Research Progress of High-resolution Magnetic Resonance Vessel Wall Imaging in the Identification of Intracranial Arterial Stenosis Etiology
-
摘要:
颅内动脉狭窄(ICAS)导致的缺血性脑卒中,具有高致残率和致死率的特点。临床上常规检查方法包括经颅多普勒超声、CT血管造影、磁共振血管造影和X射线数字减影血管造影等,上述方法都是针对血管狭窄,不能显示血管壁病变。高分辨磁共振血管壁成像技术(HR-VWI)是一种新出现的影像学检查手段,能够无创性显示血管壁病变,对判断ICAS病变性质具有重要价值。本文针对HR-VWI在ICAS病因鉴别中的应用研究进展进行综述。
Abstract:Ischemic stroke caused by intracranial arterial stenosis (ICAS) is characterized by high morbidity and mortality. Conventional clinical examination methods include transcranial Doppler ultrasound, CT angiography, magnetic resonance angiography, and X-ray digital subtraction angiography. These methods are aimed at vascular stenosis and do not show vascular wall lesions. High-resolution magnetic resonance vessel wall imaging (HR-VWI) is a new imaging method that can non-invasively display vascular wall lesions and has important value in judging the nature of ICAS lesions. In this paper, the application of HR-VWI in the identification of ICAS etiology is reviewed.
-
2019年新型冠状病毒存在人和人之间的广泛传播[1]。COVID-19感染后,易引起肺部炎症(简称新冠肺炎),CT因其简便快捷,且能够早期发现病灶,目前已被广泛应用于临床[2]。2022年12月至2023年1月期间,新型冠状病毒(COVID-19)又一次在人与人之间广泛传播,很多患者感染后,均引起了新冠肺炎。
本文分析新冠肺炎患者早期(新冠感染 7 d以内)、进展期及转归期CT影像特点及演变规律,以提高广大医护人员对新冠肺炎不同时期影像表现的认识。
1. 资料与方法
1.1 一般资料
收集2022年12月1日至2023年1月31日在河北省人民医院感染科门诊、呼吸科门诊及呼吸科病房收治的COVID-19核酸或抗原检测阳性的患者113例,统计所有患者CT检查并分析检查结果,按照新型冠状病毒肺炎影像指南(2020年第二版简版)中 COVID-19影像分期及表现对上述所有患者进行分期,早期为新冠感染1~7 d内;进展期为病变范围扩大、密度增高实变,本组中进展期为8~30 d;转归期为病变范围较前次CT检查减小,密度减低,本组中转归期为12~57 d。
本组患者共113例,33例新冠病毒核酸检测阳性,96例新冠抗原检测阳性,其中8例新冠病毒核酸检测及新冠抗原检测均阳性,达到COVID-19病原学诊断标准。男性73例(60%),女性40例(40%),年龄18~90岁,平均(63.8±13.8)岁。所有患者均行HRCT检查。
1.2 HRCT扫描方法
使用西门子及GE多层螺旋CT扫描仪(SOMATOM Definition Flash CT 128排,SOMATOM Force 96×2排CT,Revolution CT ES,128排),患者采取仰卧位,于吸气末屏气扫描。
扫描范围:从肺尖至膈底。CT扫描参数:管电压120 kV,管电流320 mA,FOV 500 mm,层厚5 mm,重建层厚0.625~1.25 mm。
CT图像由两位胸部影像医生共同阅片完成,最终结果由两位医生协商达成一致。
2. 结果
2.1 一般情况
113例患者,无明显发热10例,103例发热,温度在37~40 ℃不等,均伴咳嗽、咳痰。33例新冠病毒核酸检测阳性,96例新冠抗原检测阳性,其中8例新冠病毒核酸检测及新冠抗原检测均阳性,达到COVID-19病原学诊断标准。
实验室检查;中性粒细胞增高及淋巴细胞减低83例,中性粒细胞减低及淋巴细胞升高7例,中性粒细胞及淋巴细胞正常15例,未测血像8例。
2.2 CT表现
