ISSN 1004-4140
CN 11-3017/P

工业CT技术在地球科学中的应用

汤戈, 赵欣雨, 王宇翔, 冯鹏, 魏彪

汤戈, 赵欣雨, 王宇翔, 等. 工业CT技术在地球科学中的应用[J]. CT理论与应用研究(中英文), 2024, 33(1): 119-134. DOI: 10.15953/j.ctta.2023.091.
引用本文: 汤戈, 赵欣雨, 王宇翔, 等. 工业CT技术在地球科学中的应用[J]. CT理论与应用研究(中英文), 2024, 33(1): 119-134. DOI: 10.15953/j.ctta.2023.091.
TANG G, ZHAO X Y, WANG Y X, et al. Applications of Industrial Computed Tomography Technology in the Geosciences[J]. CT Theory and Applications, 2024, 33(1): 119-134. DOI: 10.15953/j.ctta.2023.091. (in Chinese).
Citation: TANG G, ZHAO X Y, WANG Y X, et al. Applications of Industrial Computed Tomography Technology in the Geosciences[J]. CT Theory and Applications, 2024, 33(1): 119-134. DOI: 10.15953/j.ctta.2023.091. (in Chinese).

工业CT技术在地球科学中的应用

基金项目: 科技部重点研发专项(重点锂、铍成矿带成矿规律与预测评价研究与综合(2019YFC0605203));国家自然科学基金青年基金(核辐射环境下硅双极型晶体管瞬态协同损伤机制研究(12205028));重庆市科委技术创新与应用发展专项(轨道交通智慧化车站研究及应用(cstc2021jscx-gksbX0056));成都理工大学2022年中青年骨干教师资助计划(10912-JXGG2022-08363)。
详细信息
    作者简介:

    汤戈: 男,成都理工大学核技术与自动化工程学院副教授、硕士生导师,主要从事核信号采集与数字化处理,E-mail:tangge_cqu@163.com

    通讯作者:

    冯鹏: 男,重庆大学光电工程学院副教授、博士生导师,主要从事CT理论与应用研究,E-mail:coe-fp@cqu.edu.cn

  • 中图分类号: P  631

Applications of Industrial Computed Tomography Technology in the Geosciences

  • 摘要:

    工业CT作为计算机断层成像(CT)发展至今的一个重要分支,得益于其分辨率高、可重复、探测范围广等优势,在航空航天、军事工业、地质分析等多个领域得到了广泛应用。本文在深入调研国内外工业CT技术研究现状的基础上,综述了在地球科学领域中的3种典型工业CT技术(地震波CT、电阻率CT、电磁波CT)以及多种物探方法组合而成的综合物探方法,重点介绍工业CT在孔隙研究、天然气水合物研究、构建数字岩心和二氧化碳地质利用与封存方面的最新应用。同时,总结工业CT在地球科学领域中的发展趋势。

    Abstract:

    As an important branch of computed tomography (CT), industrial CT is used widely in many fields, such as aerospace, military industry, and geological analysis fields, because of its advantages of high resolution, repeatability, and wide detection range. On the basis of thorough investigation and study, this paper summarizes three typical industrial CT technologies (i.e., seismic wave CT, resistivity CT, and electromagnetic wave CT) as well as the comprehensive geophysical exploration methods used in the geosciences. The current applications of industrial CT in pore structure studies, gas hydrate studies, digital core construction, and geological utilization and storage of carbon dioxide are introduced. The development trend of industrial CT in the geosciences is also discussed.

  • 近年来,心脑血管疾病的患病率正逐步上升,脑血管疾病是继心脏疾病后的全球第2高致死性疾病,而急性缺血性脑卒中(acute ischemic stroke,AIS)是脑血管疾病中最多的一类,致死率、复发率、致残率均较高,因此,成为近年来关注和研究的热点。很多文献表明,颈动脉管腔狭窄虽然使得远端的管腔内血流量减少,导致相应的动脉供血区脑实质缺血,但颈动脉狭窄并不是引起急性缺血性脑卒中发生的决定性因素,即使轻中度颈动脉狭窄的患者也会发生缺血性脑卒中,不稳定斑块的存在和急性缺血性脑卒中的发生有着更密切的关系。

    随着越来越多国家高级卒中中心的建立,大部分急性缺血性脑卒中患者能在静脉溶栓时间窗内得到治疗,但仍有部分患者因为种种原因不能得到及时、有效的救治,导致身体的残疾甚至是死亡。所以,急性缺血性脑卒中的预防和及早诊断就显得至关重要。

    本研究旨在通过对颈动脉CTA所显示的颈动脉粥样硬化斑块以及一些可能影响急性缺血性脑卒中发生的相关因素进行分析,探讨它们与急性缺血性脑卒中的关系,从而为急性缺血性脑卒中的预防和治疗提供参考。

    收集2017年1月至2021年12月国药东风总医院神经内科收治的急性前循环缺血性脑卒中患者95例和同期住院的非急性缺血性脑卒中患者102例。

    急性前循环缺血性脑卒中组(病例组):

    (1)符合中华医学会神经病学分会编写的《中国急性缺血性脑卒中诊治指南2018》中关于急性缺血性脑卒中的诊断标准[1]:①急性起病;②局灶性神经功能缺损(一侧面部或肢体无力、麻木,语言障碍等),少数为全面神经功能缺损;③影像学出现责任病灶或症状/体征持续 24 h以上;④排除非血管性疾病;⑤颅脑 CT/MRI排除脑出血。

    (2)经磁共振DWI诊断急性缺血性脑卒中,且卒中病灶位于颈内动脉系统分布区域。

    (3)DWI前或后一周内有颈动脉CTA检查。

    (4)图像质量良好,血管轮廓清晰、对比度良好,符合诊断、分析要求。

    (5)临床资料完整。

    非急性缺血性脑卒中组(对照组):

    本次及既往病史未发现急性缺血性脑卒中,其他标准同病例组。

    ①脑出血(史)、脑肿瘤患者;②其他明确非血管原因所致缺血性脑卒中;③图像不符合要求者。

    颈动脉CTA检查:使用飞利浦Brilliance 256 iCT进行颈动脉CTA扫描。扫描层厚1 mm,重建间隔0.5 mm,准直器128×0.625,螺距0.804,120 kV,250 mAs;扫描范围从主动脉弓到颅底Willis动脉环显示完整;造影剂为350 mg/100 mL的碘海醇注射液,经右侧肘静脉以5 mL/s的速率注入60~70 mL。当达到自动触发阈值时,采集增强扫描数据,并将数据上传至Philips IntelliSpace工作站,行图像后处理。测量颈动脉狭窄率、斑块CT值,分析斑块性质和斑块表面形态。

    斑块性质判断标准:对每个斑块进行3次CT值测量,然后取平均值。脂质斑块:CT值<60 HU;纤维斑块:CT值为60~130 HU;钙化斑块:CT值>130 HU[2]。混合性斑块为同时含有2种及以上成分的斑块。斑块表面形态判断标准:光滑表面是指形态规则、无溃疡,不规则表面是指斑块表面凹凸浮动0.3~0.9 mm[3],溃疡表面是指对比剂沿斑块表面进入斑块内部深度大于1 mm[4]。血管狭窄度分级方法:参照北美症状性颈动脉内膜切除实验(North American Symptomatic Carotid Endarterectomy Trial,NASCET)标准进行血管狭窄度分级,狭窄率=(狭窄远端管径 - 狭窄段管径)/狭窄远端管径。

    颅脑MRI检查:运用飞利浦Ingenia 3.0T磁共振行常规T1WI、T2WI、FLAIR序列和弥散加权(diffusion weighted imaging,DWI)成像,T1加权像(TR=2000 ms,TE=20 ms);T2加权像(TR=2630 ms,TE=107 ms);液体抑制反转恢复序列FLAIR(TR=6000 ms,TE=170 ms);弥散加权像(DWI)(TR=1998 ms,TE=70 ms)。

