ISSN 1004-4140
CN 11-3017/P

基于非局部广义总变分正则化的稀疏角度CT重建算法

蒋敏, 陶红伟, 程凯

蒋敏, 陶红伟, 程凯. 基于非局部广义总变分正则化的稀疏角度CT重建算法[J]. CT理论与应用研究(中英文), 2025, 34(1): 129-139. DOI: 10.15953/j.ctta.2023.170.
引用本文: 蒋敏, 陶红伟, 程凯. 基于非局部广义总变分正则化的稀疏角度CT重建算法[J]. CT理论与应用研究(中英文), 2025, 34(1): 129-139. DOI: 10.15953/j.ctta.2023.170.
JIANG M, TAO H W, Cheng K. Sparse View CT Reconstruction Algorithm Based on Non-Local Generalized Total Variation Regularization[J]. CT Theory and Applications, 2025, 34(1): 129-139. DOI: 10.15953/j.ctta.2023.170. (in Chinese).
Citation: JIANG M, TAO H W, Cheng K. Sparse View CT Reconstruction Algorithm Based on Non-Local Generalized Total Variation Regularization[J]. CT Theory and Applications, 2025, 34(1): 129-139. DOI: 10.15953/j.ctta.2023.170. (in Chinese).

基于非局部广义总变分正则化的稀疏角度CT重建算法

基金项目: 河南省科技攻关项目(222102210032);河南省科技攻关项目(232102210014)。
详细信息
    作者简介:

    蒋敏,女,讲师,主要从事CT图像重建与CT应用研究,E-mail:jm_zqu@163.com

    通讯作者:

    陶红伟✉,男,副教授、硕士生导师,主要从事计算机网络安全理论与应用研究,E-mail:tthhww_811@163.com

  • 中图分类号: P 631.3;O 242;TP 391.41

Sparse View CT Reconstruction Algorithm Based on Non-Local Generalized Total Variation Regularization

  • 摘要:

    基于广义总变分(TGV)正则化的CT图像重建算法可以有效克服总变分(TV)正则化的阶梯效应,从而能保护重建图像过渡区域的结构特征。尽管TGV重建方法优于TV重建方法,但它仍然忽略了非局部自相似先验信息在恢复CT图像细节方面的显著作用。为了克服TGV重建方法的上述局限性,本文引入一种非局部广义总变分(NLTGV)正则项,并提出基于NLTGV正则化的稀疏角度CT重建算法。该方法不仅可以利用不同阶的非局部变分信息来保护图像结构特征,而且还可以利用非局部自相似性来恢复重建图像的细节。由于重建模型包含双非光滑项,难以直接求解,因此提出基于凸集投影的优化算法,将其分解为几个简单子问题实现有效求解。仿真和实验结果表明,与其他变分正则化重建方法相比,本文重建方法可以有效提高CT图像重建质量。

    Abstract:

    CT image reconstruction algorithm based on generalized total variation (TGV) can overcome the staircase effect of total variation (TV) regularization, thereby protecting the structural features of the reconstructed image transition region. Although the TGV reconstruction method is superior to the TV reconstruction method, it still ignores the role of non-local self-similar prior information in restoring CT image details. To overcome the aforementioned limitations of TGV reconstruction method, we introduce a non-local TGV (NLTGV) regularization term and propose a sparse view CT reconstruction algorithm based on NLTGV regularization. The proposed method can not only utilize non-local variational information of different orders to protect image structural features but can also utilize non-local self-similarity to restore the details of the reconstructed image. Owing to the inclusion of dual non-smooth terms in the reconstruction model, solving it directly is difficult. Therefore, we proposed an optimization algorithm based on convex set projection, which decomposes the problem into several sub-problems to be solved. The simulation and experimental results show that the proposed NLTGV regularization reconstruction method can effectively improve the quality of reconstructed images compared with other variational reconstruction methods.

