Analysis of Chest Computed Tomography Manifestations of Coronavirus Disease 2019 in Different Age Groups
-
摘要: 目的:分析不同年龄人群新型冠状病毒感染(COVID-19)胸部CT影像特征,提高对不同年龄人群COVID-19影像表现的认识。方法:回顾性分析476例COVID-19的胸部CT资料,男275例,女201例,按照不同年龄段分为A组(0~45岁)33人、B组(45~60岁)72人、C组(60~75岁)203人、D组(75岁以上)168人,共4组,比较4组病例胸部CT病灶累及肺叶侧别、数目、密度和病灶分布等CT基本征象及基于深度学习的病灶体积、体积占比和密度等的差异。结果:476例COVID-19患者均有流行病学史,性别在各组间差异无统计学意义。4组病例双肺下叶病灶最为多见,A组病灶多位于单侧肺,C组和D组病灶以双肺分布多见。各组病灶体积、体积占比随年龄增大呈递增趋势,且分布均以双肺下叶为主,其中A、C和D组均以右肺下叶最为常见且体积及体积占比最大,B组以左肺下叶病灶体积及占比较大;与A组比较,C组各项指标增大,差异均有统计学意义,且右肺下叶病灶体积与B组比较差异有统计学意义;D组左肺上叶病灶体积与A组比较明显增大,占比较A组和B组明显增大,余D组全肺及右肺上叶、中叶、下叶及左肺下叶病灶体积及体积占比较A、B和C组均明显增大,且差异有统计学意义。病灶均以磨玻璃密度影及实变为主,A组以纯磨玻璃密度最多见,混合磨玻璃密度次之,实变密度少见;D组病灶以实变密度较多见,大多呈混合磨玻璃密度;B和C组纯磨玻璃、混合磨玻璃、实变密度病灶出现情况介于A组和D组之间;各组病灶密度均以磨玻璃密度为主,CT值区间以 -570 ~-470 HU及 -470 ~ -370 HU为主,D组各CT值区间病灶体积均较A、B和C组高,体积占比均较A组高且差异有统计学意义。结论:本组研究COVID-19患者均有流行病学史,熟悉不同年龄人群胸部CT特征可使临床诊疗工作更具针对性,可为COVID-19病情监测以及个体化防治措施提供参考。Abstract: Objective: This study aimed to analyze the chest computed tomography (CT) imaging features of coronavirus disease 2019 (COVID-19) in people of different ages and improve the understanding of the imaging manifestations of COVID-19. Methods: Chest CT data of 476 cases with COVID-19 were retrospectively analyzed, including 275 males and 201 females. The patients were divided into four groups according to different age groups: groups A (0~45 years old) 33, B (45~60 years old) 72, C (60~75 years old) 203, and D (over 75 years old) 168. A comparison was made between the four groups of patients with chest CT lesions involving lobe side, number and density, distribution, and other basic CT signs, as well as differences in lesion volume, volume proportion, and density based on deep learning. Results: All the 476 patients with COVID-19 had an epidemiological history, and there was no statistically significant difference in sex between the groups. The lesions in the lower lobes of both lungs were the most common in the four groups. The lesions in group A were mostly located in the unilateral lung, while those in groups C and D were mostly distributed in both lungs. The volume and proportion of lesions increased with age in each group, and the distribution was mainly in the lower lobe of both lungs. In groups A, C, and D, the right lower lobe was the most common and had the largest volume and proportion, while in group B, the left lower lobe had the largest volume and proportion. Compared with group A, all indexes of group C increased, and the difference was statistically significant; the lesion volume of the right inferior lobe of the lung was statistically significant compared with group B. The volume of lesions in the left upper lobe of the lung in group D was significantly increased compared with that in groups A and B, and the volume and proportion of lesions in the whole lung, upper, middle, and lower lobes of the right lung, and the lower lobe of the left lung in group D were significantly increased compared with that in groups A, B and C, and the difference was statistically significant. In group A, the density of pure ground glass was the most common, followed by the density of mixed ground glass, and the density of solid change was rare. The solid density of lesions in group D was more common, most of which showed mixed ground glass density. The incidence of pure ground glass, mixed ground glass, and solid density lesions was higher in groups B and C than that in groups A and D. The lesion density in each group was mainly ground glass density, and the CT value ranged from −570 to −470 HU and −470 to −370 HU. The lesion volume in each CT value range of group D was higher than that in groups A, B, and C, and the volume proportion was higher than that in group A, and the difference was statistically significant. Conclusion: All patients with COVID-19 in this group have an epidemiological history. Being familiar with chest CT features of people of different ages can make clinical diagnosis and treatment more targeted and provide a reference for COVID-19 disease monitoring and individualized prevention and treatment measures.