    所有患者均在入院后24 h内抽取空腹静脉血送检,利用生化全自动分析仪测定糖化血红蛋白(glycated hemoglobin,HbA1 c)、胆固醇(total cholesterol,TC)、甘油三酯(triglyceride,TG)、高密度脂蛋白(high density lipoprotein,HDL)、低密度脂蛋白(low density lipoprotein,LDL)、同型半胱氨酸(homocysteine,HCY)、胱抑素C(cystatin C,CysC)的含量。收集、整理两组患者的一般人口学特征及临床资料,包括性别、年龄、高血压史、糖尿病史、吸烟饮酒史等。

    运用统计学软件SPSS 23.0进行分析。正态分布定量资料采用均数±标准差($ \overline x \pm s $)表示,两组之间比较采用两独立样本t检验;定性资料用百分数(%)表示,采用χ2检验,多个频率分布的卡方检验采用Bonferroni法进行两两比较;多因素分析采用Logistic回归分析,并计算比值比(OR值)和95% 置信区间(95%CI)。P<0.05表示差异有统计学意义。

    两组间在年龄、高血压病史、TC、TG、HDL、HCY、CysC、HbA1c指标中差异有统计学意义,在其余指标间差异无统计学差异(表1)。

    表  1  病例组与对照组一般临床资料和实验室指标比较
    Table  1.  Comparison of general clinical data and laboratory indicators between the case and control groups
    项目参数组别统计检验
    病例组(n=95)
    例(%)或$\bar x \pm s$
    对照组(n=102)
    例(%)或$\bar x \pm s$
     t/χ2  P
      性别   男71(81.4)83(74.7)1.2690.260
       女24(18.6)19(25.3)
      年龄/岁   <505(5.3)25(24.5)32.672<0.001
       50~6425(26.3)25(24.5)
       ≥6565(68.4)52(51.0)
      高血压*   是66(69.5)35(34.3)24.339<0.001
       否29(30.5)67(65.7)
      糖尿病   是26(27.4)17(16.7)3.3010.069
       否69(72.6)85(83.3)
      吸烟   是14(14.7)9(8.8)1.6680.197
       否81(85.3)93(91.2)
      饮酒   是13(13.7)7(6.9)2.5090.133
       否82(86.3)95(93.1)
         TC/(mmol/L)6.417±3.6815.050±2.4473.0470.002
         TG/(mmol/L)2.235±1.8491.742±1.5042.0430.042
         HDL/(mmol/L)1.241±0.3441.086±0.3023.3370.001
         LDL/(mmol/L)2.609±0.8372.385±0.9181.7890.075
         HCY/(umol/L)20.502±11.49516.614±9.592 2.5670.011
         CysC/(mg/L)1.143±0.2511.073±0.2451.9780.049
      HbA1c/%   正常47(49.5)81(79.4)19.372<0.001
       不正常48(50.5)21(20.6)
    下载: 导出CSV 
    | 显示表格

    两组间在斑块性质、斑块表面形态及斑块数量间差异有统计学意义,在颈动脉管腔狭窄程度方面差异无统计学意义(表2),不同斑块的CTA表现和相应核磁DWI图像见图1图5

    表  2  病例组与对照组颈动脉斑块检出情况和颈动脉管腔狭窄程度比较
    Table  2.  Comparison of the features of carotid plaques and carotid artery stenosis
    项目参数组别统计检验
    病例组(n=95)
    例(%)或$\bar x \pm s$
    对照组(n=102)
    例(%)或$\bar x \pm s$
    t/χ2P
      斑块类型*  无斑块14a(14.7)16a(15.7)28.109 <0.001
      钙化斑块17a(17.9)37a(36.3)
      脂质斑块46a(48.4)15b(14.7)
      纤维斑块13a(13.7)23a(22.5)
      混合斑块5a(5.3)11a(10.8)
      斑块表面形态*  无斑块14a(14.7)16a(15.7)9.1360.028
      光滑斑块34a(35.8)56b(54.9)
      不规则斑块30a(31.6)18b(17.6)
      溃疡斑块17a(17.9)12a(11.8)
      斑块数量/个*4.37±3.2523.00±2.3253.4150.001
      管腔狭窄程度  无狭窄15(15.8)16(15.7)1.1530.679
      轻度狭窄47(49.5)44(43.1)
      中度狭窄30(31.6)40(39.2)
      重度狭窄3(3.2)2(2.0)
     注:* 表示P<0.05;a和b表示该因素在两组间经两两比较后存在统计学差异,字母相同则不存在统计学差异。
    下载: 导出CSV 
    | 显示表格
    图  1  同一患者:(a)和(b)显示右侧颈总动脉脂质、溃疡斑块,(c)显示右侧基底节区及颞顶叶急性大面积脑梗塞,(d)显示右侧颈总动脉脂质斑块所致管腔中度狭窄(黑箭头所示)
    Figure  1.  In the same patient: (a) and (b) show lipid and ulcerative plaques in the right common carotid artery, respectively; (c) shows acute massive cerebral infarction of the right basal ganglia and temporo-parietal lobe; and (d) shows moderate stenosis of the right common carotid artery due to lipid plaques (black arrow)
    图  2  同一患者:(a)和(b)显示左侧颈总动脉脂质、不规则斑块,(c)显示左侧颞顶叶急性脑梗塞,(d)显示左侧颈总动脉脂质斑块所致管腔中度狭窄(黑箭头所示)
    Figure  2.  In the same patient: (a) and (b) show lipid and irregular plaques in the left common carotid artery, respectively; (c) shows acute cerebral infarction of the left temporo-parietal lobe; and (d) shows moderate stenosis of the left common carotid artery lumen due to lipid plaques (black arrow)
    图  3  同一患者。(a)和(b)显示左侧颈总动脉脂质、光滑斑块,(c)显示左侧侧脑室旁小片状急性脑梗塞,(d)显示左侧颈总动脉脂质斑块所致管腔轻度狭窄(黑箭头所示)
    Figure  3.  In the same patient: (a) and (b) show lipid and smooth plaques in the left common carotid artery, respectively; (c) shows small patchy acute cerebral infarction near the left lateral ventricle; and (d) shows mild stenosis of the left common carotid artery lumen due to lipid plaques (black arrow)
    图  4  为同一患者:(a)和(b)显示左侧颈动脉分叉处纤维斑块,(c)显示该患者DWI未见明显急性脑梗塞,(d)显示左侧颈动脉分叉处纤维斑块所致管腔中度狭窄(黑箭头所示)
    Figure  4.  In the same patient: (a) and (b) show fibrous plaques at the left carotid bifurcation, (c) shows no significant acute cerebral infarction on DWI, and (d) shows moderate stenosis of the lumen at the left carotid bifurcation due to fibrous plaques (black arrow)
    图  5  同一患者:(a)和(b)显示为左侧颈总动脉混合斑块、脂质成分为主,(c)显示左侧顶叶皮层下急性脑梗塞(黑箭头所示),(d)显示左侧颈总动脉混合斑块所致管腔中度狭窄(黑箭头所示)
    Figure  5.  In the same patient: (a) and (b) show mixed plaques in the left common carotid artery with a predominance of lipid components, (c) shows left parietal subcortical acute cerebral infarction (black arrow), and (d) shows moderate stenosis of the left common carotid artery lumen due to mixed plaques (black arrow)

    以是否有急性缺血性脑卒中为因变量,对表1表2分析中差异有统计学意义的因素进行多因素相关Logistic分析,结果示年龄≥65岁、高血压、TC、HDL、HCY、脂质斑块是AIS发生的危险因素(表3)。

    表  3  急性缺血性脑卒中发生的多因素相关Logistic回归分析
    Table  3.  Multivariate logistic regression analysis of the risk factors for acute ischemic stroke
    因素β$S_{\bar {\rm{x}}} $ χ2POR(95%CI)
      年龄/岁  <501.000
      50~651.2940.9461.8710.1713.647(0.571~23.281)
      ≥65*1.8920.7995.6000.0186.632(1.384~31.777)
      高血压*  否1.000
      是2.3410.50721.309<0.001 10.395(3.847~28.090)
          TC*0.1690.0764.9200.0271.184(1.020~1.375)
          HDL*1.8030.7975.1440.0246.067(1.272~28.940)
          HCY*0.0620.0237.1250.0081.064(1.017~1.114)
      脂质斑块*  否1.000
      是1.3280.4947.2170.0073.773(1.432~9.938)
     注:* 为P<0.05,差异有统计学意义。
    下载: 导出CSV 
    | 显示表格

