ISSN 1004-4140
CN 11-3017/P

面波勘探技术研究进展

陈宣凝, 韩复兴, 高正辉, 孙章庆

陈宣凝, 韩复兴, 高正辉, 等. 面波勘探技术研究进展[J]. CT理论与应用研究, 2023, 32(6): 815-835. DOI: 10.15953/j.ctta.2023.089.
引用本文: 陈宣凝, 韩复兴, 高正辉, 等. 面波勘探技术研究进展[J]. CT理论与应用研究, 2023, 32(6): 815-835. DOI: 10.15953/j.ctta.2023.089.
CHEN X N, HAN F X, GAO Z H, et al. Research Advancements in Surface Wave Exploration[J]. CT Theory and Applications, 2023, 32(6): 815-835. DOI: 10.15953/j.ctta.2023.089. (in Chinese).
Citation: CHEN X N, HAN F X, GAO Z H, et al. Research Advancements in Surface Wave Exploration[J]. CT Theory and Applications, 2023, 32(6): 815-835. DOI: 10.15953/j.ctta.2023.089. (in Chinese).

面波勘探技术研究进展

基金项目: 国家自然科学基金面上项目(海洋非均匀性地震波场特征与成像分析(42074150));中国石油集团科学技术研究院有限公司项目(稀疏束分解及全方位角道集提取模块开发(RIPED.CN-2022-JS-488));福田区地面坍塌综合监测和预警系统建设项目(FTCG2023000209)。
详细信息
    作者简介:

    陈宣凝: 女,吉林大学地球探测与信息技术学专业硕士研究生,研究方向为面波勘探技术,E-mail:chenxn21@mails.jlu.edu.cn

    通讯作者:

    高正辉: 男,吉林大学地球探测科学与技术学院讲师、硕士生导师,主要从事地球物理数值模拟计算,储层预测、反演、偏移成像问题及岩石物理学等方面的研究,E-mail:gaozh2020@jlu.edu.cn

  • 中图分类号: P  631;P  315

Research Advancements in Surface Wave Exploration

  • 摘要:

    面波勘探通过对提取面波的频散曲线等观测进而反演获得探测目标信息。面波勘探技术始于20世纪60年代,但近几十年来迅猛发展,已经被广泛应用在地震灾害及火山活动预测、深部地质结构、工程施工、矿区采空区、塌陷区探测以及星体近地表结构探测等方面。为了更全面了解面波勘探技术,本文从面波勘探技术的主动震源和被动震源这两种数据类型开始,回顾基于频散曲线和水平垂直振幅谱比观测的面波勘探技术基本理论,简要介绍面波反演方法,并介绍面波勘探技术的应用领域和发展趋势和前景。

    Abstract:

    Surface wave exploration plays a vital role in obtaining target detection information by analyzing and retrieving the dispersion curve of surface waves. Although surface wave exploration technology originated in the 1960s, it has experienced significant advancements in recent decades and has found widespread applications in earthquake disaster and volcanic activity prediction, deep geological structure analysis, engineering construction, mining area and goaf assessment, subsidence area detection, and near-surface structure investigation, including celestial bodies such as stars. This paper aims to provide a comprehensive overview of surface wave exploration technology. It begins by discussing two types of data sources, namely active source and passive source, and proceeds to review the fundamental theory of surface wave exploration based on dispersion curve analysis and observations of horizontal and vertical amplitude ratios. This paper also provides a brief introduction to the surface wave inversion method. Additionally, it highlights the various application domains of surface wave exploration, outlines the current development trend, and presents future prospects for this technology.

  • 胰腺神经内分泌肿瘤(pancreatic neuroendocrine tumor,pNET)是一种十分罕见的肿瘤,起病隐匿,生物学行为表现为高度异质性,既可惰性生长,也可侵袭性生长,甚至发生早期转移,且生物学特性随着疾病的进展而发生变化[1]。近年来,随着检查技术的进步和健康体检的普及,pNET的临床检出率亦呈上升趋势[2]。由于pNET不同的生物学行为,治疗方式及预后也明显不同,因此术前判断肿瘤的侵袭性对临床有重要的指导意义。

    以往文献大多数是探讨pNET的CT征象与肿瘤病理分级的相关研究[3-5],很少研究 CT征象对其侵袭性的预测价值,本研究通过分析120例pNET患者的临床及增强CT资料,并结合病理,探讨CT征象对pNET的侵袭性生物学行为的预测价值。

    回顾性分析2018年6月至2021年6月上海交通大学医学院附属瑞金医院经手术和病理确诊的pNET患者。纳入标准:①经手术切除病理证实为 pNET,病理资料完整;②手术前 30天内行胰腺CT平扫及增强检查。排除标准:①碘造影剂过敏者;②CT图像肿瘤病灶显示不清;③患者曾有恶性肿瘤史或胰腺手术史。

    120例患者中,103例患者为单发病灶、17例多发灶;男58例,女62例,年龄6~80岁。临床上65例患者有不同症状,包括腹痛33例,低血糖症状(如意识障碍、头昏、行为异常以及心慌、心悸和出汗等)22例,其他不典型症状(如恶心、呕吐、纳差以及乏力、腹痛腹胀等)10例。无症状患者55例,在体检或其他原因检查时偶然发现。肿瘤标记物中,神经元特异性烯醇化酶(neuron specific enolase,NSE)异常升高66例,甲胎蛋白(alpha fetoprotein,AFP)异常升高2例,癌胚抗原(carcinoembryonic antigen,CEA)异常升高5例,CA-199异常升高11例,CA125异常升高7例。

    120例患者均行胰腺CT平扫及增强扫描,其中,71例采用GE Light Speed VCT 64排螺旋CT,31例采用GE Discovery CT750 HD、18例采用Siemens IQON-SPECTRAL的MDCT设备检查。

    由3名具有5年以上工作经验的放射科技师行CT扫描。参数:层厚、间隔5 mm,重建图像层厚l mm,螺距l,管电压120 kV,管电流为自动毫安秒;使用高压注射器经肘部静脉团注非离子型碘造影剂(碘佛醇)1.5 mL/kg,流速为2~3 mL/s,采集2期动态增强CT影像,即增强扫描动脉期(30~35 s)、门静脉期(70~80 s)影像。

    CT图像由两名放射科高年资主治医师(参与放射诊断工作≥10年)通过医学影像信息系统(picture archiving and communication systems,PACS)独立进行分析,意见不一致时,由上一级主任医师仲裁得出最终结果。

    CT征象的评估:包括病灶部位(胰腺头颈、体、尾部,当肿瘤同时占两个部位时以病灶占据较大位置统计病灶位置)、形态(类圆形或椭圆形、分叶状或不规则形)、包膜(完整、无或不完整)、有无胰管扩张、有无囊变和钙化、肿瘤的强化方式(均匀、不均匀)。