  • 图  1   搜索非局部相似图像块原理

    Figure  1.   Schematic illustrating the searching of non-local similarity patches

    图  2   仿真数据重建结果

    Figure  2.   Reconstruction results for simulated data

    图  3   仿真数据重建图像ROI放大图

    Figure  3.   Zoom-in display of ROI of the images reconstructed from the simulated data

    图  4   仿真数据重建图像的RMSE随迭代次数变化曲线

    Figure  4.   RMSE of the image reconstructed from simulated data versus iterations

    图  5   实际投影数据重建结果

    Figure  5.   Reconstruction results for real projection data

    图  6   实际数据重建图像ROI放大图

    Figure  6.   Zoom-in display of ROI of the images reconstructed from the real data

    图  7   实际数据重建图像的RMSE随迭代次数变化曲线

    Figure  7.   RMSE of the image reconstructed from real data versus iterations

    表  1   不同变分正则项特性的比较

    Table  1   Comparison of characteristics with different variation regularization

    算法 TV TGV NLTV NLTGV
    邻域   局部 局部 非局部 非局部
    变分阶次 一阶 高阶 一阶  高阶 
    下载: 导出CSV

    表  2   基于NLTGV正则化的稀疏角度CT图像重建算法步骤

    Table  2   Procedures of a sparse-view CT image reconstruction algorithm based on NLTGV regularization

    算法1 基于NLTGV的稀疏角度CT重建算法
    (1) 初始化: 给定初值$ {{{\boldsymbol u}}^0}, $$ {t_{\max }} ,$令初始化: 给定初值
      $ {{{\boldsymbol u}}^0} ,$设置$ {t_{\max }} $,$ {q_{\max }} $,$ {k_{\max }} $,令$ k = 1 $
    (2) while (不满足停止准则) do
    (3) 令$ {{{\boldsymbol f}}^0} = {{{\boldsymbol u}}^{k - 1}} $,t=1
    (4) while(t$ \leq $tmax) do
    (5) for j=1,2,···,N
    (6) $ f_j^t = f_j^{t - 1} + \displaystyle\frac{\lambda }{{{A_{ + ,j}}}}\sum\limits_{i = 1}^M {\frac{{{a_{i,j}}}}{{{A_{i, + }}}}} ({p_i} - {\bar p_i}) $
    (7) $ {A_{i, + }} = \displaystyle\sum\limits_{j = 1}^N {{a_{i,j}}} ,\ i = 1,2,\cdots,M $
    (8) $ {A_{ + ,j}} = \displaystyle\sum\limits_{i = 1}^M {{a_{i,j}}} ,\ j = 1,2,\cdots,N $
    (9)$ {\bar p_i} = {A_i}{f^{t - 1}} $
    (10)$ t = t + 1 $
    (11) end for loop
    (12) end while loop
    (13) 非负约束,得到$ {{{\boldsymbol u}}^{{\text{pos}}}} $
    (14) 令$ q = 1, $ b=0, d=0
    (15) while($ q \le {q^{\max }} $) do
    (16) 共轭梯度法求解u, g
    (17) 根据公式(18)与(19)求解sr子问题
    (18) 根据公式(16)与(17)更新变量bd
    (19) $ q = q + 1 $
    (20) end while loop
    (21) $ {{{\boldsymbol u}}^k} = {{{\boldsymbol u}}^{{q_{\max }}}} $
    (22) $ k = k + 1 $
    (23) end while loop
    (24) 输出: 重建图像$ {{{\boldsymbol u}}^*} $
    下载: 导出CSV