    脑卒中因高发病率、高致死率、高致残率、高复发率以及高经济费用等,对社会的危害极大。AIS是最常见的卒中类型,占全部脑卒中病例的69.6%~70.8%[5]。公认的AIS的主要原因是颈动脉粥样硬化[6]。颈动脉粥样硬化引起AIS主要是通过两个原因:①粥样硬化病变会让动脉管腔变得狭窄,动脉远端的血流量减少,从而使得相应供血区域的脑实质灌注减低,发生缺血和缺氧;②因为颈动脉的部分不稳定斑块突发破裂、脱落,激活凝血系统,形成血栓导致血管栓塞[7],或是脱落的小斑块随血液运行到血管远端引起栓塞,造成相应动脉供血区域的脑实质急性缺血,从而引发脑卒中。

    颈动脉粥样硬化从开始到出现临床症状,主要经历了血管壁损伤、脂质沉积、斑块形成等过程,斑块是引起临床症状的主要原因。斑块主要分为稳定斑块和易损斑块,稳定斑块的主要成分是纤维组织和钙化,此种斑块不易被血流冲散,而易损斑块主要是由脂质和其他混合成分组成,表面不规则以及有溃疡形成。CTA可以清晰显示斑块表面形态及有无溃疡,并根据CT值的测量来区分斑块的性质,从而判断斑块的稳定性[2-3]

    在本组研究中,急性缺血性脑卒中组检出斑块81例,斑块检出率为85.3%,检出的斑块中钙化斑块17例(17.9%)、脂质斑块46例(48.4%)、纤维斑块13例(13.7%)、混合斑块5例(5.3%),光滑斑块34例(35.8%)、不规则斑块30例(31.6%)、溃疡斑块17例(17.9%)。对照组中检出斑块86例,斑块检出率为84.3%,检出的斑块中钙化斑块37例(36.3%)、脂质斑块15例(14.7%)、纤维斑块23例(22.5%)、混合斑块11例(10.8%),光滑斑块56例(54.9%)、不规则斑块18例(17.6%)、溃疡斑块12例(11.8%)。

    两组间在斑块数量方面差异有统计学意义,在急性缺血性脑卒中组脂质斑块和不规则斑块检出率明显高于非急性缺血性脑卒中组,非急性缺血性脑卒中组中钙化斑块和光滑斑块检出率较高。通过组间两两比较显示出脂质斑块及斑块不规则表面差异有统计学意义,斑块溃疡表面虽然在此检验水准下差异无统计学意义,但是斑块溃疡表面在病例组中观察到的发生率明显高于对照组。因此可以推断,颈动脉斑块的性质和斑块的表面形态与急性缺血性脑卒中的发生相关。

    多因素相关Logistic分析中显示脂质斑块的OR值为3.773,95% 置信区间为1.432~9.938,提示脂质斑块是急性缺血性脑卒中发生的危险因素。脂质斑块的危险性可能与它含有较多的脂质,在各种外在的因素作用下斑块容易脱落或损伤,激活凝血系统,造成血栓有关。因此,对这一类斑块应该多加关注,及早发现、及时进行干预。

    很多文献表明,颈动脉管腔狭窄虽然使得远端的脑血流量减少,导致相应的动脉供血区脑实质缺血,但颈动脉狭窄并不是引起急性缺血性脑卒中发生的决定性因素,即使轻中度颈动脉狭窄的患者也会发生缺血性脑卒中[8-9]。有研究结果显示,由于血管有重构功能,管腔的狭窄程度并不完全和斑块相关[10],不稳定斑块的存在和急性缺血性脑卒中的发生有着更密切的关系[11]。本研究对比急性缺血性脑卒中组与对照组的血管狭窄情况发现,管腔狭窄程度在两组间差异无统计学意义,且两组中轻中度狭窄占比较多,重度狭窄占比较少,证实了管腔狭窄程度并不是决定是否发生急性缺血性脑卒中的因素。

    急性缺血性脑卒中的发生除了与颈动脉粥样硬化有关外,也与机体本身的代谢有关,主要包括年龄、高脂、高糖、高血压、TC、TG、LDL、HDL、HCY。当患者的血压持续处于高水平时,血流对管壁的压力增大,管壁长期处于紧张状态,部分患者不按医嘱服药以及情绪波动较大,会导致血管壁内膜损伤,引起大量的脂质成分沉积,促进斑块形成。各种数据表明,动脉的结构和功能都会随着年龄的增长而发生变化,由于动脉壁的结构改变,导致内皮功能受损,产生慢性的血管炎症[12]。本研究证实了年龄≥65岁是急性缺血性脑卒中发生的独立危险因素。

    大量实验数据表明高脂血症不仅可以引起及促进颈动脉粥样硬化发生、发展,并且能使动脉血管内皮功能受损。血液中增高的TC[13]被氧化后使内皮细胞变性,内皮受损更加严重。HDL的抗动脉粥样硬化特性已在临床观察和实验研究中得到了证实,它可以逆转胆固醇转运,从内皮细胞中去除游离胆固醇并将其返回肝脏中,从而防止形成动脉粥样硬化斑块[14]。在本研究中高胆固醇血症是急性缺血性卒中发生的危险因素;高水平的HDL是急性缺血性脑卒中发生的保护因素,并且HDL越高,发生急性缺血性脑卒中的风险越低。

    HCY也是动脉粥样硬化形成的重要危险因素,体内出现同型半胱氨酸代谢异常时,可促进血管内皮细胞氧化,使细胞周围的炎症反应更加强烈,诱导更多的炎症因子渗入斑块内部,导致斑块稳定性下降[15-16]

    综上所述,通过颈动脉CTA对斑块性质和斑块形态的分析,能够对颈动脉粥样硬化斑块的稳定性进行判断,从而可以及早发现、尽早干预,尽量避免急性缺血性脑卒中的发生。高龄(≥65岁)、高血压、TC、HDL、HCY和脂质斑块是急性缺血性脑卒中发生的危险因素。从而可以对患者的饮食习惯调整、基础疾病的治疗进行指导,降低发生急性缺血性脑卒中的风险。

  • 图  1   CT技术的发展

    Figure  1.   Development of CT technology

    图  2   X射线穿过物质的示意图

    Figure  2.   Diagram of an X-ray passing through a substance

    图  3   跨孔电阻率CT装置类型

    Figure  3.   Cross-hole resistivity-type CT device

    图  4   重庆真测科技股份有限公司生产的CD−130BX/μCT微纳三维分析仪[56]

    Figure  4.   CD-130BX/μCT micro-nano 3D analyzer produced by Chongqing Zhence Science and Technology Co., Ltd.[56]

    图  5   课题组使用CD-130BX/μCT微纳三维分析仪对岩矿样品进行扫描

    Figure  5.   The research group used the CD-130BX/μCT micro-nano 3D analyzer to scan rock and ore samples

    图  6   X-CT检测水合物

    Figure  6.   Implementation of X-ray CT to detect gas hydrate

    表  1   工业CT总结

    Table  1   Summary of industrial CT

    CT种类理论方法传播速度km/s操作难度精度经济成本
    地震波CT射线理论5.5-7
    电磁波CT射线理论约3×105较高
    电阻率CT高密度电法
    下载: 导出CSV

    表  2   CT技术在研究不同材料孔隙结构中的应用

    Table  2   Application of CT technology to study the pore structure of various materials

    孔隙结构孔隙半径R/μm使用CT种类结论
    页岩孔隙结构4~40×10-3X-CT  岩心不同部位形成不同数量的孔隙空间
    煤岩孔隙结构0.1~100 X-CT  孔隙结构与煤岩的体积分形维数有关 
    黄土孔隙结构2~6   Micro-CT孔隙体的渗透率随孔隙度的增大而增大
    下载: 导出CSV
  • [1] 高丽娜, 陈文革. CT技术的应用发展及前景[J]. CT理论与应用研究, 2009,18(1): 99−109.