    肿瘤大小及CT值的评估:手动测量3次,结果取平均值。包括:①测量肿瘤最大径、最短径;②密度:分别测量平扫、动脉期及门脉期肿瘤实性部分的密度,并计算动脉期差值(动脉期密度与平扫的差值)、门脉期差值(门脉期密度与平扫的差值)。

    采用SPSS 24.0软件进行统计学分析。定性数据以计数表示,使用χ2检验或Fisher确切概率法分析。定量数据使用Kolmogorov-Smirnov测试是否符合正态分布,正态分布资料以$\bar x\pm s $表示,并用独立样本t检验分析。非正态分布的数据用中位数表示四分位范围,使用 Mann-Whitney分析。

    采用受试者操作特征(receiver operating characteristic,ROC)曲线评价肿瘤最大径、最短径和CT强化指标对pNET侵袭性行为的诊断效能,并计算ROC曲线下面积(area under curve,AUC)、阈值、95% 可信区间(confidence interval,CI)。以差异有统计学意义的CT参数作为协变量进行多变量Logistic回归分析。P<0.05为差异有统计学意义。

    依据病理结果(是否侵犯胰腺周围脂肪组织、神经、血管、脾脏、胆总管及胰周淋巴结转移、远处脏器转移等),分为侵袭组(n=64)和无侵袭组(n=56)。侵袭组64例中,侵犯胰周脂肪组织17例,侵犯周围神经5例、脉管癌栓3例,胰周淋巴结转移1例,同时侵犯2个及以上部位38例。

    侵袭组与无侵袭组患者在年龄、性别、临床症状、基础疾病方面差异无统计学意义;但肿瘤的分泌功能及病理组织学分级差异有统计学意义。120例pNET中,包括无功能性51例和功能性69例,其中功能性pNET包括胰岛素瘤37例,胃泌素瘤18例,胰高血糖素瘤9例以及生长抑素瘤5例(表1)。

    表  1  侵袭组与无侵袭组pNET的临床特征比较
    Table  1.  Comparison of clinical characteristics of pNET between the invasive group and the non-invasive group
    组别例数年龄/岁性别/例临床症状
    /例
    基础疾病/例血清神经元特
    异性烯醇化酶
    /(ng/mL)
    分泌功能
    /例
    病理分级
    /例
    1种≥2种G1G2G3
    侵袭组6453.72±12.89333131334317418.93±6.823133203410
    无侵袭组5651.95±14.972531342244 8430.53±51.1338183818 0
    统计量0.485a0.573b1.813b2.730b-1.1234.609b20.065b
    P0.487 0.470 0.202 0.255 0.2610.042 <0.001
     注:a:t值;b:χ2值。
    下载: 导出CSV 
    | 显示表格

    120例病例均行CT增强扫描,侵袭组和无侵袭组肿瘤在形态、有无包膜、最大径、最短径、肿瘤实性成分动脉期及门脉期强化差值方面有差异,在肿瘤部位、胰管扩张、囊变、钙化、强化方式方面无差异(表2表3图1图2)。

    表  2  侵袭组与无侵袭组pNET的CT影像学特征比较结果(例)
    Table  2.  Comparison of CT imaging features of pNET between the invasive group and the non-invasive group (cases)
    组别例数位置形态包膜胰管扩张囊变钙化强化方式
    头颈部体部尾部规则不规则完整不完整
    或无
    均匀不均匀
    侵袭组 64271225273722422143224215492440
    无侵袭组5625151647 949 713431541 8482531
    统计值 1.861 22.013 34.8891.3550.8071.6150.933
    P0.394<0.001<0.0010.3110.4300.2490.354
    下载: 导出CSV 
    | 显示表格
    表  3  侵袭组与无侵袭组pNET的CT影像学特征比较结果
    Table  3.  Comparison of CT imaging features of pNET between the invasive group and the non-invasive group
    组别例数最大径/cm最短径/cm肿瘤实性成分强化差值/HU
    动脉期差值门脉期差值
    侵袭组 644.051±2.9203.062±2.051 80.933±48.28173.801±28.912
    无侵袭组562.511±1.5422.084±1.220112.912±61.95389.882±39.901
    统计检验统计值12.5189.90510.0716.501
    P 0.0010.002 0.0020.012
    下载: 导出CSV 
    | 显示表格
    图  1  女,75岁,非侵袭性胰腺神经内分泌肿瘤
    (a)为CT平扫,示胰头部见一类椭圆形稍低密度灶,密度均匀,边界清。(b)为增强扫描动脉期,示病灶重度强化,强化程度明显高于周围胰腺组织,病灶与胰腺交界面见肿瘤包膜。(c)为增强扫描门脉期,示病灶强化程度不均匀减低,实性部分密度仍高于胰腺组织,分界清,病灶为实性,无囊变坏死。(d)为病理图片,示肿瘤组织呈膨胀性生长,与胰腺组织分界清晰,肿瘤细胞呈器官样排列,细胞形态、大小较一致(HE染色×100)。
    Figure  1.  Female, 75 years old with a non-invasive pancreatic neuroendocrine tumor
    图  2  女,55岁,侵袭性胰腺神经内分泌肿瘤
    (a)为CT平扫,示胰尾部见一巨大不规则等密度肿块,密度不均匀,内可见条片低密度影,边界不清。(b)为增强扫描动脉期,示病灶中度不均匀强化,病灶与胰腺交界面未见肿瘤包膜,与周围血管、结肠壁、胃壁分界不清。(c)为增强扫描门静脉期,示病灶实性持续渐进性强化,内见囊变坏死不强化影,病灶以实性成分为主。(d)为病理图片,示肿瘤组织呈浸润性生长,侵犯胰腺周围纤维脂肪组织;肿瘤细胞呈片状排列,细胞大小不一致,部分细胞异型明显,核仁可见(HE染色×100)。
    Figure  2.  Female, 55 years old with a invasive pancreatic neuroendocrine tumor

    肿瘤的最大径及最短径预测pNET侵袭性行为的ROC曲线的AUC分别为0.693(95%CI 0.598~0.818)、0.690(95%CI 0.594~0.785)(图3);肿瘤实性成分动脉期差值、门脉期差值预测pNET侵袭性行为的ROC曲线的AUC分别为0.730(95%CI 0.642~0.732)、0.640(95%CI 0.530~0.733);结果均显示对pNET的侵袭性行为具有判别效能(图4)。