-
Keywords:
- tomography /
- X -ray computed /
- coronavirus disease 2019
-
支气管肺癌是发病率最高的恶性肿瘤之一,中晚期肺癌死亡率高。其中,发生在段及段以上支气管的中央型肺癌依据肿瘤与支气管的关系分为3型:管内型、管壁型及管外型。当肿瘤造成气道狭窄及闭塞时,继发远端肺组织的炎症实变及不张。中央型肺癌手术的可能性小,术后患者生活质量差,预后不佳。
近年来,强调适形放疗逐渐成为中晚期中央型肺癌的主流手段,放疗前准确识别肿瘤的边界,精准勾画靶区是放疗计划最关键的一步。立体定向放疗(stereotactic body radiotherap,SBRT)术前定位的主流影像学检查手段是CT扫描,中央型肺癌经常伴有阻塞性肺不张,普通CT常规扫描对于识别肿瘤边界难度较大,继而影响肿瘤治疗效果。能谱扫描通过单源双能(80 kVp和140 kVp)瞬时切换的扫描技术,计算出能谱扫描数据及图像,提高了识别肿瘤边界的准确率。应用能谱CT优化低对比成像技术,最佳单能量图像能明显提高肿瘤与不张组织的对比噪声比(contrast noise ratio,CNR),加大对比度,从而区别肿瘤与不张肺组织[1-2]。
本文通过能谱扫描区别中央型肺癌与阻塞性肺不张,精准勾画放疗靶区,制定放疗计划,探讨其应用价值。
1. 资料与方法
1.1 临床资料
回顾性分析开滦总医院2018年5月至2022年3月拟行放射治疗患者65例,经病理证实中央型肺癌合并肺不张的患者能谱扫描资料,其中女性24例,男性41例,年龄40~85岁,平均年龄(68.24±12.54)岁;鳞癌39例,腺癌15例,小细胞肺癌8例,腺鳞癌3例。
1.2 检查方法
所有患者采用GE公司256排Revolution CT机,行胸部平扫及 Ⅲ 期增强CT能谱扫描(Gemstone spectral imaging,GSI)。检查前培训患者吸气及屏气,配合扫描。患者取仰卧位,足先进。正位胸片定位,扫描范围肺尖至膈下2 cm。扫描参数:管电压GSI 80~140 kVp,GSI Assist 200 mA,噪声指数11.0,螺距0.992︰1,AsiR-V 40%,探测器准直0.625 mm×256。
平扫+Ⅲ期增强CT扫描,碘海醇(碘350 mg/mL)高压注射器团注,流速3 mL/s,剂量1.5 mL/kg。肺动脉期(团注对比剂后22~25 s)、静脉期(团注对比剂后60 s)、延迟期(团注对比剂后3 min)3期扫描,扫描完成后将0.625 mm薄层图像传输至GE公司AW4.7工作站进行图像后处理。
1.3 图像及数据处理
由两名副主任医师进行能谱CT图像后处理,每人单独进行图像处理和分析,意见不一致协商解决。①data file序列在40~75 keV单能量图像上选择肿瘤和肺不张部位选取兴趣区,自动生成能谱曲线(Spectral HU curve,SHC),选取对比度最明显的图像为最佳单能量图像(the best monochromatic image,BMI),生成最佳单能量-碘基图(the best monochromaticimage combined with iodine concentration map,BMI-ICM)、有效原子序数图(effective atomic number,Eff-Z);②平扫、动脉期、静脉期、延迟期同样方法将120 kVp混合能量图像(polychromatic image,PI)、BMI、BMI-ICM、Eff-Z四种图像显示的肿瘤边缘与不张肺组织界限情况进行评分(图1~图3)。
评分标准:1分(瘤-肺界面难以分辨);2分(瘤-肺界面局部可分辨);3分(瘤-肺界面全部可分辨,但局部显示模糊);4分(瘤-肺界面全部清晰可辨)。测量3期增强CT扫描肿瘤与肺不张组织的碘浓度(iodine concentration,IC)值。
1.4 统计学分析
采用SPSS 20.0统计学软件对测量及计算得到的能谱数据进行统计分析。定量资料用