    GAO L N, CHEN W G. The application and prospect of CT[J]. CT Theory and Applications, 2009, 18(1): 99−109. (in Chinese).

    [2] 顾孝同. 国内工程CT技术的发展与应用[J]. 工程地球物理学报, 2006,3(4): 278−282. DOI: 10.3969/j.issn.1672-7940.2006.04.007.

    GU X T. Developments and applications of engineering CT technologies[J]. Chinese Journal of Engineering Geophysics, 2006, 3(4): 278−282. DOI: 10.3969/j.issn.1672-7940.2006.04.007. (in Chinese).

    [3]

    CORMACK A M. Representation of a function by its line integrals, with some radiological applications[J]. Journal of Applied Physics, 1963, 34(9): 2722−2727. DOI: 10.1063/1.1729798.

    [4] 庄天戈. 医用X-线成像历史的追溯、思考与期盼−为纪念我国第一台CT诞生30周年而作[J]. 中国医疗器械杂志, 2013,37(6): 391−394. doi: 10.3969/j.issn.1671-7104.2013.06.001
    [5] 王革. X射线成像和深度学习的交叉融合[J]. CT理论与应用研究, 2022,31(1): 1−12. DOI: 10.15953/j.ctta.2021.053.

    WANG G. X-ray imaging meets deep learning[J]. CT Theory and Applications, 2022, 31(1): 1−12. DOI: 10.15953/j.ctta.2021.053. (in Chinese).

    [6] 倪培君, 李旭东, 彭建中. 工业CT技术[J]. 无损检测, 1996,18(6): 173−176.

    NI P J, LI X D, PENG J Z. Industrial CT technique[J]. Nondestructive Testing, 1996, 18(6): 173−176. (in Chinese).

    [7] 卢艳平, 王珏, 喻洪麟. 工业CT三维图像处理与分析系统[J]. 仪器仪表学报, 2009,30(2): 444−448. DOI: 10.19650/j.cnki.cjsi.2009.02.041.

    LU Y P, WANG J, YU H L. 3D image processing and analyzing system for industrial computed tomography[J]. Chinese Journal of Scientific Instrument, 2009, 30(2): 444−448. DOI: 10.19650/j.cnki.cjsi.2009.02.041. (in Chinese).

    [8] 方黎勇, 李柏林, 李辉, 等. 工业CT在反求工程上的应用[J]. 强激光与粒子束, 2013,25(7): 1620−1624. DOI: 10.3788/HPLPB20132507.1620.

    FANG L Y, LI B L, LI H, et al. Application of industrial CT in reverse engineering technology[J]. High Power Laser and Particle Beams, 2013, 25(7): 1620−1624. DOI: 10.3788/HPLPB20132507.1620. (in Chinese).

    [9] 张鹰, 郑红岩, 张志芳. 奋发图强, 为振兴中华而战−中国第一台γ射线 ICT实用样机诞生记[J]. 中国高等教育, 1995,(1): 39−41.
    [10] 段黎明, 刘元宝, 吴志芳, 等. 基于工业计算机断层成像技术的三维CAD模型重构方法[J]. 计算机集成制造系统, 2009,15(3): 479−486. DOI: 10.13196/j.cims.2009.03.65.duanlm.015.

    DUAN L M, LIU Y B, WU Z F, et al. Method of reconstructing 3-D CAD model based on industrial computed tomography[J]. Computer Integrated Manufacturing Systems, 2009, 15(3): 479−486. DOI: 10.13196/j.cims.2009.03.65.duanlm.015. (in Chinese).

    [11] 孙晶晶, 杨民, 刘静华. 涡轮叶片CT图像边缘提取的最优算子研究[J]. 航空动力学报, 2010,25(1): 175−179. DOI: 10.13224/j.cnki.jasp.2010.01.038.

    SUN J J, YANG M, LIU J H. Research on optimal operator of blade edge detection from computed tomography images based on computational theory[J]. Journal of Aerospace Power, 2010, 25(1): 175−179. DOI: 10.13224/j.cnki.jasp.2010.01.038. (in Chinese).

    [12] 胡俊杰, 徐洪苗, 王鹏, 等. 基于三维可视化的跨孔电磁波CT在岩溶勘察方面的应用[J]. 工程地球物理学报, 2022, 19(4): 443−449. DOI: 10.3969/j.issn.1672-7940.2022.04.004.

    HU J J, XU H M, WANG P, et al. Application of cross-hole electromagnetic wave tomography based on 3D visualization in Karst exploration[J]. Chinese Journal of Engineering Geophysics, 2022, 19(4): 443−449. DOI:10.3969/j.issn.1672-7940.2022.04.004. (in Chinese).

    [13] 许继峰, 储著银, 李杰, 等. 难熔元素和代表性放射性同位素体系分析技术的进展、问题和应用展望[J]. 岩石学报, 2022,38(6): 1565−1576. DOI: 10.18654/1000-0569/2022.06.01.

    XU J F, CHU Z Y, LI J, et al. Progress, open questions and application prospects of analytical techniques for refractory elements and representative radioisotope systems[J]. Acta Petrologica Sinica, 2022, 38(6): 1565−1576. DOI: 10.18654/1000-0569/2022.06.01. (in Chinese).

    [14] 田德祥, 刘新利, 王德志. 超声波在材料工程中的应用研究进展[J]. 材料研究与应用, 2022,16(6): 942−958. DOI: 10.20038/j.cnki.mra.2022.000608.

    TIAN D X, LIU X L, WANG D Z. Research progress of ultrasonic technology in materials engineering applications[J]. Materials Research and Application, 2022, 16(6): 942−958. DOI: 10.20038/j.cnki.mra.2022.000608. (in Chinese).

    [15] 邹子龙. 地震CT技术及其在工程地质勘探中的应用[J]. 有色金属设计, 2020,47(3): 109−111. doi: 10.3969/j.issn.1004-2660.2020.03.032

    ZOU Z L. Seismic CT technique and its application in engineering geological exploration[J]. Nonferrous Metals Design, 2020, 47(3): 109−111. (in Chinese). doi: 10.3969/j.issn.1004-2660.2020.03.032

    [16] 童平. 地震层析成像方法及其应用研究[D]. 北京: 清华大学, 2012.
    [17] 陈敬. 基于波形反演的地震定位和层析成像研究[D]. 北京: 清华大学, 2021. DOI: 10.27266/d.cnki.gqhau.2021.000136.
    [18]

    TAPE C, LIU Q, MAGGI A, et al. Adjoint tomography of the southern California crust[J]. Science, 2009, 325(5943): 988−992. DOI: 10.1126/science.1175298.

    [19]

    LIU Q, GU Y J. Seismic imaging: From classical to adjoint tomography[J]. Tectonophysics, 2012, 566: 31−66. DOI: 10.1016/j.tecto.2012.07.006.

    [20] 张超, 刘伟, 褚金桥, 等. 电磁波 CT 技术在工程地质勘察中的应用[J]. Geomatics Science and Technology, 2020,8(2): 47−53. DOI: 10.12677/GST.2020.82006.

    ZHANG C, LIU W, CHU J Q, et al. Application of electromagnetic wave CT technology in engineering geological survey[J]. Geomatics Science and Technology, 2020, 8(2): 47−53. DOI: 10.12677/GST.2020.82006. (in Chinese).

    [21] 陈杭, 邢亚东, 邓超云. 跨孔电磁波CT在煤矿采空区探测中的应用探究[J]. 矿山测量, 2022,50(1): 21−23, 37. DOI: 10.3969/j.issn.1001-358X.2022.01.006.

    CHEN H, XING Y D, DENG C Y. Application of borehole electromagnetic wave CT in coal mine goaf detection[J]. Mine Surveying, 2022, 50(1): 21−23, 37. DOI: 10.3969/j.issn.1001-358X.2022.01.006. (in Chinese).

    [22] 郭光裕. 无线电波坑道透视技术在煤矿勘探隐伏地质构造中的应用[J]. 煤炭技术, 2018,37(8): 116−118. DOI: 10.13301/j.cnki.ct.2018.08.044.