113例患者均为临床确诊新冠病毒感染患者。32例患者行1次CT检查,41例行CT检查2次,20例行CT检查3次,15例行CT检查4次,5例行CT检查5次。本组113例患者共行CT检查259次。其中早期(新冠感染 7 d以内)CT检查32次,进展期CT检查87次,转归期CT检查140次。通过分析患者每次CT影像特点,得出新冠病毒感染患者的影像特点及演变规律。
早期(新冠感染 7 d以内)32例患者行32次CT检查:CT表现为磨玻璃密度影26例,实变+磨玻璃密度影 6例。进展期(新冠感染 8~30 d)74例患者做87次CT检查:其中11例进展期均行2次CT检查,1例进展期行3次CT检查,62例进展期均行1次CT检查。87次检查中磨玻璃密度影32次,实变+磨玻璃密度影 55次。转归期(新冠感染 12~57 d)89例转归期行140次CT检查:其中1例转归期行4次CT检查,8例转归期均行3次CT检查,32例转归期均行2次CT检查,48例转归期均行1次CT检查。140次CT检查中48次磨玻璃密度影,90次实变+磨玻璃密度影,2次未见异常。所有113例患者中,所有患者在早期和进展期均为多叶多发病灶,1例在转归期为单叶多发病灶。
早期32次CT检查中,胸膜下分布13次,支气管血管束周围+胸膜下分布 19次。进展期87次CT检查中,胸膜下分布24次,支气管血管束周围+胸膜下分布 63次。转归期140次CT检查中,胸膜下分布48次,2次完全吸收好转,支气管血管束周围+胸膜下分布 90次。
早期32次检查中,磨玻璃密度影内小叶间隔增粗32次,病灶内血管增粗32次。进展期87次CT检查中,病灶内小叶间隔增粗85次,病灶内血管增粗87次。转归期140次CT检查中,小叶间隔增粗5次,病灶内血管增粗1次,48次伴条索影。
早期1次支气管气充气征,进展期6次胸腔积液,6次支气管充气征,3次肺气肿,转归期2次支气管充气征,1次胸腔积液。
本组患者早期CT多表现为磨玻璃密度影,磨玻璃影内见小叶间隔增粗及增粗血管影,多胸膜下分布,部分胸膜下及支气管血管束周围分布,进展期病变多由磨玻璃密度影演变为实变影,由中心开始实变,病变整体范围无明显扩大,只是变实并略有膨胀感,恢复期病变由实变影逐渐消退,密度减低,直接吸收或转变为磨玻璃密度影,逐渐吸收。病灶少的吸收快,病灶弥漫的2月左右仍有少许磨玻璃密度影及条索影(表1)。
表 1 不同时期CT表现Table 1. CT findings in patients with new coronary pneumonia in different periodsCT表现 早期 进展期 转归期 磨玻璃 26(81%) 32(37%) 48(34%) 实变+磨玻璃 6(19%) 55(63%) 90(64%) 胸膜下分布 13(40%) 24(28%) 48(34%) 胸膜下+支气管血管周围分布 19(60%) 63(72%) 90(64%) 多叶 32(100%) 87(100%) 137(98%) 单叶 1(2%) 其内小叶间隔增粗 32(100%) 85(97%) 5(3%) 其内血管增粗 32(100%) 87(100%) 1(10%) 支气管充气征 1(3%) 6(7%) 2(1%) 条索 48(55%) 48(34%) 胸腔积液 6(7%) 1(1%) 肺气肿 3(3%) 本组2例患者2月左右完全吸收好转,患者一般在2~3周时临床症状已明显缓解,但影像仍有病灶存在,与我们平时看到的肺炎的影像吸收要比临床症状延迟一段时间是一致的。
3. 讨论
目前研究表明,新型冠状病毒为β属冠状病毒,有包膜,颗粒呈圆形或椭圆形,直径60~140 nm[3]。新型冠状病毒有3种传播途径:经呼吸道飞沫传播和密切接触传播;在相对封闭的环境中经气溶胶传播;接触被病毒污染的物品后也可造成感染,人群普遍易感[3-4]。新型冠状病毒感染后可引起上呼吸道感染的症状,如发热、咳嗽、咯痰、鼻塞、流涕等症状,严重者引起肺炎。
2019年的新型冠状病毒致病力较强,临床上大部分患者会引起肺炎。随着新型冠状病毒不断变异,奥密克戎毒株成为主要流行株。截至2022年10月奥密克戎毒株已变异成免疫逃逸能力和传播力更强的毒株,但致病力明显减弱,引起肺炎的患者数明显低于2019年奥密克戎毒株[5]。Wang等[6]文中COVID-19的诊断原则为RT-PCR检测呈阳性,下呼吸道标本检测阳性率最高。但有的报道显示RT-PCR的灵敏度只有60%~71%,假阴性较多,延误治疗[7-9]。
《新型冠状病毒感染诊疗方案(试行第十版)》中提出诊断标准[3]为:具有新冠病毒感染的相关临床表现,具有以下一种或以上病原学、血清学检查结果:①新冠病毒核酸检测阳性;②新冠病毒抗原检测阳性;③新冠病毒分离、培养阳性;④恢复期新冠病毒特异性IgG抗体水平为急性期4倍或以上升高[3]。本组病例为2022年12月至2023年1月期间113例河北省人民医院临床确诊新冠肺炎的患者,其中新冠抗原阳性96例,新冠核酸阳性33例,其中抗原+核酸均阳性 8例。
3.1 不同时期新冠肺炎影像表现不同