$(\bar x\pm s)$ 表示,最佳单能量值、瘤-肺界面评分的比较采用方差分析;肿瘤及不张肺组织IC值及CT值采用t检验。P<0.05为差异具有统计学意义。2. 结果
2.1 不同参考指标显示瘤-肺交界面评分比较
全部65例患者中,60例明确显示肺-瘤边界,显示率92.3%。明确肺瘤边界患者,增强CT扫描4项参考指标PI、BMI和BMI-ICM显示瘤-肺边界的评分,BMI-ICM的最高,BMI次之,PI最低,两两比较显示差异具有统计学意义。动脉期、静脉期及延迟期 Ⅲ 期扫描中,显示瘤-肺边界的评分动脉期最高,静脉期次之,差异具有统计学差异(表1)。
表 1 增强CT扫描各期PI、BMI及BMI-ICM瘤-肺边界主观评分的比较Table 1. The scores and detection rates of tumor-lung interface of PI, BMI, BMI-ICM and Eff-Z in three phase contrast enchancement扫描期相 瘤-肺边界主观评分值 统计检验 PI BMI BMI-ICM Eff-Z F P 动脉期 2.51±0.83 3.14±0.85 3.84±0.31 3.04±0.55 34.28 <0.01 静脉期 2.14±0.65 2.95±0.89 3.34±0.25 2.84±0.26 26.54 <0.01 延迟期 2.12±0.55 2.54±0.35 3.04±0.85 2.74±0.15 18.32 <0.01 2.2 中央型肺癌与不张肺组织IC值及CT值的比较
全部65例患者中,59例肿瘤组织IC值低于不张肺组织,6例肿瘤组织IC值高于不张肺组织,差异具有统计学意义。肿瘤与不张肺组织CT值增强CT扫描各期差异具有统计学意义。碘浓度差异高于CT值差异,差异具有统计学意义(表2)。
表 2 增强CT扫描各期肿瘤与不张肺组织碘浓度IC值及CT值的比较Table 2. The scores of tumor-lung interface of IC and CT scores in three phase contrast enchancement扫描期相 组织IC/100 μg·mL-1 CT值/HU 统计检验 肿瘤 不张肺组织 肿瘤 不张肺组织 t P 动脉期 12.51±3.89 23.71±8.12 35.41±6.85 50.21±9.76 -4.89 <0.01 静脉期 11.41±3.23 18.31±6.37 38.38±4.03 42.37±7.83 -6.43 <0.01 延迟期 10.11±3.63 17.96±5.93 18.51±5.84 17.01±7.73 -6.82 <0.01 3. 讨论
肿瘤放射治疗最重要的是辐射剂量最优化,即最大程度保护正常组织前提下,保证肿瘤组织达到辐射剂量。实现这一目标的前提是制定放疗计划前明确肿瘤边界,精确的勾画放疗靶区。CT扫描是临床工作中评估肿瘤边界最常用影像学检查,传统平扫联合增强CT扫描对中央型肺癌合并阻塞性肺不张的检出率约为40% 左右,准确鉴别能力达不到日益增高的临床要求[3-4]。应用MRI及PET/CT进行放疗前定位,DWI-T2WI对于中央型肺癌合并肺不张的肿瘤放疗靶区勾画能够发挥良好的作用,与增强CT扫描相比,也具有更好的分辨率和清晰度[5],肿瘤识别能力有所提高,由于设备的普及性及价格问题,难以广泛应用。
随着能谱CT的出现,能谱扫描更新了传统CT的成像观念,具有单能量图像、能谱曲线、物质分离及有效原子序数4大功能,特别是在提高图像对比、优化低对比成像方面优势明显。本组病例瘤-肺界面显示率达92.3% 左右,表明应用能谱CT的优化低对比成像技术显示中央型肺癌与阻塞性肺不张组织边界准确率,效果明显。