    图  3  肿瘤最大径、最短径预测pNET侵袭性行为的受试者操作特征(ROC)曲线
    Figure  3.  ROC curves of maximum and minimum tumor diameters to predict invasive behavior of pNET
    图  4  肿瘤实性成分的动脉期强化差值、门静脉期强化差值程度预测pNET侵袭性行为的受试者操作特征(ROC)曲线
    Figure  4.  ROC curves for predicting invasive behavior of pNET by arterial enhancement difference and portal enhancement difference of tumor solid component

    筛选出的6个影像学参数(形态、包膜、最大径、最短径、动脉期强化差值、门脉期强化差值)作为变量,以pNET的侵袭性行为为因变量进行多变量Logistic回归分析。Logistic回归方程式为:

    $$ y=0.769-0.002\;x ,$$

    其中x为筛选出形态、包膜、最大径、最短径、动脉期强化差值、门脉期强化差值6个影像学参数。

    结果显示动脉期强化差值与pNET的侵袭性独立相关(OR=0.25),动脉期强化差值为判断pNET侵袭性行为的独立预测因素(图5),动脉期强化差值最佳临界点为90.1 HU(灵敏度0.714,特异性0.656,阳性预测值64.5%,阴性预测值72.4%,准确率68.3%),动脉期强化差值越小表示肿瘤侵袭性行为风险越高。

    图  5  对6个有统计学意义的影像特征的多变量Logistic回归分析
    Figure  5.  Multivariate Logistic regression analysis of six statistically significant image features

    本研究回顾性分析120例pNET患者的临床及增强CT资料,结合手术病理,探讨CT征象对pNET的侵袭性行为的预测价值。结果表明在肿瘤形态、完整包膜、最大径、最短径、动脉期强化差值、门脉期强化差值这6个影像特征方面有差异。通过多变量Logistic回归分析,结果显示动脉期强化差值为判断pNET侵袭性行为的独立预测因素,动脉期强化差值最佳临界点为90.1 HU。

    胰腺神经内分泌肿瘤是一种罕见的肿瘤,约占所有胰腺肿瘤的1%~2%[2]。根据细胞的增殖活性包括有丝分裂计数和ki-67指数两项指标,将pNET分为G1、G2和G3三级[3]。肿瘤异质性与肿瘤分级及预后有关[4]

    本研究中,侵袭组G1、G2及G3分别为20例、34例、10例;无侵袭组G1、G2及G3分别为38例、18例、0例;侵袭组与无侵袭组在肿瘤分级方面差异具有统计学意义,提示高级别肿瘤G2/3级更易发生侵袭性行为。有学者研究发现,患者的性别、年龄差异对预测肿瘤分级无统计学意义[4-5],与本研究相符。本研究中侵袭组与无侵袭组患者在临床症状及基础疾病方面差异无统计学意义。本研究结果显示两组在肿瘤部位、胰管扩张、囊变、钙化、强化方式方面差异无统计学意义,Belousova等[6]发现,pNET侵袭组与无侵袭组在肿瘤的部位、囊变、钙化及胰管扩张方面差异无统计学意义,与本研究结果相一致。

    根据是否分泌过多激素而产生不同的临床症状,pNET被分为功能性和非功能性。有文献表明无功能性pNET被发现时,约50%~90%为恶性[6-7]。本研究结果显示无功能性pNET(64.7%,33/51)较功能性pNET(44.9%,31/69)更易表现为侵袭性生物学行为,差异有统计学意义,提示无功能性pNET更易表现为侵袭性生物学行为,推测其原因在于无功能pNET通常无临床症状,除非肿瘤增大到压迫或侵犯临近器官并出现症状才发现。

    本研究结果显示侵袭组和无侵袭组pNET在大小、形态、包膜方面差异均有统计学意义,肿瘤越大、形态不规则、包膜不完整或无包膜的pNET更具有侵袭性。pNET肿瘤大小、包膜不完整与肿瘤高级别(G2、G3级)、不良预后及转移风险显著相关[6, 8-11];Canellas等[12]研究发现G3级pNET较G1/2级肿瘤更大,肿瘤大于2.0 cm更易发生侵袭性行为。级别越高的肿瘤常浸润生长,容易突破包膜,形成包膜不完整,提示了肿瘤的侵袭性行为。

    我们研究发现,肿瘤实性成分在动脉期强化差值、门脉期强化差值方面差异均有统计学意义,非侵袭组肿瘤的实性成分在动脉期、门脉期强化程度及差值明显高于侵袭组,提示非侵袭组肿瘤实性成分血供明显强于侵袭组,推测其原因在于正常胰腺内分泌腺有致密的血管网,分化良好的pNET更可能来自正常的内分泌组织,因此具有密集的血管网络[13-15]。ROC曲线分析结果显示的pNET肿瘤实性部分动脉期及静脉期强化差值曲线下面积分别为0.73和0.64,能较好地预测其侵袭性行为,动脉期强化差值最佳临界点为90.1 HU,动脉期强化差值越小表示肿瘤侵袭性行为风险越高。pNET为血供丰富的肿瘤,其较高的微血管密度(microvascular density,MVD)与高分化pNET显著相关,可预测患者的预后[13]

    我们进一步通过对筛选出的6个差异有统计学意义的影像学参数(形态、包膜、最大径、最短径、动脉期、门脉期强化差值)进行多变量Logistic回归分析,结果显示动脉期强化差值为判断pNET侵袭性的独立预测因素(P=0.001,OR=0.25)。有研究表明,CT增强值对鉴别胰腺神经内分泌肿瘤的病理分级具有价值,病理分级越高的pNET血供越差,影像所见增强后肿瘤的强化程度越低,其中CT动脉早期强化差值越小[5]。Worhunsky等[16]发现动脉期低强化的pNET与肿瘤低分化及不良预后独立相关。这些研究[5,16]都证实了动脉期强化差值在判断pNET分级及预后方面有重要意义,进一步印证了我们的研究结果。

    本研究还存在不足:①本研究为回顾性分析,采用的不同 CT机器设备及扫描参数,可能对结果产生一定的影响;②CT在观察肿瘤的包膜、囊变等方面不如MRI的组织分辨率高,在以后的研究中需要结合MRI进行观察;③pNET的G3级病例数相对较少,需要继续收集,以期进一步研究。

    综上所述,侵袭性与无侵袭性组pNET在肿瘤形态、完整包膜、最大径、最短径、动脉期强化差值、门脉期强化差值方面存在差异,即肿瘤体积大、形态不规则、包膜不完整或无包膜,肿瘤实性成分动脉期及门脉期强化差值低等征象提示肿瘤具有侵袭性行为,其中动脉期强化差值为判断pNET侵袭性行为的独立预测因素。总之,pNET的一些增强CT特征与侵袭性行为密切相关,这些影像特征对判断肿瘤的侵袭性行为发挥重要作用,在临床工作中具有较强的实用价值。