自2019年至今,新冠病毒感染者较多,对新冠病毒感染后胸部CT中磨玻璃、实变、小叶间隔增粗、支气管血管增粗等表现,国内外研究中多有报道[10-19]。本组病例根据新型冠状病毒肺炎影像诊断指南(2020年第二版简版)[20]进行分期,分为早期、进展期、重症期、转归期。早期多见于发病1周内的新冠病毒感染者,常表现为局部胸膜下磨玻璃密度影;进展期病变范围增大,实变及磨玻璃密度影均增大,支气管血管束增粗,也可见网格影;重症期出现呼吸衰竭并进展为“白肺”;转归期病变范围减小,密度减低。
本组病例不同时期影像表现:早期均为多肺叶分布32例,无单肺叶分布;早期胸膜下为主的磨玻璃密度影26例,胸膜下+支气管血管束周围分布磨玻璃密度影 6例,中心见小叶间隔增粗及增粗血管影32例;进展期实变影+磨玻璃密度影 55例,磨玻璃密度影32例;转归期实变+磨玻璃影90例,条索影48例,磨玻璃影48例,转归期病灶逐渐吸收消散,病变范围减小,密度变淡(图1)。本组病例与新型冠状病毒肺炎影像诊断指南(2020年第二版简版)指南影像分期的表现是一致的。也就是说新冠病毒虽然一直在变异,但引起的病理机制和影像表现特点是相近的。本组病例大多为多叶多灶感染,但无一进展为重症期,与临床早诊早治密切相关[10-12]。所有患者均达至临床治愈出院。临床症状在2~3周时多数已无明显不适。
3.2 新冠肺炎CT影像学表现有一定的演变规律
本组病例首次CT检查在1~7 d内的为早期CT影像,早期肺内病灶密度以磨玻璃密度为主,磨玻璃密度影表现为胸膜下分布、支气管血管束周围+胸膜下分布,两者比例均不少;本组病例进展期在第8~30 d,病变由磨玻璃密度逐渐变成实性密度+磨玻璃密度,实性密度在磨玻璃密度影中心部;本组病例转归期在第12~57 d,病变范围开始逐渐减小,实变密度逐渐变淡又转变为磨玻璃密度影,部分病灶吸收变小,并出现纤维索条影。本组病例转归期CT检查次数1~4次不等,病灶随时间延长,密度逐渐变淡,范围逐渐减小,部分出现索条影。此时临床症状早于影像已基本消失。此外本组病例中有4例患者出现胸腔积液,1例右侧少量胸腔积液,1例左侧少量胸腔积液,2例双侧少量胸腔积液,转归期3例积液减少,1例积液吸收,考虑炎症累及胸膜所致。
本组其他病例未发现累及胸膜引起胸腔积液病例。本组病例通过多次CT复查观察影像变化趋势,不同时期新冠肺炎的影像变化特点,提高对新冠肺炎的认识,从而与细菌性肺炎、其他间质性肺炎相鉴别[16-19]。
3.3 局限性
本研究局限性。①样本量较小,对新冠肺炎CT影像特点及演变规律具有一定的局限性;②入组病例部分早期未做 CT,部分进展期未做CT,部分恢复期未做CT,导致影像数据不完整。
但综合这些数据资料,也能够反映出新冠肺炎HRCT的特点及演变规律,新冠病毒感染后肺部HRCT有其独有的特征[13],具有较高特异性和灵敏度[14],结合实验室检查及临床症状可以明确诊断,对于新冠抗原或核酸检测阳性患者伴有临床发热持续不退的,应及时进行CT检查,早期明确是否存在新冠肺炎,及时分期,早期及时治疗可以预防重症肺炎的出现,挽救生命。
-
表 1 动脉粥样硬化斑块的HR-VWI信号特征
Table 1 HR-VWI signal characteristics of atherosclerotic plaque
成分 T1WI T2WI 增强T1WI PDWI 3D-TOF 急性出血 高 等/低 无强化 等/高 高 钙化 低 低 无强化 低 低 脂质核心 等/高 等/高 无强化 等/高 等 疏松的间质 低/等 高 有强化 低/等 等 纤维化组织 等 等/高 有强化 等/高 等 纤维帽 等/高 等/高 无强化 等/高 等 -
[1] PAN Y, WAN W, XIANG M, et al. Transcranial Doppler ultrasonography as a diagnostic tool for cerebrovascular disorders[J/OL]. Front Hum Neurosci, 2022, 16: 841809. [2022-04-29]. https://www. ncbi.nlm.nih.gov/pmc/articles/PMC9101315/pdf/fnhum-16-841809.pdf.
[2] MALIKOVA H, WEICHET J. Diagnosis of ischemic stroke: As simple as possible[J/OL]. Diagnostics (Basel), 2022, 12(6): 1452. [2022-06-13]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9221735/pdf/ diagnostics-12-01452.pdf.