能谱CT的原理表明,任何物质的CT值在不同能量的射线下是不同的,特别是在低keV能量区,不同物质的能量衰减差异更大,病变与背景组织间对比最大,通过SHC显示最佳单能量值,重建出BMI。既往研究表显示能谱CT扫描优化CNR技术明显提高肝脏低对比度病灶的检出率,改善门静脉与肝组织对比度,提高门脉成像质量。中央型肺癌血供来源主要是支气管动脉,不张肺组织供血来源主要是肺动脉及少量支气管动脉,肺循环和体循环在扫描图像上的不同是传统增强CT扫描的理论依据,肿瘤组织与不张肺组织内血流量不同也增大了两者对比差异。但是,有些病例往往这两点差异不足以鉴别二者,能谱扫描是很好的补充。既往研究显示55~60 keV单能量图像肺癌与不张组织对比最好,肿瘤边界最容易勾画[6-8],本组病例结果与之相近。
能谱扫描物质分离功能中的碘基图BMI-ICM辅助伪彩技术,通过不同颜色更能直观显示肺瘤界面,有利于勾画肿瘤边缘,明显优于传统PI。从不同的方向和角度观察病变的多平面重建技术,较既往依靠单一横断图像显示肿瘤全貌具有明显优势。能谱扫描物质分离功能中,碘-水基物质对是基物质成像中应用最广泛、最成熟的一对。Ⅲ期增强扫描中,BMI及BMI-ICM图像肺动脉期、静脉期对肺-瘤边界显示能力明显高于延迟期。大多数普通CT混合能量图像以肺动脉及肺静脉期图像显示肿瘤与不张肺组织,部分效果不明显病例放疗靶区勾勒困难。
CT增强扫描应用最广泛的造影剂是含碘造影剂,经静脉注射含碘造影剂,通过碘基图可以显示病变与正常组织血运差异,同时可以测量目标区域碘浓度差值,突破了传统CT只能测量CT值差异的局限性[9]。使用能谱CT定量分析肺肿瘤内的碘浓度,解决了常规CT扫描不能显示肺部肿瘤血液灌注的问题[10-11]。
不张肺组织主要血供来源于粗大的肺动脉,由于肺不张血管聚拢,不张肺组织的相对肺动脉密度高于正常充气肺组织,显示血供丰富且强化时相是较早的肺循环肺动脉期,中央型肺癌血供主要来源于纤细的支气管动脉,血供相对较少且增强时相为较晚的体循环动脉期。本组病例 Ⅲ 期增强扫描显示肺癌与不张肺组织存在碘浓度差异,大多数不张肺组织碘浓度明显高于肿瘤组织,ICM更能直观显示界限。但是,少数肿瘤组织的碘浓度值高于不张的肺组织,可能与肿瘤的富血供程度与特殊病理类型、分化程度等因素有关。国外有学者研究表明碘浓度值较CT值更能准确反映病灶的血流量及微血管密度的变化[12-13],因此可以把碘浓度值作为鉴别中央型肺癌与肺不张组织的有效指标。
本组病例均为拟行放疗的中晚期肺癌患者,只有支气管镜或穿刺小标本病理结果,无手术切除大标本病理与能谱扫描结果进行对照;其次,能谱CT扫描辐射剂量较普通CT大,老款机型扫描时间及图像重建时间略长,影响患者流通速度。
综上所述,能谱CT扫描依靠多参数成像,最佳单能量成像、物质分离、有效原子序数辅助虚拟伪彩技术,有助于中央型肺癌及阻塞性肺不张组织的鉴别,诊断疾病的同时,为临床肺癌姑息性放疗精准勾画靶区提供有益的帮助。
-
表 1 各年龄段全肺及各肺叶感染体积、体积占比比较
Table 1 Comparison of the infected volume and the proportion of infected volume in the whole lung and each lung lobe at different ages
指标 年龄段 统计检验 <45岁
(n=33)45~60岁
(n=72)60~75岁
(n=203)≥75岁
(n=168)H P 全肺病灶体积占比/% 0.63 1.24 2.14a 6.21abc 50.675 <0.001 全肺病灶体积 24.74 49.58 71.40a 189.09abc 49.238 <0.001 右肺上叶病灶体积占比/% 0.00 0.10 0.53a 1.79abc 33.428 <0.001 右肺上叶病灶体积 0.00 0.89 4.90a 14.73abc 35.840 <0.001 右肺中叶病灶体积占比/% 0.00 0.29 0.58a 1.97abc 27.296 <0.001 右肺中叶病灶体积 0.00 1.28 1.925a 5.90abc 25.960 <0.001 右肺下叶病灶体积占比/% 0.42 1.15 3.15a 9.16abc 57.565 <0.001 右肺下叶病灶体积 4.02 8.16 