    表  3   仿真数据重建图像的PSNR和SSIM结果

    Table  3   PSNR and SSIM for reconstructing images from simulated data

    采样角度数目 指标 算法
    TV TGV NLTV NLTGV
    ROI1 ROI2 ROI1 ROI2 ROI1 ROI2 ROI1 ROI2
    50 PSNR 26.16 25.98 26.19 26.12 26.15 26.18 26.59 26.83
    SSIM×10-2 80.02 79.97 80.37 80.52 78.73 79.71 80.48 81.78
    70 PSNR 26.80 26.10 26.90 25.84 27.38 26.98 28.28 27.82
    SSIM×10-2 81.96 80.90 79.78 80.16 83.05 83.53 85.10 84.93
    90 PSNR 27.07 26.20 27.19 26.10 27.63 26.51 28.51 28.56
    SSIM×10-2 81.64 82.95 82.37 81.80 82.62 83.34 85.11 87.29
    110 PSNR 27.07 27.11 27.77 27.00 27.86 27.59 28.71 28.78
    SSIM×10-2 84.24 84.74 82.71 84.03 83.20 84.72 85.47 87.36
    下载: 导出CSV

    表  4   真实数据重建图像的PSNR和SSIM结果

    Table  4   PSNR and SSIM for reconstructing images from real data

    采样角度数目 指标 算法
    TV TGV NLTV NLTGV
    ROI1 ROI2 ROI1 ROI2 ROI1 ROI2 ROI1 ROI2
    50 PSNR 25.38 26.17 25.85 26.45 26.18 26.77 26.83 26.98
    SSIM×10-2 79.97 79.98 79.52 81.12 79.71 82.74 81.78 82.70
    70 PSNR 26.10 27.02 26.34 27.02 26.98 27.39 27.82 28.94
    SSIM×10-2 80.90 80.00 80.16 83.67 83.53 86.91 84.93 88.18
    90 PSNR 26.20 27.16 26.30 27.32 26.51 27.82 28.36 29.21
    SSIM×10-2 81.95 84.68 82.80 84.27 83.34 84.21 87.29 89.04
    110 PSNR 27.11 27.51 27.00 27.54 27.19 28.64 28.78 29.67
    SSIM×10-2 83.74 84.42 84.03 84.67 84.72 86.22 87.36 89.56
    下载: 导出CSV
  • [1]

    PARCERO E, FLORES L, SÁNCHEZ M G, et al. Impact of view reduction in CT on radiation dose for patients[J]. Radiation Physics and Chemistry, 2017, 137(8): 173-175.

    [2]

    CANDES E J, ROMBERG J, TAO T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509. DOI: 10.1109/TIT.2005.862083.

    [3]

    SIDKY E Y, KAO C M, PAN X. Accurate image reconstruction from few-views and limited-angle data in divergent-beam CT[J]. Journal of X Ray Science & Technology, 2009, 14(2): 119-139.

    [4]

    SIDKY E Y, PAN X. Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization[J]. Physics in Medicine & Biology, 2008, 53(17): 4777-4807.

    [5]

    RUDIN L I, OSHER S, FATEMI E. Nonlinear total variation based noise removal algorithms[J]. Physica D: Nonlinear Phenomena, 1992, 60(1/4): 259-268.

    [6]

    GORDON R, BENDER R, HERMAN G T. Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and X-ray photography[J]. Journal of Theoretical Biology, 1970, 29(3): 471-481. DOI: 10.1016/0022-5193(70)90109-8.

    [7]

    LANGE K, CARSON R E. EM reconstruction algorithms for emission and transmission tomography[J]. Journal of Computer Assisted Tomography, 1984, 8(2): 306-316.

    [8]

    BREDIES, K, KUNISCH, K, POCK, T. Total genera-lized variation[J]. SIAM Journal on Imaging Sciences, 2010, 3(3): 492-526. DOI: 10.1137/090769521.

    [9]

    NIU S, GAO Y, BIAN Z, et al. Sparse-view X-ray CT reconstruction via total generalized variation regularization[J]. Physics in Medicine & Biology, 2014, 59(12): 2997-3017.

    [10]

    SUN T, SUN N, WANG J, et al. Iterative CBCT reconstruction using Hessian penalty[J]. Physics in Medicine and Biology, 2015, 60(5): 1965-1987. DOI: 10.1088/0031-9155/60/5/1965.