  • 图  1   主动源数据采集图

    Figure  1.   Diagram illustrating artificial source data acquisition

    图  2   常用面波单点观测台阵示意图

    Figure  2.   Schematic representations of common surface wave single-point observation arrays

    图  3   三层速度递增水平层状介质模型地震记录及合成面波频散能量谱[24]

    (a)合成Rayleigh波地震记录。频散能量谱:(b)$\tau-p $变换法(c)相移法(d)$f-k $变换法

    Figure  3.   Seismic record and synthetic surface wave dispersion energy spectrum of a three-layer horizontal layered media model with increasing velocity

    图  4   实验数据频散能量图[28]

    Figure  4.   Dispersion energy diagrams of Rayleigh wave data from the Changzhou suburb

    图  5   SPAC法提取频散曲线流程图[30]

    Figure  5.   Flow chart outlining the SPAC method for extractingdispersion curve

    图  6   折射微动法用于研究南加州纽霍尔消防站得到的结果图[31]

    Figure  6.   Application of the refraction micromotion method to study the Newhall Fire Station in Southern California

    图  7   模型不含噪声数据ACMPA与多种优化算法收敛曲线对比[75]

    Figure  7.   Comparison of convergence curves of ACMPA with those of other optimization algorithms; noise-free data from the model are used

    图  8   系统操作流程图[7]

    Figure  8.   Flow chart showing the system operation process

    图  9   HVSR等值线图[81]

    Figure  9.   HVSR contour map

  • [1] 陈宏林, 丰继林. 工程地质勘察方法[M]. 北京: 地震出版社, 1998: 139-171.

    CHEN H L, FENG J L. Engineering geological investigation method[M]. Beijing: Seismological Press, 1998: 139-171.

    [2]

    NAZARIAN S, STOKOE K H. Evaluation of moduli and thicknesses of pavement systems by spectral-analysis-of-surface-waves method[R]. Centre for Transportation Research, 1983.

    [3]

    PARK C B. Multi-channel analysis of surface waves using vibroseis (MASWV)[C]//1996 SEG Annual Meeting, 1996.

    [4]

    NAKAMURA Y. Method for dynamic characteristics estimation of subsurface using microtremor on the ground surface[J]. Railway Technical Research Institute, 1989, 30(1): 25−33.

    [5]

    DERODE A, LAROSE E, TANTER M, et al. Recovering the Green's function from field-field correlations in an open scattering medium[J]. The Journal of the Acoustical Society of America, 2003, 113(6): 2973−2976. doi: 10.1121/1.1570436

    [6]

    CAMPILLO M, PAUL A. Long-range correlations in the diffuse seismic coda[J]. Sciences, 2003, 299(5606): 547−549.

    [7]

    HUTAPEA F L, TSUJI T, IKEDA T. Real-time crustal monitoring system of Japanese Islands based on spatio-temporal seismic velocity variation[J]. Earth Planets Space, 2020, 72(1): 1−16. doi: 10.1186/s40623-019-1127-2

    [8]

    YANG Y J, RITZWOLLER M H. Characteristics of ambient seismic noise as a source for surface wave tomography[J]. G-Cubed: Geochemistry, Geophysics, Geosystems, 2008, 9(2): Q02008.

    [9]

    LONGUET-HIGGINS M S. A theory of the origin of microseisms[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1950, 243(243): 1−35.

    [10]

    XIA J, MILLER R D, PARK C B, et al. Utilization of high-frequency Rayleigh waves in near-surface geophysics[J]. Leading Edge (Tulsa, OK), 2004, 23(8): 753−759. doi: 10.1190/1.1786895

    [11] 李欣欣. 面波成像技术[M]. 北京: 中国石化出版社出版社, 2019.

    LI X X. Surface wave imaging technology[M]. Beijing: China Petrochemical Press, 2019.

    [12]

    HILDEBRAND J A. Anthropogenic and natural sources of ambient noise in the ocean[J]. Marine Ecology Progress, 2009, 395: 5−20. DOI: 10.3354/meps08353.

    [13]

    OKADA H. Theory of efficient array observations of microtremors with special reference to the SPAC method[J]. Exploration Geophysics, 2006, 37(1): 73−85. doi: 10.1071/EG06073

    [14]

    CHO I, TADA T, SHINOZAKI Y. A new method to determine phase velocities of Rayleigh waves from microseisms[J]. Geophysics, 2004, 69(6): 1535−1551. doi: 10.1190/1.1836827

    [15] 王建楠. 背景噪音提取高阶频散曲线的矢量波数变换方法[D]. 合肥: 中国科学技术大学, 2019.

    WANG J N. A vector wavenumber transforms method for background noise extraction of high-order dispersion curves[D]. Hefei: University of Science and Technology of China, 2019. (in Chinese).

    [16]

    PARK C B, MILLER R D, RYDEN N, et al. Combined use of active and passive surface waves[J]. Journal of Environmental and Engineering Geophysics, 2005, 10(3): 323−334. doi: 10.2113/JEEG10.3.323

    [17]

    XIA J H, XU Y X, MILLER R D. Generating an image of dispersive energy by frequency decomposition and slant stacking[J]. Pure and Applied Geophysics, 2007, 164(5): 941−956. doi: 10.1007/s00024-007-0204-9

    [18]

    CAPON J, M. I. T. LINCOLN LABORATORY L, MASS. High-resolution frequency-wavenumber spectrum analysis[J]. Proceedings of the IEEE, 1969, 57(8): 1408−1418. doi: 10.1109/PROC.1969.7278

    [19]

    AKI K. Space and time spectra of stationary stochastic waves, with special reference to microtremors[J]. Bulletin, Earthquake Research Institute, 1957, 35: 415−456.

    [20]

    CLAERBOUT J F. Synthesis of a layered medium from its acoustic transmission response[J]. Geophysics, 1968, 33(2): 264. doi: 10.1190/1.1439927

    [21]

    WANG J N, WU G X, CHEN X F. Frequency-bessel transform method for effective imaging of higher-mode rayleigh dispersion curves from ambient seismic noise data[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(4): 3708−3723. doi: 10.1029/2018JB016595

    [22]

    YOUNG C N. Automation in ambient vibration analysis for soil characterisation[D]. Sydney: University of Western Sydney, 2014.

    [23]

    BOORE D M, BROWN L T. Comparing shear-wave velocity profiles from inversion of surface-wave phase velocities with downhole measurements: Systematic differences between the CXW method and downhole measurements at six USC strong-motion sites[J]. Seismological Research Letters, 1998, 69(3): 222−229. doi: 10.1785/gssrl.69.3.222

    [24] 于涵, 刘财, 王典, 等. 面波频散能量谱计算方法[J]. 吉林大学学报(地球科学版), 2022,52(2): 602−612.