[3] ZHANG F, RAN Y, ZHU M, et al. The use of pointwise encoding time reduction with radial acquisition MRA to assess middle cerebral artery stenosis pre- and post-stent angioplasty: Comparison with 3D time-of-flight MRA and DSA[J/OL]. Frontiers in Cardiovascular Medicine, 2021, 8: 739332. [2021-09-09]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8458737/pdf/fcvm-08-739332.pdf.
[4] ZHU X J, WANG W, LIU Z J. High-resolution magnetic resonance vessel wall imaging for intracranial arterial stenosis[J]. Chinese Medical Journal, 2016, 129(11): 1363−1370. doi: 10.4103/0366-6999.182826
[5] SHAO X, YAN L, MA S J, et al. High-resolution neurovascular imaging at 7T: Arterial spin labeling perfusion, 4-Dimensional MR angiography, and black blood MR imaging[J]. Magnetic Resonance Imaging Clinics of North America, 2021, 29(1): 53−65. doi: 10.1016/j.mric.2020.09.003
[6] XIE Y, YANG Q, XIE G, et al. Improved black-blood imaging using DANTE-SPACE for simultaneous carotid and intracranial vessel wall evaluation[J]. Magnetic Resonance Medicine, 2016, 75(6): 2286−2294. doi: 10.1002/mrm.25785
[7] LI R, JIN S, WU T, et al. Usefulness of silent magnetic resonance angiography (MRA) for the diagnosis of atherosclerosis of the internal carotid artery siphon in comparison with time-of-flight MRA[J/OL]. European Journal of Medical Research, 2022, 27(1): 44. [2022-03-21]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8935786/pdf/40001_2022_Article_673.pdf.
[8] CHAGANTI J, WOODFORD H, TOMLINSON S, et al. Black blood imaging of intracranial vessel walls[J/OL]. Practical Neurology. [2020-12-29]. https://pn.bmj.com/lookup/pmidlookup?view=long&pmid=33376151.
[9] YANG H, ZHANG X, QIN Q, et al. Improved cerebrospinal fluid suppression for intracranial vessel wall MRI[J]. Journal of Magnetic Resonance Imaging, 2016, 44(3): 665−672. doi: 10.1002/jmri.25211
[10] LI F, WANG Y, HU T, et al. Application and interpretation of vessel wall magnetic resonance imaging for intracranial atherosclerosis: A narrative review[J/OL]. Annals of Translation Medicine, 2022, 10(12): 714. [2022-06-30]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9279807/pdf/atm-10-12-714.pdf.