26.39ab 67.02abc 58.197 <0.001 左肺上叶病灶体积占比/% 0.00 0.23 0.23a 0.86ac 21.036 <0.001 左肺上叶病灶体积 0.00 2.20 2.26a 7.33a 20.602 <0.001 左肺下叶病灶体积占比/% 0.21 1.58 2.25a 7.13abc 31.768 <0.001 左肺下叶病灶体积 1.38 11.89 15.51a 45.76abc 27.555 <0.001 注:a与<45岁组比较P<0.05;b与45~60岁组比较P<0.05;c与60~75岁组比较P<0.05。 表 2 各组病灶密度及各密度病灶占比比较
Table 2 Comparison of lesion density and cases in each group
指标 组别 统计检验 A(<45岁) B(45~60岁) C(60~75岁) D(≥75岁) H P (-570~-470)体积 2.62 6.09 9.37a 27.46abc 49.529 <0.001 (-570~-470)体积占比/% 13.22 13.44 14.04a 13.77a 2.211 <0.001 (-470~-370)体积 1.97 5.08 8.97a 21.38abc 50.983 <0.001 (-470~-370)体积占比/% 8.64 11.23 a 10.97a 11.57a 9.192 0.027 (-370~-270)体积 1.46 4.46 a 6.74 16.22abc 50.336 <0.001 (-370~-270)体积占比/% 6.39 8.73 a 8.76a 8.88a 14.231 0.003 (-270~-170)体积 0.83 3.65 a 4.84a 11.60abc 48.063 <0.001 (-270~-170)体积占比/% 4.40 6.87 a 6.53a 6.50a 13.823 0.003 (-170~-70)体积 0.53 2.45 a 3.77a 8.13 abc 44.968 <0.001 (-170~-70)体积占比/% 3.28 5.32 5.22 4.91a 8.044 0.045 (-70~30)体积 0.25 1.37 2.68a 6.58abc 43.384 <0.001 (-70~30)体积占比/% 2.15 2.86 3.52a 3.40a 10.103 0.018 (30~70)体积 0.02 0.31 a 0.47a 1.39abc 41.819 <0.001 (30~70)体积占比/% 0.19 0.55 a 0.67a 0.74a 12.169 0.007 其他 12.34 17.99 31.49 88.00abc 46.874 <0.001 其他占比/% 56.94 41.72 a 47.58a 47.11a 16.631 0.001 注:a与<45岁组比较P<0.05;b与45~60岁组比较P<0.05;c与60~75岁组比较P<0.05。 -
[1] 中华医学会放射学分会. 新型冠状病毒肺炎的放射学诊断: 中华医学会放射学分会专家推荐意见(第一版)[J]. 中华放射学杂志, 2020,54(4): 279−285. DOI: 10.3760/cma.j.cn112149-20200205-00094. Chinese Society of Radiology. Radiological diagnosis of new coronavirus infected pneumonitis: Expert recommendation from the Chinese Society of Radiology (First edition)[J]. Chinese Journal of Radiology, 2020, 54(4): 279−285. DOI: 10.3760/cma.j.cn112149-20200205-00094. (in Chinese).