    [11]

    ZHANG H M, WANG L Y, YAN B, et al. Constrained total generalized p-variation minimization for few-view X-ray computed tomography image reconstruction[J]. Plos One, 2016, 11(2): e0149899.

    [12]

    XI Y R, QIAO Z R, WANG W J, et al. Study of CT image reconstruction algorithm based on high order total variation[J]. Optik, 2020, 204: 163814. DOI: 10.1016/j.ijleo.2019.163814.

    [13] 闫慧文, 乔志伟. 基于 ASD-POCS 框架的高阶 TpV 图像重建算法[J]. CT 理论与应用研究, 2021, 30(3): 279-289. DOI: 10.15953/j.1004-4140.2021.30.03.01.

    YAN H W, QIAO Z W. High order TpV image reconstruction algorithms based on ASD-POCS framework[J]. CT Theory and Applications, 2021, 30(3): 279-289. DOI:10.15953/j.1004-4140.2021.30.03.01. (in Chinese).

    [14]

    XI Y, ZHOU P, YU H, et al. Adaptive-weighted high order TV algorithm for sparse-view CT reconstruction[J]. Medical Physics, 2023, 50: 5568-5584. DOI: 10.1002/mp.16371.

    [15]

    HUANG J, MA J, LIU N, et al. Sparse angular CT reconstruction using non-local means based iterative-correction POCS[J]. Computers in Biology and Medicine, 2011, 41(4): 195-205. DOI: 10.1016/j.compbiomed.2011.01.009.

    [16]

    KIM H, CHEN J, WANG A, et al. Non-local total-variation (NLTV) minimization combined with reweighted L1-norm for compressed sensing CT reconstruction[J]. Physics in Medicine & Biology, 2016, 61(18): 6878.

    [17]

    KIM K, EL F G, LI Q. Low-dose CT reconstruction using spatially encoded nonlocal penalty[J]. Physics in Medicine & Biology, 2018, 63(3): 035045.

    [18]

    GILBOA G, OSHER S. Nonlocal operators with applications to image processing[J]. Multiscale Modeling & Simulation, 2009, 7(3): 1005-1028.

    [19]

    RANFTL R, BREDIES K, POCK T. Non-local total generalized variation for optical flow estimation[C]//ECCV, 2014, (6): 439-454.

    [20]

    TOMASI C, MANDUCHI R. Bilateral filtering for gray and color images[C]//ICCV, 1998: 839-846.

    [21]

    JIANG M, WANG G. Convergence of the simultaneous algebraic reconstruction technique (SART)[J]. IEEE Transactions on Image Processing, 2003, 12(8): 957-961. DOI: 10.1109/TIP.2003.815295.

    [22]

    GOLDSTEIN T, OSHER S. The split Bregman method for L1-regularized problems[J]. SIAM Journal on Imaging Sciences, 2009, 2(2): 323-343. DOI: 10.1137/080725891.

    [23]

    WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: From error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612. DOI: 10.1109/TIP.2003.819861.

    [24]

    WANG J, LI T, XING L. Iterative image reconstruction for CBCT using edge-preserving prior[J]. Medical Physics, 2009, 36(1): 252-260. DOI: 10.1118/1.3036112.

  • 期刊类型引用(1)

    1. 孙宇飞,汤若薇,丁贺宇,徐宁,钟朝辉,杨正汉,王振常,赵鹏飞. 超高分辨率骨质CT与多层螺旋CT显示中耳关键传声结构的对比研究. 中国耳鼻咽喉头颈外科. 2025(04): 225-228+233 . 百度学术

    其他类型引用(0)

图(7)  /  表(4)
计量
  • 文章访问数:  207
  • HTML全文浏览量:  84
  • PDF下载量:  59
  • 被引次数: 1
出版历程
  • 收稿日期:  2023-08-29
  • 修回日期:  2023-12-10
  • 录用日期:  2023-12-12
  • 网络出版日期:  2024-06-03
  • 刊出日期:  2025-01-04

目录

    /

    返回文章
    返回
    x 关闭 永久关闭