[11] ZHU X, SHAN Y, GUO R, et al. Three-dimensional high-resolution magnetic resonance imaging for the assessment of cervical artery dissection[J/OL]. Front Aging Neurosci, 2022, 14: 785661. [2022-07-05]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9295408/pdf/fnagi-14-785661.pdf.
[12] ZHU C, TIAN B, CHEN L, et al. Accelerated whole brain intracranial vessel wall imaging using black blood fast spin echo with compressed sensing (CS-SPACE)[J]. Magnetic Resonance Materials in Physics, Biology and Medicine, 2017, 31(3): 457−467.
[13] BALU N, ZHOU Z, HIPPE D S, et al. Accelerated multi-contrast high isotropic resolution 3D intracranial vessel wall MRI using a tailored k-space undersampling and partially parallel reconstruction strategy[J]. Magnetic Resonance Materials in Physics, Biology and Medicine, 2019, 32(3): 343−357.
[14] OKUCHI S, FUSHIMI Y, OKADA T, et al. Visualization of carotid vessel wall and atherosclerotic plaque: T1-SPACE vs. compressed sensing T1-SPACE[J]. European Radiology, 2019, 29(8): 4114−4122. doi: 10.1007/s00330-018-5862-8
[15] ZHOU H, XIAO J, GANESH S, et al. VWI-APP: Vessel wall imaging-dedicated automated processing pipeline for intracranial atherosclerotic plaque quantification[J/OL]. Medical Physics, 2022: 1-11. [2022-11-07]. https://pubmed.ncbi.nlm.nih.gov/36345580.
[16] GONG Y, CAO C, GUO Y, et al. Quantification of intracranial arterial stenotic degree evaluated by high-resolution vessel wall imaging and time-of-flight MR angiography: Reproducibility, and diagnostic agreement with DSA[J]. European Radiology, 2021, 31(8): 5479−5489. doi: 10.1007/s00330-021-07719-x
[17] ZHAO D L, LI C, CHEN X H, et al. Reproducibility of 3.0 T high-resolution magnetic resonance imaging for the identification and quantification of middle cerebral arterial atherosclerotic plaques[J]. Journal of Stroke and Cerebrovascular Diseases, 2019, 28(7): 1824−1831. doi: 10.1016/j.jstrokecerebrovasdis.2019.04.020
[18] GUTIERREZ J, TURAN T N, HOH B L, et al. Intracranial atherosclerotic stenosis: Risk factors, diagnosis, and treatment[J]. Lancet Neurology, 2022, 21(4): 355−368. doi: 10.1016/S1474-4422(21)00376-8
[19] KAMTCHUM-TATUENE J, NOMANI A Z, Falcione S, et al. Non-stenotic carotid plaques in embolic stroke of unknown source[J/OL]. Frontiers in Neurology, 2021, 12: 719329. [2021-09-21]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8492999/pdf/fneur-12-719329.pdf.
[20] SABA L, SAAM T, JÄGER H R, et al. Imaging biomarkers of vulnerable carotid plaques for stroke risk prediction and their potential clinical implications[J]. Lancet Neurology, 2019, 18(6): 559−572. doi: 10.1016/S1474-4422(19)30035-3
[21] PARK J E, JUNG S C, LEE S H, et al. Comparison of 3D magnetic resonance imaging and digital subtraction angiography for intracranial artery stenosis[J]. European Radiology, 2017, 27(11): 4737−4746. doi: 10.1007/s00330-017-4860-6
[22] SUN J, FENG X R, FENG P Y, et al. HR-MRI findings of intracranial artery stenosis and distribution of atherosclerotic plaques caused by different etiologies[J]. Neurological Sciences, 2022, 43(9): 5421−5430. doi: 10.1007/s10072-022-06132-6
[23] MANDELL D M, MOSSA-BASHA M, QIAO Y, et al. Intracranial vessel wall MRI: Principles and expert consensus recommendations of the American society of neuroradiology[J]. American Journal of Neuroradiology, 2017, 38(2): 218−229. doi: 10.3174/ajnr.A4893
[24] SONG J W, PAVLOU A, XIAO J, et al. Vessel wall magnetic resonance imaging biomarkers of symptomatic intracranial atherosclerosis: A Meta-analysis[J]. Stroke, 2021, 52(1): 193−202. doi: 10.1161/STROKEAHA.120.031480
[25] ZHAO J J, LU Y, CUI J Y, et al. Characteristics of symptomatic plaque on high-resolution magnetic resonance imaging and its relationship with the occurrence and recurrence of ischemic stroke[J]. Neurological Sciences, 2021, 42(9): 3605−3613. doi: 10.1007/s10072-021-05457-y
[26] LIU Z, ZHONG F, XIE Y, et al. A predictive model for the risk of posterior circulation stroke in patients with intracranial atherosclerosis based on high resolution MRI[J/OL]. Diagnostics (Basel), 2022, 12(4): 812. [2022-08-29]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9497493/pdf/diagnostics-12-02088.pdf.