    GUO G Y. Application of radio wave tunnel perspective technology in exploration of concealed geological structure in coal mine[J]. Coal Technology, 2018, 37(8): 116−118. DOI: 10.13301/j.cnki.ct.2018.08.044. (in Chinese).

    [23]

    HE T, LI G, LUO F, et al. Research on mining-induced stress distribution of extrathick coal seams based on electromagnetic wave CT technology[J]. Advances in Civil Engineering, 2022, 2022. DOI: 10.1155/2022/6870207.

    [24]

    HUANG S, LIN J, HUANG Q, et al. An emerging method using electromagnetic wave computed tomography for the detection of Karst caves[J]. Geotechnical and Geological Engineering, 2020, 38: 2713−2723. DOI: 10.1007/s10706-019-01180-w.

    [25] 甘满光, 缪秀秀, 张力为, 等. CT扫描技术在二氧化碳地质利用与封存领域的应用研究综述[J]. 水利水电技术, 2019,50(8): 174−184. DOI: 10.13928/j.cnki.wrahe.2019.08.022.

    GAN M G, MIAO X X, ZHANG L W, et al. Review on applications of CT scanning technique in the field of CO2 geological utilization and storage[J]. Water Resources and Hydropower Engineering, 2019, 50(8): 174−184. DOI: 10.13928/j.cnki.wrahe.2019.08.022. (in Chinese).

    [26] 张小海, 刘二军. 射线照相检验中X射线强度衰减的数值分析[J]. 无损检测, 2013,34(6): 1−4. DOI: cnki:sun:wsjc.0.2012-06-004.

    ZHANG X H, LIU E J. Numerical analysis on X-ray intensity attenuation in radiographic testing[J]. Nondestructive Testing, 2013, 34(6): 1−4. DOI: cnki:sun:wsjc.0.2012-06-004. (in Chinese).

    [27]

    YAN C H, WHALEN R T, BEAUPRE G S, et al. Reconstruction algorithm for polychromatic CT imaging: Application to beam hardening correction[J]. IEEE Transactions on Medical Imaging, 2000, 19(1): 1−11. DOI: 10.1109/42.832955.

    [28] 魏雨浓, 石战结, 余天祥. 不同电极阵列联合反演在古墓探测中的应用[J]. CT理论与应用研究, 2022,31(3): 280−292. DOI: 10.15953/j.ctta.2022.008.

    WEI Y N, SHI Z J, YU T X. Application of joint inversion of different electrode arrays in ancient mausoleum detection[J]. CT Theory and Applications, 2022, 31(3): 280−292. DOI: 10.15953/j.ctta.2022.008. (in Chinese).

    [29] 方易小锁, 孟永东, 田斌, 等. 高密度电阻率法对不同电极排列的分辨率响应研究[J]. 地球物理学进展, 2019,34(6): 2424−2428. DOI: 10.6038/pg2019CC0313.

    FANGYI X S, MENG Y D, TIAN B, et al. Study on resolution response of different electrode arrangements by high density resistivity method[J]. Progress in Geophysic, 2019, 34(6): 2424−2428. DOI: 10.6038/pg2019CC0313. (in Chinese).

    [30]

    BING Z, GREENHALGH S A. Cross-hole resistivity tomography using different electrode configurations[J]. Geophysical Prospecting, 2000, 48(5): 887−912. DOI: 10.1046/j.1365-2478.2000.00220.x.

    [31]

    MOREIRA C A, GUIRELI NETTO L, CAMARERO P L, et al. Application of electrical resistivity tomography (ERT) in uranium mining earth dam[J]. Journal of Geophysics and Engineering, 2022, 19(6): 1265−1279. DOI: 10.1093/jge/gxac082.

    [32]

    YI M, KIM J, SON J. Three-dimensional anisotropic inversion of resistivity tomography data in an abandoned mine area[J]. Exploration Geophysics, 2011, 42(1): 7−17. DOI: 10.1071/EG11005.

    [33]

    NIELSON T, BRADFORD J, PIERCE J, et al. Soil structure and soil moisture dynamics inferred from time-lapse electrical resistivity tomography[J]. Catena, 2021, 207: 105553. DOI: 10.1016/j.catena.2021.105553.

    [34]

    de JONG S M, HEIJENK R A, NIJLAND W, et al. Monitoring soil moisture dynamics using electrical resistivity tomography under homogeneous field conditions[J]. Sensors, 2020, 20(18): 5313. DOI: 10.3390/s20185313.

    [35]

    GAO W, SHI L, ZHAI P. Water detection within the working face of an underground coal mine using 3D electric resistivity tomography (ERT)[J]. Journal of Environmental and Engineering Geophysics, 2019, 24(3): 497−505. DOI: 10.2113/JEEG24.3.497.

    [36]

    CHENG Q, CHEN X, TAO M, et al. Characterization of Karst structures using quasi-3D electrical resistivity tomography[J]. Environmental Earth Sciences, 2019, 78: 1−12. DOI: 10.1007/s12665-019-8284-2.

    [37]

    WANG Y, ANDERSON N, TORGASHOV E. Condition assessment of building foundation in Karst terrain using both electrical resistivity tomography and multi-channel analysis surface wave techniques[J]. Geotechnical and Geological Engineering, 2020, 38: 1839−1855. DOI: 10.1007/s10706-019-01133-3.

    [38] 朱飞飞. 地井联合物探技术在岩溶注浆检测中的应用[J]. 工程地球物理学报, 2022,19(4): 450−458. DOI: 10.3969/j.issn.1672-7940.2022.04.005.

    ZHU F F. Application of geophysical prospecting technology combined with ground and well in Karst grouting detection[J]. Chinese Journal of Engineering Geophysics, 2022, 19(4): 450−458. DOI: 10.3969/j.issn.1672-7940.2022.04.005. (in Chinese).

    [39] 车传强, 陈波, 谢明佐, 等. 综合物探方法在高压架空线路下方采空区探测中的应用[J]. CT理论与应用研究, 2022,31(1): 23−31. DOI: 10.15953/j.1004-4140.2022.31.01.03.

    CHE C Q, CHEN B, XIE M Z, et al. Application of integrated geophysics method in goaf detection under high voltage overhead lines[J]. CT Theory and Applications, 2022, 31(1): 23−31. DOI: 10.15953/j.1004-4140.2022.31.01.03. (in Chinese).

    [40]

    LU Y, CAO C, LIU Y, et al. Study on application of comprehensive geophysical prospecting method in urban geological survey-taking concealed bedrock detection as an example in dingcheng district, Changde city, Hunan province, China[J]. Applied Sciences-basel, 2023, 13(1): 417. DOI: 10.3390/app13010417.

    [41]

    ZHANG L, XU L, XIAO Y, et al. Application of comprehensive geophysical prospecting method in water accumulation exploration of multilayer goaf in integrated mine[J]. Advances in Civil Engineering, 2021, 2021: 1434893. DOI: 10.1155/2021/1434893.

    [42] 朱亚军, 王艳新. 高密度电法和瞬变电磁法在地下岩溶探测中的综合应用[J]. 工程地球物理学报, 2012,9(6): 738−742. DOI: 10.3969/j.issn.1672-7940.2012.06.017.

    ZHU Y J, WANG Y X. The application of high density resistivity and TEM method to underground Karst detection[J]. Chinese Journal of Engineering Geophysics, 2012, 9(6): 738−742. DOI: 10.3969/j.issn.1672-7940.2012.06.017. (in Chinese).

    [43] 杨峰, 刘晓甲, 李鹏博. 综合评定法在西南地区铁路岩溶路基注浆质量检测的应用[J]. 工程地球物理学报, 2021,15(8): 744−753. DOI: 10.3969/j.issn.1672-7940.2021.05.027.

    YANG F, LIU X J, LI P B. Application of comprehensive evaluation method in grouting quality detection of railway Karst subgrade in Southwest China[J]. Chinese Journal of Engineering Geophysics, 2021, 15(8): 744−753. DOI: 10.3969/j.issn.1672-7940.2021.05.027. (in Chinese).