    YU H, LIU C, WANG D, et al. Calculation method of surface wave dispersion energy spectrum[J]. Journal of Jilin University (Earth Science Edition), 2022, 52(2): 602−612. (in Chinese).

    [25]

    Dal MORO G, PIPAN M, FORTE E, et al. Determination of Rayleigh wave dispersion curves for near surface applications in unconsolidated sediments[C]//The 2003 SEG Annual Meeting, Seg Technical Program Expanded Abstracts, Dallas, Texas, 2003: 1247-1250.

    [26]

    LUO Y, XIA J, MILLER R D, et al. Rayleigh-wave mode separation by high-resolution linear Radon transform[J]. Geophysical Journal International, 2009, 179(1): 254−264. doi: 10.1111/j.1365-246X.2009.04277.x

    [27] 杨振涛, 陈晓非, 潘磊, 等. 基于矢量波数变换法(VWTM)的多道Rayleigh波分析方法[J]. 地球物理学报, 2019,62(1): 298−301, 303-305.

    YANG Z T, CHEN X F, PAN L, et al. Multichannel Rayleigh wave analysis method based on vector wave-number transformation method[J]. Journal of Geophysics, 2019, 62(1): 298−301, 303-305. (in Chinese).

    [28] 苏悦, 杨振涛, 杨博, 等. 基于矢量波数变换法的主动源瑞雷波多模式提取方法在近地表地层结构探测中的应用研究[J]. 北京大学学报(自然科学版), 2020,56(3): 427−435.

    SU Y, YANG Z T, YANG B, et al. Application of active source rayleigh wave multi-mode extraction method based on vector wavenumber transform in near-surface formation structure detection[J]. Journal of Peking University (Natural Science), 2020, 56(3): 427−435. (in Chinese).

    [29] 杨振涛. 被动源面波勘探高阶频散曲线的提取和应用[D]. 合肥: 中国科学技术大学, 2017.

    YANG Z T. Extraction and application of high order dispersion curve in passive surface wave exploration[D]. Hefei: University of Science and Technology of China, 2017. (in Chinese).

    [30]

    LING S. Research on the estimation of phase velocities of surface waves in microtremors[D]. Hokkaido: Hokkaido University, 1994.

    [31]

    LOUIE J N. Faster, better: Shear-wave velocity to 100 meters depth from refraction microtremor arrays[J]. Bulletin of the Seismological Society of America, 2001, 91(2): 347−364. doi: 10.1785/0120000098

    [32]

    YOKOI T, MARGARYAN S. Consistency of the spatial autocorrelation method with seismic interferometry and its consequence[J]. Geophysical Prospecting, 2008, 56(3): 435−451. doi: 10.1111/j.1365-2478.2008.00709.x

    [33] 牟新刚, 周奇, 周晓, 等. 一种高频拓展的改进地震干涉算法研究[J]. 仪器仪表学报, 2021,42(4): 59−66.

    MOU X G, ZHOU Q, ZHOU X, et al. Research on an improved seismic interference algorithm based on high frequency expansion[J]. Chinese Journal of Instrument, 2021, 42(4): 59−66. (in Chinese).

    [34] 李正波. 频率贝塞尔变换法提取地震记录中的频散信息[D]. 合肥: 中国科学技术大学, 2020.

    LI Z B. Extraction of dispersion information from seismic records using frequency bessel transform[D]. Hefei: University of Science and Technology of China, 2020. (in Chinese).

    [35] 黎汉民. 矢量波数变换法在浅层勘探中的应用[D]. 合肥: 中国科学技术大学, 2018.

    LI H M. Application of vector wavnumber transformation method in shallow exploration[D]. Hefei: University of Science and Technology of China, 2018. (in Chinese).

    [36]

    MA Q, PAN L, CHEN X. Utilizing vector wavenumber transform method to extract multi-mode dispersion curves of Rayleigh waves from ambient seismic noise and the application to structure inversion in Bohemian Massif[J]. Geophysical Research Abstracts, 2019, 21: 1.

    [37]

    ZHANG X T, JIA Z, ROSS Z E, et al. Extracting dispersion curves from ambient noise correlations using deep learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(12): 8932−8939. doi: 10.1109/TGRS.2020.2992043

    [38]

    WANG Z N, SUN C Y, WU D S. Automatic picking of multi-mode surface-wave dispersion curves based on machine learning clustering methods[J]. Computational Geosciences, 2021, 153: 104809.

    [39]

    DAI T Y, XIA J H, NING L, et al. Deep learning for extracting dispersion curves[J]. Surveys in Geophysics, 2021, 42(1): 69−95. doi: 10.1007/s10712-020-09615-3

    [40]

    YANG T W, XU Y, CAO D P, et al. SDCnet: An Unet with residual blocks for extracting dispersion curves from seismic data[J]. Computational Geosciences, 2022, 166: 105183. doi: 10.1016/j.cageo.2022.105183

    [41] 周旭彤, 胡进军, 谭景阳, 等. 基于HVSR的DONET1海底地震动场地效应研究[J]. 震灾防御技术, 2021,16(1): 105−115.

    ZHOU X T, HU J J, TAN J Y, et al. Study on-site effect of DONET1 seabed ground motion based on HVSR[J]. Earthquake Prevention Technology, 2021, 16(1): 105−115. (in Chinese).

    [42] 阮明明, 王帅军, 田晓峰, 等. 利用HVSR法探测渭河盆地浅部构造[J]. 大地测量与地球动力学, 2022,42(6): 584−587, 621.

    RUAN M M, WANG S J, TIAN X F, et al. Exploration of shallow structures in Weihe Basin by HVSR method[J]. Geodesy and Geodynamics, 2022, 42(6): 584−587, 621. (in Chinese).

    [43]

    NAKAMURA Y. Clear identification of fundamental idea of Nakamura's technique and its applications[C]//12th World Conference on Earthquake Engineering (12 WCEE 2000) v.5: Engineering Seismology, 2001.

    [44] 张立, 刘争平. 水平层状介质中基阶瑞利面波椭圆极化特征数值分析与研究[J]. 地球物理学报, 2013,(5): 1686−1695.

    ZHANG L, LIU Z P. Numerical analysis and study on elliptic polarization characteristics of fundamental Rayleigh surface waves in horizontal layered media[J]. Journal of Geophysics, 2013, (5): 1686−1695. (in Chinese).

    [45]

    OUBAICHE E, CHATELAIN J L, BOUGUERN A, et al. Experimental relationship between ambient vibration H/V peak amplitude and shear-wave velocity contrast[J]. Seismological Research Letters, 2012, 83(6): 1038−1046. doi: 10.1785/0220120004

    [46]

    PICOZZI M, ALBARELLO D. Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations measurements, processing and interpretation[J]. Geophysical Journal International, 2004, 169(1): 189−200.