[2] CHUNG M, BERNHEIM A, MEI X Y, et al. CT imaging features of 2019 novel coronavirus (2019-nCoV)[J]. Radiology, 2020, 295(1): 202−207. DOI: 10.1148/radiol.2020200230.
[3] AI T, YANG Z L, ZHAN H Y, et al. Correlation of chest CT and RT-PCR testing in coronavirus disease 2019 (COVID-19) in China: A report of 1014 cases[J]. Radiology, 2020, 296(2): E32−E40. DOI: 10.1148/radiol.2020200642.
[4] LI Q, GUAN X, WU P, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus infected pneumonia[J]. The New England Journal of Medicine, 2020, 382(13): 1199−1207. DOI: 10.1056/NEJMoa2001316.
[5] MUNSTER V J, KOOPMANS M, VAN D N, et al. A novel coronavirus emerging in china-key questions for impact assessment[J]. The New England Journal of Medicine, 2020, 382(8): 692−694. DOI: 10.1056/NEJMp2000929.
[6] 中华人民共和国国家卫生健康委员会. 新型冠状病毒感染诊疗方案(试行第十版)[EB/OL]. (2023-01-06) [2023-01-20]. http://www.nhc.gov.cn/ylyjs/pqt/202301/32de5b2ff9bf4eaa88e75bdf7223a65a.shtml. [7] CHEN D D, JIANG X Q, HONG Y, et al. Can chest CT features distinguish patients with negative from those with positive initial RT-PCR results for coronavirus disease (COVID-19)?[J]. American Journal of Roentgenology, 2021, 216(1): 66−70. DOI: 10.2214/AJR.20.23012.
[8] 靳英辉, 蔡林, 程真顺, 等. 新型冠状病毒(2019-nCoV)感染的肺炎诊疗快速建议指南(标准版)[J]. 解放军医学杂志, 2020,45(1): 1−20. DOI: 10.11855/j.issn.0577-7402.2020.01.01. JIN Y H, CAI L, CHENG Z S, et al. A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-nCoV) infected pneumonia (Standard version)[J]. Medical Journal of Chinese People's Liberation Army, 2020, 45(1): 1−20. DOI: 10.11855/j.issn.0577-7402.2020.01.01. (in Chinese).
[9] 赵建华, 张晓琴, 柴军, 等. 无症状感染转确诊新型冠状病毒肺炎胸部CT分析[J]. 生物医学工程与临床, 2020,24(6): 672−677. DOI: 10.13339/j.cnki.sglc.20201023.021. ZHAO J H, ZHANG X Q, CHAI J, et al. Analysis of COVID-19 chest CT in asymptomatic infection transferred to diagnosis patients[J]. Biomedical Engineering and Clinical Medicine, 2020, 24(6): 672−677. DOI: 10.13339/j.cnki.sglc.20201023.021. (in Chinese).
[10] 吴杰, 肖安岭, 顾金凤. 多层螺旋CT对新型冠状病毒肺炎的临床诊断价值[J]. 实用放射学杂志, 2021,37(5): 746−748. doi: 10.3969/j.issn.1002-1671.2021.05.013 WU J, XIA0 A L, GU J F. Clinical value of MSCT in the diagnosis of COVID-19[J]. Journal of Practical Radiology, 2021, 37(5): 746−748. (in Chinese). doi: 10.3969/j.issn.1002-1671.2021.05.013
[11] 余成成, 杨彦鸿, 胡天丽, 等. 新型冠状病毒B.1.617.2变异株感染者高分辨率CT与临床特点[J]. 中华放射学杂志, 2021,55(10): 1054−1058. DOI: 10.3760/cma.j.cn112149-20210618-00574. YU C C, YANG Y H, HU T L, et al. High resolution CT findings and clinical features of the novel corona-virus B.1.617.2 variant[J]. Journal of Practical Radiology, 2021, 55(10): 1054−1058. DOI: 10.3760/cma.j.cn112149-20210618-00574. (in Chinese).