    [44] 章飞亮, 田占峰. 综合物探技术在空铁岩溶探测中的应用[J]. 工程地球物理学报, 2021,18(5): 730−737. DOI: 10.3969/j.issn.1672-7940.2021.05.025.

    ZHANG F L, TIAN Z F. Application of comprehensive geophysical technology in air-rail Karst detection[J]. Chinese Journal of Engineering Geophysics, 2021, 18(5): 730−737. DOI: 10.3969/j.issn.1672-7940.2021.05.025. (in Chinese).

    [45] 唐塑, 武银婷, 邢浩, 等. 高密度电法与瞬变电磁法在戈壁区找水的联合应用[J]. CT理论与应用研究, 2023,32(1): 27−34. DOI: 10.15953/j.ctta.2022.081.

    TANG S, WU Y T, XING H, et al. Combined application of high-density electrical method and transient electromagnetic method in Gobi desert area[J]. CT Theory and Applications, 2023, 32(1): 27−34. DOI: 10.15953/j.ctta.2022.081. (in Chinese).

    [46] 余涛, 王小龙, 王俊超. 综合物探方法在城市地铁岩溶勘察中的应用[J]. CT理论与应用研究, 2022,31(5): 587−596. DOI: 10.15953/j.ctta.2021.073.

    YU T, WANG X L, WANG J C. Application of comprehensive geophysical prospecting method in Karst exploration of urban subway[J]. CT Theory and Applications, 2022, 31(5): 587−596. DOI: 10.15953/j.ctta.2021.073. (in Chinese).

    [47] 胡富彭, 欧元超, 付茂如. 不同充填介质下的溶洞跨孔电阻率CT探查数值模拟[J]. 中国岩溶, 2019,38(5): 766−773. DOI: 10.11932/Karst20190513.

    HU F P, OU Y C, FU M R. Study on numerical simulation of Karst cross-hole resistivity CT exploration at cave with different filling media[J]. Carsologica Sinica, 2019, 38(5): 766−773. DOI: 10.11932/Karst20190513. (in Chinese).

    [48]

    TSOURLOS P, OGILVY R, PAPAZACHOS C, et al. Measurement and inversion schemes for single borehole-to-surface electrical resistivity tomography surveys[J]. Journal of Geophysics and Engineering, 2011, 8(4): 487−497. DOI: 10.1088/1742-2132/8/4/001.

    [49] 周权, 王莉蓉. 地球物理方法在金属矿深部找矿中的应用及展望[J]. 世界有色金属, 2021,(9): 49−50. DOI: 10.3969/j.issn.1002-5065.2021.09.025.

    ZHOU Q, WANG L R. Application and prospect of geophysical methods in deep prospecting of metal deposits[J]. World Nonferrous Metals, 2021, (9): 49−50. DOI: 10.3969/j.issn.1002-5065.2021.09.025. (in Chinese).

    [50]

    MOJICA A, PÉREZ T, TORAL J, et al. Shallow electrical resistivity imaging of the limón fault, Chagres river watershed, Panama Canal[J]. Journal of Applied Geophysics, 2017, 138: 135−142. DOI: 10.1016/j.jappgeo.2017.01.010.

    [51]

    JUNG H B, JANSIK D, UM W. Imaging wellbore cement degradation by carbon dioxide under geologic sequestration conditions using X-ray computed microtomography[J]. Environmental science & technology, 2013, 47(1): 283−289. DOI: 10.1021/es3012707.

    [52] 高星. 地震层析成像研究的回顾与展望[J]. 地球物理学进展, 2000,15(4): 41−45. DOI: 10.3969/j.issn.1004-2903.2000.04.006.

    GAO X. Advance and review in seismic tomography research[J]. Progress in Geophysics, 2000, 15(4): 41−45. DOI: 10.3969/j.issn.1004-2903.2000.04.006. (in Chinese).

    [53]

    ZHANG P, LEE Y I, ZHANG J. A review of high-resolution X-ray computed tomography applied to petroleum geology and a case study[J]. Micron, 2019, 124: 102702. DOI: 10.1016/j.micron.2019.102702.

    [54]

    GALLMEISTER K, AZZAM R. Applications of X-ray computed tomography (CT) in engineering geology[J]. Advances in X-ray Tomography for Geomaterials, 2006: 135-142.

    [55] 李国荣, 李永耀. 工程CT技术的发展与应用[J]. 延安职业技术学院学报, 2012,26(3): 90−91. doi: 10.3969/j.issn.1674-6198.2012.03.037
    [56] 重庆真测科技股份有限公司. 纳米CT[EB/OL]. (2020-09-09)[2023-5-11]. http://www.zcict.com/.
    [57] 陈超, 魏彪, 梁婷, 等. 一种基于工业CT技术的岩芯样品孔隙度测量分析方法[J]. 物探与化探, 2013,37(3): 500−507. DOI: 10.11720/j.issn.1000-8918.2013.3.22.

    CHEN C, WEI B, LIANG T, et al. The application of industrial computation tomography (CT) to the analysis of core sample porosity[J]. Geophysical and Geochemical Exploration, 2013, 37(3): 500−507. DOI: 10.11720/j.issn.1000-8918.2013.3.22. (in Chinese).

    [58] 张向东, 王浩, 敬鹏飞. 基于岩石“等效损伤”探究宏观断裂规律[J]. 中国地质灾害与防治学报, 2020,31(3): 117−125. DOI: 10.16031/j.cnki.issn.1003-8035.2020.03.16.

    ZHANG X D, WANG H, JING P F. Studying the macroscopic fracture rule based on rock "equivalent damage"[J]. The Chinese Journal of Geological Hazard and Control, 2020, 31(3): 117−125. DOI: 10.16031/j.cnki.issn.1003-8035.2020.03.16. (in Chinese).

    [59] 宋力, 魏赛平, 谷麟, 等. 微孔洞缺陷岩石轴压下弹塑脆性模型损伤研究[J]. 有色金属(矿山部分), 2014,66(3): 59−63. DOI: 10.3969/j.issn.1671-4172.2014.03.016.

    SONG L, WEI S P, GU L, et al. Study on elastoplastic-brittle model damage under axial compression in rocks with micro-cavity defect[J]. Nonferrous Metals (Mine Section), 2014, 66(3): 59−63. DOI: 10.3969/j.issn.1671-4172.2014.03.016. (in Chinese).

    [60] 古启雄, 黄震, 钟文, 等. 高温循环后花岗岩孔隙结构与物理力学特性演化规律研究[J]. 岩石力学与工程学报, 2022: 1-16. DOI: 10.13722/j.cnki.jrme.2022.1024.

    GU Q X, HUANG Z, ZHONG W, et al. Study on the variations of pore structure and physical and mechanical properties of granite after high temperature cycling[J]. Chinese Journal of Rock Mechanics and Engineering, 2022: 1-16. DOI:10.13722/j.cnki.jrme.2022.1024. (in Chinese).

    [61]

    FAN L F, GAO J W, WU Z J, et al. An investigation of thermal effects on micro-properties of granite by X-ray CT technique[J]. Applied Thermal Engineering, 2018, 140: 505−519. DOI: 10.1016/j.applthermaleng.2018.05.074.

    [62] 李晓雪, 郤保平, 何水鑫, 等. 热冲击下花岗岩的细观变化规律[J]. 矿业研究与开发, 2021,41(5): 67−73. DOI: 10.13827/j.cnki.kyyk.2021.05.013.

    LI X X, XI B P, HE S X, et al. Mcroscopic change laws of granite under thermal shock[J]. Mining Research and Development, 2021, 41(5): 67−73. DOI: 10.13827/j.cnki.kyyk.2021.05.013. (in Chinese).

    [63]

    VIDANA PATHIRANAGEI S, GRATCHEV I, SOKOLOWSKI K A. Investigation of the microstructural characteristics of heated sandstone by micro-computed tomography technique[J]. Environmental Earth Sciences, 2022, 81(15): 401. DOI: 10.1007/s12665-022-10514-6.