    [47]

    HERAK M. ModelHVSR—A Matlab® tool to model horizontal-to-vertical spectral ratio of ambient noise[J]. Computational Geosciences, 2008, 34(11): 1514−1526. doi: 10.1016/j.cageo.2007.07.009

    [48]

    BIGNARDI S, MANTOVANI A, ZEID N A. OpenHVSR: Imaging the subsurface 2D/3D elastic properties through multiple HVSR modeling and inversion[J]. Computational Geosciences, 2016, 93(1): 103−113.

    [49]

    BIGNARDI S, YEZZI A J, FIUSSELLO S, et al. OpenHVSR-processing toolkit: Enhanced HVSR processing of distributed microtremor measurements and spatial variation of their informative content[J]. Computational Geosciences, 2018, 120: 10−20. doi: 10.1016/j.cageo.2018.07.006

    [50] 宓彬彬. 复杂浅地表弹性介质面波分析方法研究[D]. 武汉: 中国地质大学, 2018.

    MI B B. Study on surface wave analysis method of complex shallow surface elastic medium[D]. Wuhan: China University of Geosciences, 2018. (in Chinese).

    [51]

    DAL MORO G, PANZA G F. Multiple-peak HVSR curves: Management and statistical assessment[J]. Engineering Geology, 2022, 297: 106500. doi: 10.1016/j.enggeo.2021.106500

    [52]

    CAPIZZI P, MARTORANA R. Analysis of HVSR data using a modified centroid-based algorithm for near-surface geological reconstruction[J]. Geosciences, 2022, 12(4): 147. doi: 10.3390/geosciences12040147

    [53]

    ALONSO-PANDAVENES O, TORRES G, TORRIJO F J, et al. Basement tectonic structure and sediment thickness of a valley defined using HVSR geophysical investigation, Azuela valley, Ecuador[J]. Bulletin of Engineering Geology and the Environment, 2022, 81(5): 1−14.

    [54] 林国良, 张潜, 崔建文, 等. 利用地脉动HVSR研究2014年鲁甸6.5级地震场地效应[J]. 地震研究, 2019,42(4): 531−537, 650.

    LIN G L, ZHANG Q, CUI J W, et al. Study on the side effect of the 2014 Ludian M6.5 earthquake using ground pulsation HVSR[J]. Seismological Research, 2019, 42(4): 531−537, 650. (in Chinese).

    [55]

    FAH D, WATHELET M, KRISTEKOVA M, et al. Using ellipticity information for site characterization[M]. NERIES JRA4 "Geotechnical Site Characterisation", 2009.

    [56]

    ENDRUN B. Love wave contribution to the ambient vibration H/V amplitude peak observed with array measurements[J]. Journal of Seismology, 2011, 15(3): 443−472. doi: 10.1007/s10950-010-9191-x

    [57]

    POGGI V, FAH D. Estimating Rayleigh wave particle motion from three-component array analysis of ambient vibrations[J]. Geophysical Journal International, 2010, 180(1): 251−267. doi: 10.1111/j.1365-246X.2009.04402.x

    [58]

    FERREIRA A M G, MARIGNIER A, ATTANAYAKE J, et al. Crustal structure of the Azores Archipelago from Rayleigh wave ellipticity data[J]. Geophysical Journal International, 2020, 221(2): 1232−1247. doi: 10.1093/gji/ggaa076

    [59] 杜亚楠. 基于多阶瑞雷波视频散曲线和椭圆率曲线联合反演的微动探测方法研究[D]. 北京: 中国科学院大学, 2019.

    DU Y N. Research on fretting detection method based on multi-order Rayleigh wave video dispersion curve and ellipticity curve inversion[D]. Beijing: University of Chinese Academy of Sciences, 2019. (in Chinese).

    [60]

    SOCCO L V, BOIERO D. Improved Monte Carlo inversion of surface wave data[J]. Geophysical Prospecting, 2008, 56(3): 357−371. doi: 10.1111/j.1365-2478.2007.00678.x

    [61]

    DAL MORO G, PIPAN M. Joint inversion of surface wave dispersion curves and reflection travel times via multi-objective evolutionary algorithms[J]. Journal of Applied Geophysics, 2007, 61(1): 56−81. doi: 10.1016/j.jappgeo.2006.04.001

    [62]

    SONG X H, GU H M, ZHANG X Q, et al. Pattern search algorithms for nonlinear inversion of high-frequency Rayleigh-wave dispersion curves[J]. Computational Geosciences, 2008, 34(6): 611−624. doi: 10.1016/j.cageo.2007.05.019

    [63]

    SAMBRIDGE M. Geophysical inversion with a neighbourhood algorithm-I. Searching a parameter space[J]. Geophysical Journal International, 1999, 138(2): 479−494. doi: 10.1046/j.1365-246X.1999.00876.x

    [64]

    SONG X H, TANG L, LV X C, et al. Shuffled complex evolution approach for effective and efficient surface wave analysis[J]. Computational Geosciences, 2012, 42: 7−17.

    [65]

    SONG X H, TANG L, LV X C, et al. Application of particle swarm optimization to interpret Rayleigh wave dispersion curves[J]. Journal of Applied Geophysics, 2012, (84): 1−13.

    [66]

    SONG X H, LI L, ZHANG X Q, et al. An implementation of differential search algorithm (DSA) for inversion of surface wave data[J]. Journal of Applied Geophysics, 2014, 111: 334−345. doi: 10.1016/j.jappgeo.2014.10.017

    [67]

    SONG X H, LI L, ZHANG X Q, et al. Differential evolution algorithm for nonlinear inversion of high-frequency Rayleigh wave dispersion curves[J]. Journal of Applied Geophysics, 2014, 109: 47−61. doi: 10.1016/j.jappgeo.2014.07.014

    [68]

    SONG X H, GU H M, TANG L, et al. Application of artificial bee colony algorithm on surface wave data[J]. Computational Geosciences, 2015, 83: 219−230.

    [69]

    SONG X H, TANG L, ZHAO S T, et al. Grey wolf optimizer for parameter estimation in surface waves[J]. Soil Dynamics and Earthquake Engineering, 2015, 75: 147−157.

    [70]

    LU Y X, PENG S P, DU W F, et al. Rayleigh wave inversion using heat-bath simulated annealing algorithm[J]. Journal of Applied Geophysics, 2016, 134: 267−280. doi: 10.1016/j.jappgeo.2016.09.008

    [71]

    SAIFUDDIN, YAMANAKA H, CHIMOTO K. Variability of shallow soil amplification from surface-wave inversion using the Markov-chain Monte Carlo method[J]. Soil Dynamics and Earthquake Engineering, 2018, 107: 141−151.