[12] 李声鸿, 曾献军, 鄢海蓝, 等. 新型冠状病毒肺炎薄层CT评价[J]. 实用放射学杂志, 2021,37(7): 1074−1076, 1130. DOI: 10.3969/j.issn.1002-1671.2021.07.007. LI S H, ZENG X J, YAN H L, et al. Evaluation of COVID-19 with thin-sclice CT[J]. Journal of Practical Radiology, 2021, 37(7): 1074−1076, 1130. DOI: 10.3969/j.issn.1002-1671.2021.07.007. (in Chinese).
[13] LIGUORO I, PILOTTO C, BONANNI M, et al. SARS-CoV-2 infection in children and newborns: A systematic review[J]. European Journal of Pediatrics, 2020, 179(7): 1029−1046. DOI: 10.1007/s00431-020-03684-7.
[14] 耿梦杰, 任翔, 余建兴, 等. 不同年龄组新型冠状病毒肺炎患者临床特征分析[J]. 疾病监测, 2021,36(6): 573−580. DOI: 10.3784/jbjc.202101220035. GENG M J, REN X, YU J X, et al. Clinical characteristics of coronavirus disease 2019 cases in different age groups[J]. Disease Surveillance, 2021, 36(6): 573−580. DOI: 10.3784/jbjc.202101220035. (in Chinese).
[15] HENRY B M, LIPPI G, PLEBANI M. Laboratory abnormalities in children with novel coronavirus disease 2019[J]. Clinical Chemistry and Laboratory Medicine, 2020, 58(7): 1135−1138. DOI: 10.1515/cclm-2020-0272.
[16] 孙莹, 李玲, 刘晓燕, 等. 早期新型冠状病毒肺炎的胸部薄层平扫CT表现特征[J]. CT理论与应用研究, 2023,32(1): 131−138. DOI: 10.15953/j.ctta.2023.006. SUN Y, LI L, LIU X Y, et al. Imaging features of early COVID-19 on chest thin-slice non-enhanced CT[J]. CT Theory and Applications, 2023, 32(1): 131−138. DOI: 10.15953/j.ctta.2023.006. (in Chinese).
[17] 吴宝亮, 李婷, 侯勤明, 等. 不同年龄组新型冠状病毒肺炎患者首次胸部CT表现[J]. 医学影像学杂志, 2020,30(11): 2034−2037. WU B L, LI T, HOU Q M, et al. Chest CT manifestation of patients with corona virus disease 2019 in different age groups[J]. Journal of Medical Imaging, 2020, 30(11): 2034−2037. (in Chinese).
[18] 李勃, 孙钢. 基础医学视角的新型冠状病毒肺炎CT表现及鉴别诊断[J]. 中国医学影像学杂志, 2020,28(10): 738−740. DOI: 10.3969/j.issn.1005-5185.2020.10.005. LI B, SUN G. CT findings and differential diagnosis of novel coronavirus pneumonia from the perspective of basic medicine[J]. Chinese Journal of Medical Imaging, 2020, 28(10): 738−740. DOI: 10.3969/j.issn.1005-5185.2020.10.005. (in Chinese).
[19] 田斌, 余晖, 任基刚, 等. 基于机器学习的多种分类模型在新型冠状病毒肺炎与社区获得性肺炎鉴别诊断中的效能[J]. 放射学实践, 2021,36(5): 590−595. DOI: 10.13609/j.cnki.1000-0313.2021.05.004. TIAN B, YU H, REN J G, et al. Effectiveness of multiple classification models based on machine learning in the differential diagnosis of COVID-19 and community-acquired pneumonia[J]. Radiologic Practice, 2021, 36(5): 590−595. DOI: 10.13609/j.cnki.1000-0313.2021.05.004. (in Chinese).