[27] RAN Y, WANG Y, ZHU M, et al. Higher plaque burden of middle cerebral artery is associated with recurrent ischemic stroke: A quantitative magnetic resonance imaging study[J]. Stroke, 2020, 51(2): 659−662. doi: 10.1161/STROKEAHA.119.028405
[28] SHEN Z Z, REN S J, WU R R, et al. Temporal changes in plaque characteristics after treatment and their relationship with stroke recurrence: A quantitative study using magnetic resonance imaging[J]. Quantitative Imaging in Medicine and Surgery, 2022, 12(9): 4559−4569. doi: 10.21037/qims-22-210
[29] GEIGER M A, FLUMIGNAN R L G, SOBREIRA M L, et al. Carotid plaque composition and the importance of non-invasive in imaging stroke prevention[J/OL]. Frontiers Cardiovascular Medicine, 2022, 9: 885483. [2022-05-16]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9149096/pdf/fcvm-09-885483.pdf.
[30] DENG F, MU C, YANG L, et al. Carotid plaque magnetic resonance imaging and recurrent stroke risk: A systematic review and meta-analysis[J/OL]. Medicine (Baltimore), 2020, 99(13): e19377. [2020-03-30]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7220511/pdf/medi-99-e19377.pdf.
[31] SCHINDLER A, SCHINNER R, Altaf N, et al. Prediction of stroke risk by detection of hemorrhage in carotid plaques: Meta-analysis of individual patient data[J]. JACC. Cardiovasc Imaging, 2020, 13(2 Pt 1): 395-406.
[32] QIAO H, LI D, CAO J, et al. Quantitative evaluation of carotid atherosclerotic vulnerable plaques using in vivo T1 mapping cardiovascular magnetic resonaonce: Validation by histology[J/OL]. Journal Cardiovascular Magnetic Resonance, 2020, 22(1): 38. [2020-05-21]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7240932/.
[33] MAZZACANE F, MAZZOLENI V, SCOLA E, et al. Vessel wall magnetic resonance imaging in cerebrovascular diseases[J/OL]. Diagnostics (Basel), 2022, 12(2): 258. [2022-01-20]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8871392/pdf/diagnostics-12-00258.pdf.
[34] SAKAI Y, LEHMAN V T, EISENMENGER L B, et al. Vessel wall MR imaging of aortic arch, cervical carotid and intracranial arteries in patients with embolic stroke of undetermined source: A narrative review[J/OL]. Frontiers in Neurology, 2022, 13: 968390. [2022-07-28]. https://pubmed.ncbi.nlm.nih.gov/35968273.
[35] WATASE H, SHEN M, SUI B, et al. Differences in atheroma between Caucasian and Asian subjects with anterior stroke: A vessel wall MRI study[J]. Stroke and Vascular Neurology, 2021, 6(1): 25−32. doi: 10.1136/svn-2020-000370
[36] IKEBE Y, ISHIMARU H, IMAI H, et al. Quantitative susceptibility mapping for carotid atherosclerotic plaques: A pilot study[J]. Magnetic Resonance in Medical Sciences, 2020, 19(2): 135−140. doi: 10.2463/mrms.mp.2018-0077
[37] ALKHALIL M, BIASIOLLI L, CHAI J T, et al. Quantification of carotid plaque lipid content with magnetic resonance T2 mapping in patients undergoing carotid endarterectomy[J/OL]. Public Library of Science One, 2017, 12(7): e0181668. [2017-07-26]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5528883/.