    [72]

    MIRJALILI S. SCA: A sine cosine algorithm for solving optimization problems[J]. Knowledge-Based Systems, 2016, 96(0): 120−133.

    [73] 高旭, 于静, 李学良, 等. 自适应权重蜻蜓算法及其在瑞雷波频散曲线反演中的应用[J]. 石油地球物理勘探, 2021,56(4): 745−757, 671-672.

    GAO X, YU J, LI X L, et al. Adaptive weighted Dragonfly algorithm and its application in Rayleigh wave dispersion curve inversion[J]. Petroleum geophysical exploration, 2021, 56(4): 745−757, 671-672. (in Chinese).

    [74]

    FARAMARZI A, HEIDARINEJAD M, MIRJALILI S, et al. Marine Predators Algorithm: A nature-inspired metaheuristic[J]. Expert Systems with Applications, 2020, 152: 113377. doi: 10.1016/j.eswa.2020.113377

    [75] 于涵, 刘财, 王典, 等. 基于改进海洋捕食者优化算法和瑞雷波频散曲线的近地表地层参数反演[J]. 地球物理学报, 2023,66(2): 796−809.

    YU H, LIU C, WANG D, et al. Inversion of near-surface formation parameters based on improved marine predator optimization algorithm and Rayleigh wave dispersion curve[J]. Chinese Journal of Geophysics, 2023, 66(2): 796−809. (in Chinese).

    [76]

    MATASSONI L, FIASCHI A. Assessment of seismic ground motion amplification and liquefaction at a volcanic area characterized by residual soils[J]. Journal of Mountain Science, 2020, 17(3): 740−752. doi: 10.1007/s11629-019-5753-8

    [77]

    OBERMANN A, PLANES T, LAROSE E, et al. Imaging preeruptive and coeruptive structural and mechanical changes of a volcano with ambient seismic noise[J]. Journal of Geophysical Research: Solid Earth, 2013, 118(12): 6285−6294. doi: 10.1002/2013JB010399

    [78]

    BENNINGTON N, HANEY M, THURBER C, et al. Inferring magma dynamics at Veniaminof Volcano via application of ambient noise[J]. Geophysical Research Letters, 2018, 45(21): 11.

    [79]

    MELE M, BERSEZIO R, BINI A, et al. Subsurface profiling of buried valleys in central alps (northern Italy) using HVSR single-station passive seismic[J]. Journal of Applied Geophysics, 2021, 193: 104407. doi: 10.1016/j.jappgeo.2021.104407

    [80]

    KANG S Y, KIM K H. Bedrock depth variations and their applications to identify Blind faults in the Pohang area using the horizontal-to-vertical spectral ratio (HVSR)[J]. Journal of the Korean earth science society, 2022, 43(1): 188−198. doi: 10.5467/JKESS.2022.43.1.188

    [81]

    SGATTONI G, CASTELLARO S. Detecting 1-D and 2-D ground resonances with a single-station approach[J]. Geophysical Journal International, 2020, 223(1): 471−487. doi: 10.1093/gji/ggaa325

    [82]

    MANZO R, NARDONE L, GAUDIOSI G, et al. A first 3-D shear wave velocity model of the Ischia Island (Italy) by HVSR inversion[J]. Geophysical Journal International, 2022, 230(3): 2056−2072. doi: 10.1093/gji/ggac157

    [83] 叶咸, 余相贵, 李果, 等. 瞬态瑞雷面波勘探技术在公路边坡注浆加固效果检测中的应用[J]. 公路交通科技(应用技术版), 2016,(2): 89−91, 94.

    YE X, YU X G, LI G, et al. Application of transient Rayleigh surface wave exploration technology in Detection of reinforcement effect of highway slope grouting[J]. Highway Traffic Technology (Applied Technology Edition), 2016, (2): 89−91, 94. (in Chinese).

    [84] 徐佩芬, 李传金, 凌甦群, 等. 利用微动勘察方法探测煤矿陷落柱[J]. 地球物理学报, 2009,52(7): 1923−1930. doi: 10.3969/j.issn.0001-5733.2009.07.028

    XU P F, LI C J, LING S Q, et al. Detection of collapse column in coal mine by microdynamic prospecting method[J]. Chinese Journal of Geophysics, 2009, 52(7): 1923−1930. (in Chinese). doi: 10.3969/j.issn.0001-5733.2009.07.028

    [85] 刘艳秋, 徐洪苗, 王小勇, 等. 面波勘探在工程勘察中的应用[J]. 安徽地质, 2019,29(1): 40−44. doi: 10.3969/j.issn.1005-6157.2019.01.008

    LIU Y Q, XU H M, WANG X Y, et al. Application of surface wave exploration in engineering investigation[J]. Anhui Geology, 2019, 29(1): 40−44. (in Chinese). doi: 10.3969/j.issn.1005-6157.2019.01.008

    [86] 吴曲波, 潘自强, 陈金勇, 等. 利用瞬态瑞雷面波法探测浅层玄武岩三维分布−以沙特Sabkhah Ad Dumathah地区为例[J]. 地球物理学进展, 2019,34(5): 1938−1944. doi: 10.6038/pg2019CC0401

    WU Q B, PAN Z Q, CHEN J Y, et al. Detection of three-dimensional distribution of shallow basalts by transient Rayleigh surface wave method: A case study of Sabkhah Ad Dumathah area, Saudi Arabia[J]. Progress in Geophysics, 2019, 34(5): 1938−1944. (in Chinese). doi: 10.6038/pg2019CC0401

    [87] 周荣亮, 刘彦华, 徐睿知. 多道瞬态面波在LNG罐区地基勘察中的应用[J]. 工程地球物理学报, 2022,19(2): 162−167. doi: 10.3969/j.issn.1672-7940.2022.02.005

    ZHOU R L, LIU Y H, XU R Z. Application of multi-channel transient surface waves in the ground investigation of LNG tank area[J]. Chinese Journal of Engineering Geophysics, 2022, 19(2): 162−167. (in Chinese). doi: 10.3969/j.issn.1672-7940.2022.02.005

    [88] 李圣林, 胡泽安, 吴海波. 瞬态瑞雷面波勘探中隐伏溶洞的响应特征研究[J]. 物探化探计算技术, 2019,41(4): 541−546. doi: 10.3969/j.issn.1001-1749.2019.04.15

    LI S L, HU Z A, WU H B. Study on response characteristics of a hidden cave in transient Rayleigh surface wave exploration[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2019, 41(4): 541−546. (in Chinese). doi: 10.3969/j.issn.1001-1749.2019.04.15

    [89] 熊友亮, 高建华, 彭军. 天然源面波法在堰塞体上的研究及应用[J]. 工程地球物理学报, 2022,19(2): 149−154.