    [64]

    SAXENA N, HOWS A, HOFMANN R, et al. Rock properties from micro-CT images: Digital rock transforms for resolution, pore volume, and field of view[J]. Advances in Water Resources, 2019, 134: 103419. DOI: 10.1016/j.advwatres.2019.103419.

    [65] 左顺吉, 冯鹏, 黄盼, 等. 基于双域自适应网络的岩矿样工业CT图像金属伪影校正算法研究[J]. CT理论与应用研究, 2022,31(6): 783−792. DOI: 10.15953/j.ctta.2022.041.

    ZUO S J, FENG P, HUANG P, et al. Metal artifact reduction algorithm for CT images of rock and mineral samples based on dual-domain adaptive network[J]. CT Theory and Applications, 2022, 31(6): 783−792. DOI: 10.15953/j.ctta.2022.041. (in Chinese).

    [66]

    ANOVITZ L M, COLE D R. Characterization and analysis of porosity and pore structures[J]. Reviews in Mineralogy and geochemistry, 2015, 80: 61−164. DOI: 10.2138/rmg.2015.80.04.

    [67]

    TIWARI P, DEO M, LIN C L, et al. Characterization of oil shale pore structure before and after pyrolysis by using X-ray micro CT[J]. Fuel, 2013, 107: 547−554. DOI: 10.1016/j.fuel.2013.01.006.

    [68]

    WANG G, SHEN J, LIU S, et al. Three-dimensional modeling and analysis of macro-pore structure of coal using combined X-ray CT imaging and fractal theory[J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 123: 104082. DOI: 10.1016/j.ijrmms.2019.104082.

    [69] 王超, 吴丰, 陈义国, 等. 基于微米CT技术的黄土岩孔隙保存机制及渗透率各向异性[J]. 科学技术与工程, 2021,21(27): 11527−11535. DOI: 10.3969/j.issn.1671-1815.2021.27.010.

    WANG C, WU F, CHEN Y G, et al. Preservation mechanism of pores and permeability anisotropy of loessite based on micro-CT technology[J]. Science Technology and Engineering, 2021, 21(27): 11527−11535. DOI: 10.3969/j.issn.1671-1815.2021.27.010. (in Chinese).

    [70]

    LI P, SHAO S. Can X-ray computed tomography (CT) be used to determine the pore-size distribution of intact loess?[J]. Environmental Earth Sciences, 2020, 79: 29. DOI: 10.1007/s12665-019-8777-z.

    [71] 徐文世, 于兴河, 刘妮娜, 等. 天然气水合物开发前景和环境问题[J]. 天然气地球科学, 2005,16(5): 680−683. DOI: cnki:sun:tdkx.0.2005-05-029.

    XU W S, YU X H, LIU N N, et al. The development perapective and environmental problems of natural gas hydrates[J]. Natural Gas Geoscience, 2005, 16(5): 680−683. DOI: cnki:sun:tdkx.0.2005-05-029. (in Chinese).

    [72]

    WATANABE S, SAITO K, OHMURA R. Crystal growth of clathrate hydrate in liquid water saturated with a simulated natural gas[J]. Crystal Growth & Design, 2011, 11(7): 3235−3242. DOI: 10.1021/cg2005024.

    [73] 李彦龙, 刘昌岭, 刘乐乐. 含水合物沉积物损伤统计本构模型及其参数确定方法[J]. 石油学报, 2016,37(10): 1273−1279. DOI: 10.7623/syxb201610007.

    LI Y L, LIU C L, LIU L L. Damage statistic constitutive model of hydrate-bearing sediments and the determination method of parameters[J]. Acta Petrolei Sinica, 2016, 37(10): 1273−1279. DOI: 10.7623/syxb201610007. (in Chinese).

    [74]

    LIU L, DAI S, NING F, et al. Fractal characteristics of unsaturated sands− implications to relative permeability in hydrate-bearing sediments[J]. Journal of Natural Gas Science and Engineering, 2019, 66: 11−17. DOI: 10.1016/j.jngse.2019.03.019.

    [75]

    YANG L, AI L, XUE K, et al. Analyzing the effects of inhomogeneity on the permeability of porous media containing methane hydrates through pore network models combined with CT observation[J]. Energy, 2018, 163: 27−37. DOI: 10.1016/j.energy.2018.08.100.

    [76]

    ZHANG L, GE K, WANG J, et al. Pore-scale investigation of permeability evolution during hydrate formation using a pore network model based on X-ray CT[J]. Marine and Petroleum Geology, 2020, 113: 104157. DOI: 10.1016/j.marpetgeo.2019.104157.

    [77] 陈亮, 叶旺全, 李承峰, 等. 基于时间演化的天然气水合物CT图像阈值分割[J]. CT理论与应用研究, 2023,32(2): 171−178. DOI: 10.15953/j.ctta.2022.062.

    CHEN L, YE W Q, LI C F, et al. Natural gas hydrate CT image threshold segmentation based on time evolution[J]. CT Theory and Applications, 2023, 32(2): 171−178. DOI: 10.15953/j.ctta.2022.062. (in Chinese).

    [78] 李小彬. 基于三维数字岩心的岩石孔隙结构表征及弹渗属性模拟研究[D]. 武汉: 中国地质大学(武汉), 2021.
    [79]

    ALHASHMI Z, BLUNT M J, BIJELJIC B. The impact of pore structure heterogeneity, transport, and reaction conditions on fluid–fluid reaction rate studied on images of pore space[J]. Transport in Porous Media, 2016, 115(2): 215−237. DOI: 10.1007/s11242-016-0758-z.

    [80]

    LIN W, LI X, YANG Z, et al. Modeling of 3D rock porous media by combining X-ray CT and Markov chain Monte Carlo[J]. Journal of Energy Resources Technology, 2020, 142(1): 13001. DOI: 10.1115/1.4045461.

    [81] 方黎勇, 陈鹏, 陈浩. 一种基于工业CT图像的岩心孔隙率计算方法[J]. 强激光与粒子束, 2014,26(3): 246−250. DOI: 10.3788/HPLPB201426.034008.

    FANG L Y, CHEN P, CHEN H. A calculation method of core porosity based on industrial CT images[J]. High Power Laser and Particle Beams, 2014, 26(3): 246−250. DOI: 10.3788/HPLPB201426.034008. (in Chinese).

    [82] 姚军, 赵秀才, 衣艳静, 等. 数字岩心技术现状及展望[J]. 油气地质与采收率, 2005,(6): 52−54. DOI: 10.3969/j.issn.1009-9603.2005.06.017.

    YAO J, ZHAO X C, YI Y J. et al. The current situation and prospect on digital core technology[J]. Petroleum Geology and Recovery Efficiency, 2005, (6): 52−54. DOI: 10.3969/j.issn.1009-9603.2005.06.017. (in Chinese).

    [83]

    LIN W, LI X, YANG Z, et al. Construction of dual pore 3-D digital cores with a hybrid method combined with physical experiment method and numerical reconstruction method[J]. Transport in Porous Media, 2017, 120(1): 227−238. DOI: 10.1007/s11242-017-0917-x.

    [84] 赵建鹏, 陈惠, 李宁, 等. 三维数字岩心技术岩石物理应用研究进展[J]. 地球物理学进展, 2020,35(3): 1099−1108. DOI: 10.6038/pg2020DD0486.

    ZHAO J P, CHEN H, LI N, et al. Research advance of petrophysical application based on digital core technology[J]. Progress in Geophysics, 2020, 35(3): 1099−1108. DOI: 10.6038/pg2020DD0486. (in Chinese).

    [85] 邓世冠, 吕伟峰, 刘庆杰, 等. 利用CT技术研究砾岩驱油机理[J]. 石油勘探与开发, 2014,41(3): 330−335. DOI: 10.11698/PED.2014.03.08.

    DENG S G, LV W F, LIU Q J, et al. Research on displacement mechanism in conglomerate using CT scanning method[J]. Petroleum Exploration and Development, 2014, 41(3): 330−335. DOI: 10.11698/PED.2014.03.08. (in Chinese).