[38] JIANG Y, ZHU C, PENG W, et al. Ex-vivo imaging and plaque type classification of intracranial atherosclerotic plaque using high resolution MRI[J/OL]. Atherosclerosis, 2016, 249: 10-16. [2016-03-30]. https://pubmed.ncbi.nlm.nih.gov/27062404.
[39] FOX B M, DORSCHEL K B, LAWTON M T, et al. Pathophysiology of vascular stenosis and remodeling in moyamoya disease[J/OL]. Frontiers in Neurology, 2021, 12: 661578. [2021-11-26]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8663087/pdf/fneur-12-812027.pdf.
[40] DU L, JIANG H, LI J, et al. Imaging methods for surgical revascularization in patients with moyamoya disease: An updated review[J]. Neurosurgical Review, 2022, 45(1): 343−356. doi: 10.1007/s10143-021-01596-0
[41] MURAOKA S, ARAKI Y, TAOKA T, et al. Prediction of intracranial arterial stenosis progression in patients with moyamoya vasculopathy: Contrast-enhanced high-resolution magnetic resonance vessel wall imaging[J/OL]. World Neurosurgery, 2018, 116: e1114-e1121. [2018-06-01]. https://www.sciencedirect.com/science/article/abs/pii/S1878875018311355?via%3Dihub.
[42] HAN C, LI M L, XU Y Y, et al. Adult moyamoya-atherosclerosis syndrome: Clinical and vessel wall imaging features[J]. Journal of the Neurological Sciences, 2016, 369: 181−184. doi: 10.1016/j.jns.2016.08.020
[43] RYU J, LEE K M, KIM H G, et al. Diagnostic performance of high-resolution vessel wall magnetic resonance imaging and digital subtraction angiography in intracranial vertebral artery dissection[J/OL]. Diagnostics (Basel), 2022, 12(2): 432. [2022-02-08]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8871073/pdf/diagnostics-12-00432.pdf.
[44] SUNDARAM S, KUMAR P N, SHARMA D P, et al. High-resolution vessel wall imaging in primary angiitis of central nervous system[J]. Annals of Indian Academy of Neurology, 2021, 24(4): 524−530.
[45] PADRICK M M, MAYA M M, FAN Z, et al. Magnetic resonance vessel wall imaging in central nervous system vasculitides: A case series[J]. Neurologist, 2020, 25(6): 174−177. doi: 10.1097/NRL.0000000000000298
[46] SHIMOYAMA T, UCHINO K, CALABRESE L H, et al. Serial vessel wall enhancement pattern on high-resolution vessel wall magnetic resonance imaging and clinical implications in patients with central nervous system vasculitis[J]. Clinical and Experimental Rheumatology, 2022, 40(4): 811−818.
[47] NARVAEZ E O, RAMOS M C, FARIA DO AMARAL L L, et al. Neurosyphilis and high-resolution vessel wall imaging: A powerful tool to detect vasculitis and neuritis[J]. Neurology India, 2022, 70(1): 160−161.
[48] SPADARO A, SCOTT K R, KOYFMAN A, et al. Reversible cerebral vasoconstriction syndrome: A narrative review for emergency clinicians[J]. The American Journal of Emergency Medicine, 2021, 50: 765−772. doi: 10.1016/j.ajem.2021.09.072
[49] EDJLALI M, QIAO Y, BOULOUIS G, et al. Vessel wall MR imaging for the detection of intracranial inflammatory vasculopathies[J]. Cardiovascular Diagnosis and Therapy, 2020, 10(4): 1108−1119. doi: 10.21037/cdt-20-324
[50] DINÇ Y, ÖZPAR R, EMIR B, et al. Vertebral artery hypoplasia as an independent risk factor of posterior circulation atherosclerosis and ischemic stroke[J/OL]. Medicine (Baltimore), 2021, 100(38): e27280. [2021-09-24]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8462547/pdf/medi-100-e27280.pdf.
[51] ZHU X J, WANG W, DU B, et al. Wall imaging for unilateral intracranial vertebral artery hypoplasia with three-dimensional high-isotropic resolution magnetic resonance images[J]. Chinese Medical Journal, 2015, 128(12): 1601−1606. doi: 10.4103/0366-6999.158314
-
期刊类型引用(0)
其他类型引用(1)
计量
- 文章访问数: 354
- HTML全文浏览量: 104
- PDF下载量: 32
- 被引次数: 1