    XIONG Y L, GAO J H, PENG J. Research and application of natural source surface wave method on barrier body[J]. Chinese Journal of Engineering Geophysics, 2022, 19(2): 149−154. (in Chinese).

    [90]

    RUDENKO D, SHARIF M, JUBRAN R, et al. Use of surface wave testing to develop pile driving vibration criteria in a coastal environment[C]//GSP 334·Geo-Congress 2022, 2022.

    [91]

    IVANOV J, LEITNER B, SHEFCHIK W, et al. Evaluating hazards at salt cavern sites using multichannel analysis of surface waves[J]. The Leading Edge, 2013, 32(3): 298−305. doi: 10.1190/tle32030298.1

    [92]

    LEWIŃSKA P, MATUŁA R, DYCZKO A. Integration of thermal digital 3D model and a MASW (Multichannel Analysis of Surface Wave) as a means of improving monitoring of spoil tip stability[J]. Seminary on Geomatics, Civil and Environmental Engineering (2017BGC) E3S Web of Conferences, 2018, 26: 8.

    [93]

    KNAPMEYER-ENDRUN B, GOLOMBEK M P, OHRNBERGER M. Rayleigh wave ellipticity modeling and inversion for shallow structure at the proposed insight landing site in elysium planitia, Mars[J]. Space Science Reviews, 2017, 211(1/4): 339−382. doi: 10.1007/s11214-016-0300-1

    [94]

    MAHVELATI S, COE J T. Horizontal-to-vertical spectral ratio (HVSR) analysis of the Martian Passive seismic data from the Insight mission[J]. Earth and Space 2021: Space Exploration, Utilization, Engineering, and Construction in Extreme Environments, 2021: 108-115.

    [95]

    LAROSE E, KHAN A, NAKAMURA Y, et al. Lunar subsurface investigated from correlation of seismic noise[J]. Geophys Res Lett, 2005, 32(16).

    [96]

    LAROSE C S-S N E. Lunar noise correlation, imaging and monitoring[J]. Earthquake Science, 2010, 23(5): 519−530. doi: 10.1007/s11589-010-0750-6

    [97]

    NISHITSUJI Y, ROWE C A, WAPENAAR K, et al. Reflection imaging of the Moon's interior using deep-moonquake seismic interferometry[J]. Journal of Geophysical Research E:Planets, 2016, 121(4): 695−713. doi: 10.1002/2015JE004975

    [98]

    NISHITSUJI Y, RUIGROK E, DRAGANOV D. Azimuthal anisotropy of the megaregolith at the apollo 14 Landing Site[J]. Journal of Geophysical Research-Planets Section, 2020, 125(5): e2019JE006126.

    [99]

    IKEDA T, MATSUOKA T, TSUJI T, et al. Characteristics of the horizontal component of Rayleigh waves in multimode analysis of surface waves[J]. Geophysics, 2015, 80(1): En1−En11.

    [100]

    BUDI A P, GINTING R A, SUNARDI B, et al. Combination of passive seismic (HVSR) and active seismic (MASW) methods to obtain shear wave velocity model of subsurface in Majalengka[J]. Journal of Physics: Conference Series, 2021, 1805(1): 012002. doi: 10.1088/1742-6596/1805/1/012002

    [101]

    ABDIALIM S, HAKIMOV F, KIM J, et al. Seismic site classification from HVSR data using the Rayleigh wave ellipticity inversion: A case study in Singapore[J]. Earthquakes and Structures, 2021, 21(3): 231−238.

    [102] 李巧灵, 张辉, 雷晓东, 等. 综合利用多道瞬态面波和微动探测分析斜坡内部结构[J]. 物探与化探, 2022,46(1): 258−267.

    LI Q L, ZHANG H, LEI X D, et al. Analysis of slope internal structure by multi-channel transient surface wave and fretting detection[J]. Geophysical and Geochemical Exploration, 2022, 46(1): 258−267. (in Chinese).

    [103] 刘道涵, 徐俊杰, 刘磊, 等. 地球物理联合探测在识别岩溶地面塌陷精细结构中的应用−以武汉市为例[J]. 地质与勘探, 2022,58(4): 865−874.

    LIU D H, XU J J, LIU L, et al. Application of geophysical joint detection in identifying fine structure of Karst ground collapse: A case study of Wuhan city[J]. Geology and exploration, 2022, 58(4): 865−874. (in Chinese).

    [104] 徐吉祥, 张晓亮, 李潇, 等. 地表浅部地震勘探方法在城市隐伏活动断裂调查中的应用[J]. 城市地质, 2022,17(1): 79−84. doi: 10.3969/j.issn.1007-1903.2022.01.012

    XU J X, ZHANG X L, LI X, et al. Application of shallow surface seismic exploration method in urban hidden active fault investigation[J]. Urban Geology, 2022, 17(1): 79−84. (in Chinese). doi: 10.3969/j.issn.1007-1903.2022.01.012

    [105]

    PERTON M, SPICA Z J, CLAYTON R W, et al. Shear wave structure of a transect of the Los Angeles basin from multimode surface waves and H/V spectral ratio analysis[J]. Geophysical Journal International, 2020, 220(1): 415−427. doi: 10.1093/gji/ggz458

    [106]

    LONTSI A M, GARCIA-JEREZ A, MOLINA-VILLEGAS J C, et al. A generalized theory for full microtremor horizontal-to-vertical $[H/V(z,f)] $ spectral ratio interpretation in offshore and onshore environments[J]. Geophysical Journal International, 2019, 218(2): 1276−1297. doi: 10.1093/gji/ggz223

  • 期刊类型引用(2)

    1. 宋冉,梁长华,李强. 能谱CT结合血清miR-23a预测大面积急性心肌梗死患者主要心血管不良事件发生风险的价值. 海南医学. 2025(04): 528-533 . 百度学术
    2. 夏宾,叶鹏飞,邵祎炜,李俊杰,李宇庆. 心肌灌注成像联合增强CT评估心肌缺血患者再灌注损伤的价值. 河南医学研究. 2024(03): 550-554 . 百度学术

    其他类型引用(0)

图(9)
计量
  • 文章访问数:  601
  • HTML全文浏览量:  270
  • PDF下载量:  161
  • 被引次数: 2
出版历程
  • 收稿日期:  2023-04-16
  • 录用日期:  2023-06-24
  • 网络出版日期:  2023-07-02
  • 刊出日期:  2023-10-31

目录

/

返回文章
返回
x 关闭 永久关闭