419.2016.05.05
[12] 吴光耀, 伍建林. 基于CT的计算机辅助检测与诊断肺结节技术研究进展[J]. 中国医学影像技术, 2018,34(7): 1114−1117. WU G Y, WU J L. Research progresses of computer-aided detection and diagnosis based on CT in pulmonary nodules[J]. Chinese Journal of Medical Imaging Technology, 2018, 34(7): 1114−1117. (in Chinese).
[13] PETROU M, QUINT L E, NAN B, et al. Pulmonary nodule volumetric measurement variability as a function of CT slice thickness and nodule morphology[J]. American Journal of Roentgenology, 2007, 188(2): 306−312. doi: 10.2214/AJR.05.1063
[14] SON J Y, LEE H Y, KIM J H, et al. Quantitative CT analysis of pulmonary ground-glass opacity nodules for distinguishing invasive adenocarcinoma from non-invasive or minimally invasive adenocarcinoma: The added value of using iodine mapping[J]. European Radiology, 2016, 26(1): 43−54. doi: 10.1007/s00330-015-3816-y
[15] 侯永泉, 徐毛冶, 柴军, 等. 人工智能在肺小结节HRCT检出与诊断的研究进展[J]. 内蒙古医学杂志, 2021,53(2): 187−190. [16] 张怀瑢, 孙潇, 田兴仓, 等. 基于深度学习的人工智能诊断系统在不同重建参数下对肺结节的识别研究[J]. 临床放射学杂志, 2020,39(11): 2203−2206. ZHANG H R, SUN X, TIAN X C, et al. Deep Learning based artificial intelligence diagnosis system to identify pulmonary nodules under different reconstruction algorithms[J]. Journal of Clinical Radiology, 2020, 39(11): 2203−2206. (in Chinese).
[17] JAMES H T, XIANG L, QUANZHENG L, et al. Artificial intelligence and machine learning in radiology: Opportunities, challenges, pitfalls, and criteria for success[J]. Journal of the American College of Radiology, 2018, 15(3): 504−508. doi: 10.1016/j.jacr.2017.12.026
[18] ALI I, HART G R, GUNABUSHANAM G, et al. Lung nodule detection via deep reinforcement learning[J]. Frontiers in Oncology, 2018, 8(8): 108.
[19] HOSNY A, PARMAR C, QUACKENBUSH J, et al. Artificial intelligence in radiology[J]. Nature Reviews Cancer, 2018, 18(8): 500−510. doi: 10.1038/s41568-018-0016-5
[20] ARNAUD S A A, ALBERTO T, THOMAS D B, et al. Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: The LUNA16 challenge[J]. Medical Image Analysis, 2017, 42: 1−13. doi: 10.1016/j.media.2017.06.015
[21] GOO J M, KIM K G, GIERADA D S, et al. Volumetric measurements of lung nodules with multi-detector row CT: Effect of changes in lung volume[J]. Korean Journal of Radiology, 2006, 7(4): 243−248. doi: 10.3348/kjr.2006.7.4.243
[22] ODA S, AWAI K, MURAO K, et al. Computer-aided volumetry of pulmonary nodules exhibiting ground-glass opacity at MDCT[J]. American Journal of Roentgenology, 2010, 194(2): 398−406. doi: 10.2214/AJR.09.2583
[23] HONDA O, SUMIKAWA H, JOHKOH T, et al. Computer-assisted lung nodule volumetry from multi-detector row CT: Influence of image reconstruction parameters[J]. European Journal of Radiology, 2006, 62(1): 106−113.
[24] 孙丹丹, 王亮, 许迪, 等. 不同重建算法对人工智能辅助肺结节检测效能的影响[J]. 生物医学工程与临床, 2021,25(2): 160−164. SUN D D, WANG L, XU D, et al. Effects of different reconstruction kernels on efficiency of artificial intelligence-assisted lung nodule detection[J]. Biomedical Engineering and Clinical Medicine, 2021, 25(2): 160−164. (in Chinese).
-
期刊类型引用(4)
1. 黄费湘. 多层螺旋CT多平面重建技术与数字化X线摄影对尘肺患者的诊断及其征象分析. 现代医用影像学. 2024(06): 1025-1027 . 百度学术
2. 年洪慧. 青海省海西州尘肺病主要特征及其CT影像表现分析. 实用医学影像杂志. 2024(03): 175-178 . 百度学术
3. 周琅,袁梅,谢丽庄,韩磊,鲁珊珊. 尘肺病患者肺部CT特征与肺功能关联性研究进展. 职业卫生与应急救援. 2024(05): 676-679 . 百度学术
4. 黄宁,伍武,黄建桂. MSCT对粉尘作业引起的肺部弥漫性小结节的诊断及随访价值研究. 中国现代药物应用. 2023(24): 69-72 . 百度学术
其他类型引用(1)