[20] 侯阳, 郭启勇. 从SARS、MERS到COVID-19: 以史为鉴−浅谈影像学在冠状病毒肺炎中的应用价值[J]. 中国临床医学影像杂志, 2020,31(2): 77−82. DOI: 10.12117/jccmi.2020.02.001. HOU Y, GUO Q Y. From SARS, MERS to COVID-19: Learning from history: A brief introduction to imaging of coronavirus pneumonia[J]. Journal of China Clinic Medical Imaging, 2020, 31(2): 77−82. DOI: 10.12117/jccmi.2020.02.001. (in Chinese).
[21] CORMAN V M, LANDT O, KAISER M, et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR[J]. Eurosurveillance, 2020, 25(3): 2000045. DOI: 10.2807/1560-7917.ES.2020.25.3.2000045.
[22] LEE N, HUI D, WU A, et al. A major outbreak of severe acute respiratory syndrome in Hongkong[J]. The New England Journal of Medicine, 2003, 348(20): 1986−1994. DOI: 10.1056/NEJMoa030685.
[23] WONG K T, ANTONIO G E, HUI D S, et al. Severe acute respiratory syndrome: Radiographic appearances and pattern of progression in 138 patients[J]. Radiology, 2003, 228(2): 401−406. DOI: 10.1148/radiol.2282030593.
[24] HOSSEINY M, KOORAKI S, GHOLAMREZANEZHAD A, et al. Radiology perspective of coronavirus disease 2019 (COVID-19): Lessonsfrom severe acute respiratory syndrome and middle east respiratory syndrome[J]. American Journal of Roentgenology, 2020, 215(5): 1−5. DOI: 10.2214/AJR.20.22969.
[25] 李蕾. 重症甲型H1N1流感肺部的影像学表现[J]. 中国临床医学影像杂志, 2011,22(2): 118−120. LI L. Pulmonary imaging findings in severe influenza Alpha H1N1[J]. Journal of China Clinic Medical Imaging, 2011, 22(2): 118−120. (in Chinese).
[26] 王青乐, 施裕新, 张志勇, 等. 新型重组禽流感病毒(H7N9)性肺炎的影像学初步观察[J]. 中华放射学杂志, 2013,47(6): 505−508. DOI: 10.3760/cma.j.issn.1005-1201.2013.06.005. WANG Q L, SHI Y X, ZHANG Z Y, et al. Preliminary imaging findings of novel reassortant avian-origin influenza A(H7N9) pneumonia[J]. Chinese Journal of Radiology, 2013, 47(6): 505−508. DOI: 10.3760/cma.j.issn.1005-1201.2013.06.005. (in Chinese).
[27] 陈钊, 王荣福. CT在新型冠状病毒肺炎诊断与鉴别诊断中的应用价值[J]. CT理论与应用研究, 2020,29(3): 273−279. DOI: 10.15953/j.1004-4140.2020.29.03.02. CHEN Z, WANG R F. Application of CT in the diagnosis and differential diagnosis of novel coronavirus pneumonia[J]. CT Theory and Applications, 2020, 29(3): 273−279. DOI: 10.15953/j.1004-4140.2020.29.03.02. (in Chinese).
-
期刊类型引用(5)
1. 李慧,张冰,武淑华,曾海,李骁蒙,赵雪. 能谱CT碘基图用于临床评估肺癌患者预后的价值分析. 世界复合医学(中英文). 2025(02): 130-133+146 . 百度学术
2. 李梦雨,段诗苗,张雷,周咏春. 提高肺SBRT精度的多窗位动态组合诊疗手段. 中国CT和MRI杂志. 2024(04): 63-65 . 百度学术
3. 宁先英,胡柳,范文亮,余建明,雷子乔. 双层探测器光谱CT单能量成像在泪道造影中的应用研究. CT理论与应用研究. 2024(06): 677-682 . 本站查看
4. 汤江林,陈明伟,刘鲁根,占志强,罗丰珩,乔浩. 人工智能技术用于肺癌放射治疗靶区勾画中的临床效果研究. 中国医学装备. 2024(11): 7-11 . 百度学术
5. 刘小忠. 多层螺旋CT结合胸部X线检查在中央型肺癌临床诊断中的应用价值分析. 现代诊断与治疗. 2024(21): 3270-3271+3274 . 百度学术
其他类型引用(0)