    [86] 屈乐, 孙卫, 杜环虹, 等. 基于CT扫描的三维数字岩心孔隙结构表征方法及应用−以莫北油田116井区三工河组为例[J]. 现代地质, 2014,28(1): 190−196. DOI: 10.3969/j.issn.1000-8527.2014.01.020.

    QU L, SUN W, DU H H, et al. Characterization technique of pore structure by 3D digital core based on CT scanning and its application: An example from Sangonghe formation of 116 well field in Mobei oilfield[J]. Geoscience, 2014, 28(1): 190−196. DOI: 10.3969/j.issn.1000-8527.2014.01.020. (in Chinese).

    [87] 盛军, 杨晓菁, 李纲, 等. 基于多尺度X-CT成像的数字岩心技术在碳酸盐岩储层微观孔隙结构研究中的应用[J]. 现代地质, 2019,33(3): 653−661. DOI: 10.19657/j.geoscience.1000-8527.2019.03.17.

    SHENG J, YANG X J, LI G, et al. Aplication of multiscale X-CT imaging digital core technique on observing micro-pore structure of carbonate reservoirs[J]. Geoscience, 2019, 33(3): 653−661. DOI: 10.19657/j.geoscience.1000-8527.2019.03.17. (in Chinese).

    [88] 郝艳军, 杨顶辉. 二氧化碳地质封存问题和地震监测研究进展[J]. 地球物理学进展, 2012,27(6): 2369−2383. DOI: 10.6038/j.issn.1004-2903.2012.06.012.

    HAO Y J, YANG D H. Research progress of carbon dioxide capture and geologicalsequestration problem and seismic monitoring research[J]. Progress in Geophysics, 2012, 27(6): 2369−2383. DOI: 10.6038/j.issn.1004-2903.2012.06.012. (in Chinese).

    [89]

    ANDREW M, BIJELJIC B, BLUNT M J. Pore-scale contact angle measurements at reservoir conditions using X-ray microtomography[J]. Advances in Water Resources, 2014, 68(2014): 24−31. DOI: 10.1016/j.advwatres.2014.02.014.

    [90]

    SAHNI A, BURGER J, BLUNT M. Measurement of three phase relative permeability during gravity drainage using CT[C]//SPE/DOE Improved Oil Recovery Symposium, 1998. DOI: 10.2118/39655-MS.

    [91]

    ZHANG Y, NISHIZAWA O, KIYAMA T, et al. Flow behaviour of supercritical CO2 and brine in Berea sandstone during drainage and imbibition revealed by medical X-ray CT images[J]. Geophysical Journal International, 2014, 197(3): 1789−1807. DOI: 10.1093/gji/ggu089.

    [92] 施有志, 赵花丽, 黄钰琳, 等. 厦门地区孤石分布规律及对地铁工程的影响[J]. 地质与勘探, 2019,55(3): 862−869. DOI: 10.12134/j.dzykt.2019.03.018.

    SHI Y Z, ZHAO H L, HUANG Y L, et al. The distribution rule of the solitary stones of granite in Xiamen and its influence on metro engineering[J]. Geology and Exploration, 2019, 55(3): 862−869. DOI: 10.12134/j.dzykt.2019.03.018. (in Chinese).

    [93] 李术才, 刘征宇, 刘斌, 等. 基于跨孔电阻率CT的地铁盾构区间孤石探测方法及物理模型试验研究[J]. 岩土工程学报, 2015,37(3): 446−457. DOI: 10.11779/CJGE201503008.

    LI S C, LIU Z Y, LIU B, et al. Boulder detection method for metro shield zones based on cross-hole resistivity tomography and its physical model tests[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(3): 446−457. DOI: 10.11779/CJGE201503008. (in Chinese).

    [94] 刘畅, 李振春, 曲英铭, 等. 地震层析成像方法综述[J]. 物探与化探, 2020,44(2): 227−234. DOI: 10.11720/wtyht.2020.1243.

    LIU C, LI Z C, QU Y M, et al. A review of seismic tomography methods[J]. Geophysical and Geochemical Exploration, 2020, 44(2): 227−234. DOI: 10.11720/wtyht.2020.1243. (in Chinese).

    [95] 秦晶晶, 袁洪克, 何银娟, 等. 层析成像技术在城市活断层探测中的应用[J]. 地球物理学进展, 2018,33(5): 2153−2158. DOI: 10.6038/pg2018BB0383.

    QIN J J, YUAN H K, HE Y J, et al. Application of tomography inversion method in detecting active fault[J]. Progress in Geophysics, 2018, 33(5): 2153−2158. DOI: 10.6038/pg2018BB0383. (in Chinese).

    [96]

    GHORBANI Y, BECKER M, PETERSEN J, et al. Use of X-ray computed tomography to investigate crack distribution and mineral dissemination in sphalerite ore particles[J]. Minerals Engineering, 2011, 24(12): 1249−1257. DOI: 10.1016/j.mineng.2011.04.008.

    [97]

    LIU Z, YANG Y, YAO J, et al. Pore-scale remaining oil distribution under different pore volume water injection based on CT technology[J]. Advances in Geo-Energy Research, 2017, 1(3): 171−181. DOI: 10.26804/ager.2017.03.04.

    [98]

    WILDENSCHILD D, SHEPPARD A P. X-ray imaging and analysis techniques for quantifying pore-scale structure and processes in subsurface porous medium systems[J]. Advances in Water Resources, 2013, 51: 217−246. DOI: 10.1016/j.advwatres.2012.07.018.

  • 期刊类型引用(10)

    1. 杜利娟. 2型糖尿病患者颈动脉粥样硬化斑块特征CTA研究. 影像技术. 2025(01): 40-43+49 . 百度学术
    2. 刘旭. 急性缺血性脑卒中患者颈动脉斑块的超声特征分析. 实用医学影像杂志. 2025(02): 114-119 . 百度学术
    3. 王姗,赵建华. 基于CT和MRI的影像组学在缺血性脑卒中的研究进展. CT理论与应用研究. 2024(01): 83-89 . 本站查看
    4. 王晓春,周佛养,张玉,朱晨霞,李俊杰,张娜,金仲伟. 颈动脉/椎动脉粥样硬化斑块患者应用TCD联合颈动脉超声诊断后循环缺血的效能及影像学特点. 中国医学创新. 2024(08): 138-142 . 百度学术
    5. 陈相楠,刘萍,卢玲,陈桌. 颈动脉超声检查在缺血性脑卒中患者诊疗评估中的应用价值. 影像研究与医学应用. 2024(08): 177-179+182 . 百度学术
    6. 阮志昆. 急性脑梗死患者血清中Gal-3、MMP-9、RBP4表达水平与颈动脉粥样硬化的关系. 中华养生保健. 2024(24): 58-61 . 百度学术
    7. 苏梅菊. 卒中高危人群颈动脉斑块超声特征对缺血性卒中的预测价值. 中国民康医学. 2024(24): 93-96 . 百度学术
    8. 赵颖,刘甜,巩雯,乔蕊芳,李令兴,徐诚,尚红记. 急性缺血性脑卒中患者血清LRRK2、CHI3L1水平与神经缺损程度及预后的关系. 保健医学研究与实践. 2024(12): 39-44 . 百度学术
    9. 刘倩,岳云,李占涛,何生存,贺彤,赵凯,贾戌生. 七藤脉宁方对痰瘀阻络型颈动脉粥样硬化脑梗死患者神经功能与血清的影响. 中国疗养医学. 2023(08): 854-857 . 百度学术
    10. 艾克拜尔·加马力,谢克莱·阿布力肯,赵晶,陈世保,吴新山,张亮. 急性缺血性脑卒中的血管内介入治疗体会. 中国临床神经外科杂志. 2023(07): 468-469 . 百度学术

    其他类型引用(4)

图(6)  /  表(2)
计量
  • 文章访问数:  560
  • HTML全文浏览量:  84
  • PDF下载量:  92
  • 被引次数: 14
出版历程
  • 收稿日期:  2023-04-17
  • 修回日期:  2023-05-15
  • 录用日期:  2023-05-30
  • 网络出版日期:  2023-07-02
  • 刊出日期:  2024-01-09

目录

/

返回文章
返回
x 关闭 永久关闭