ISSN 1004-4140
CN 11-3017/P

肿瘤骨转移影像检查技术研究现状

王珮琦, 杨斌, 彭泽飞, 王菜琼, 武佳磊, 刘迎春, 王宇博

王珮琦, 杨斌, 彭泽飞, 等. 肿瘤骨转移影像检查技术研究现状[J]. CT理论与应用研究(中英文), 2025, 34(2): 327-332. DOI: 10.15953/j.ctta.2023.215.
引用本文: 王珮琦, 杨斌, 彭泽飞, 等. 肿瘤骨转移影像检查技术研究现状[J]. CT理论与应用研究(中英文), 2025, 34(2): 327-332. DOI: 10.15953/j.ctta.2023.215.
WANG P Q, YANG B, PENG Z F, et al. Imaging Bone Metastases: Research Progress[J]. CT Theory and Applications, 2025, 34(2): 327-332. DOI: 10.15953/j.ctta.2023.215. (in Chinese).
Citation: WANG P Q, YANG B, PENG Z F, et al. Imaging Bone Metastases: Research Progress[J]. CT Theory and Applications, 2025, 34(2): 327-332. DOI: 10.15953/j.ctta.2023.215. (in Chinese).

肿瘤骨转移影像检查技术研究现状

详细信息
    作者简介:

    王珮琦,男,医学放射影像学专业硕士研究生,主要从事肺癌相关影像研究,E-mail:panzhwpq@163.com

    通讯作者:

    杨斌✉,男,博士后,医学影像中心主任,主要从事肿瘤影像人工智能和精准诊断,E-mail:yangbinapple@163.com

  • 中图分类号: R 445;R 814

Imaging Bone Metastases: Research Progress

  • 摘要:

    骨是恶性肿瘤常见的转移部位,骨转移瘤的发生率高于原发性骨肿瘤。近年来,各种恶性肿瘤患者的5年生存率逐渐提高,骨转移及骨骼相关事件发生的概率也有所增大。及时、准确地诊断骨转移以及治疗反应评估对临床制定个性化治疗方案、改善患者生存质量至关重要。本文对肿瘤骨转移诊断的影像学检查技术进行综述,探讨影像学新技术对肿瘤骨转移诊断的可行性。

    Abstract:

    Bone is a common site for cancer metastasis, with a higher incidence than primary bone malignancies. As various cancer treatment regimens continue to improve, the five-year survival rate for cancer patients has risen steadily. However, this has also led to an increased likelihood of bone metastasis and skeletal-related events. Timely and accurate diagnosis of bone metastases, along with proper assessment of therapeutic response, is crucial for developing personalized treatment plans and improving patient survival. This paper reviews current imaging examinations for bone metastases, and explores the potential of new imaging techniques for diagnosing tumor-related bone metastases.

  • 肺癌是全世界最常见的恶性肿瘤之一,在我国肺癌发病率和死亡率均居于首位[1],严重危害我国国民的健康和生命,给家庭和社会带来巨大经济负担。提高肺癌生存率最有效的方法是二级预防,即早发现、早诊断和早治疗,筛查是早期发现肺癌和癌前病变的重要途径[2]。2011年,美国国家肺癌检测试验(National Lung Screening Trial,NLST)首次提出低剂量螺旋计算机断层扫描(low-dose computed tomography,LDCT)检测在高危人群中的应用可显著降低肺癌的死亡率[3],当LDCT上出现异常时可以进一步选择常规CT、高分辨率CT及靶扫描方式对病灶进行甄别。

    肺癌的早期常表现为肺部结节病灶,然而肺结节的成因有多种多样,同一对象的CT图像上常有多个肺结节,且表现不一,这对影像诊断医师的筛检和鉴别能力提出了较高的要求。人工智能(artificial intelligence,AI)辅助诊断系统的加入担负了大量枯燥重复的工作,大大提升了影像医师的阅片速度,与医师诊断相比,其具有不受医师的主观性、经验差异及疲劳等人为因素影响的优越性[4]

    鉴于此,本研究回顾性分析113例入组病例的筛检情况来比较AI软件和影像医师的阅片能力,旨在探讨AI辅助诊断系统在肺结节的检测及良恶性判断中的应用价值。

    本研究为回顾性研究,选择内蒙古自治区人民医院2022年3月至2023年3月行胸部CT检查,并跟踪随访行CT引导下穿刺活检术或外科手术明确肺结节病理结果的患者作为研究对象。共收集患者113例,其中:男性68例,女性45例。年龄38~77岁,中位约65.20岁。

    纳入标准:①在我院至少行 1次胸部CT扫描,并且CT检查前未行干预治疗措施;②符合《肺结节诊治中国专家共识(2018年版)》[5]中肺结节诊断标准且图像质量良好;③涉及结节良恶性判断部分的肺结节均有明确病理诊断。排除标准:①病灶直径>3 cm;②其他部位恶性肿瘤所致转移瘤;③患者患有严重的基础性疾病,无法进行病理诊断;④患者资料信息不完整或失访。

    (1)扫描设备:GE LightSpeed750 64排CT;GE LightSpeedVCT 64排CT;西门子Definition Flash 双64排CT;东芝 TSX-301A 320排CT。

    (2)扫描范围:扫描前由专人对每位受检者进行呼吸训练,所有受检者均取仰卧位、双臂上举、头先进、深吸气末屏气扫描,扫描范围由肺尖到后肋膈角(包括全部肺)。

    (3)扫描参数:管电压120 kV,自动管电流。层间距0.625 mm,层厚1.25 mm,采用标准算法及高分辨算法进行重建并且将扫描原始数据上传至工作站。肺窗参数设置为:肺窗窗宽1500~2000 HU、窗位 -600~-450 HU;纵隔窗宽250~350 HU、窗位30~50 HU。

    影像医师阅片。一名住院医师在ImageFileName.dcm工作站上参阅原始图像(1.25 mm层厚)及重建图像(5 mm层厚),阅片过程中常规参考多平面重建技术多角度分析图像,阅片结果由一名临床经验丰富的主治医师审核后发布,以二者报告一致视为有效,否则与另一名主治医师进行探讨后得出最终结论。

    AI软件阅片。应用AI辅助分析软件InferRead CTR12.2,由北京推想医疗科技股份有限公司提供。将原始图像导入系统之后,软件自动识别并标记结节病灶,提供结节位置、大小、性质等信息,同时模型根据这些信息计算恶性概率预测值,当恶性概率预测值>70% 时判断为恶性结节。

    真阳性结节判断标准。结合两名医师及AI软件图像分析结果,参考多平面重建、三维重建等图像,共同确定肺结节存在,以二者报告一致视为有效。

    采用SPSS 25.0软件分析数据,计数资料以(n(%))表示,比较采用卡方检验或Fisher精确概率法,计量资料以$ \left(\overline{x}\pm s\right) $表示。使用Kappa值评价AI、影像医师与病理结果的一致性,0.0~0.20极低的一致性、0.21~0.40一般的一致性、0.41~0.60 中等的一致性、0.61~0.80高度的一致性和0.81~1几乎完全一致。以P<0.01为差异有统计学意义。

    113名患者中,AI软件检出1337个结节,医师检出774个结节,经验证存在1079个真阳性结节。AI软件对于真阳性结节的检出率(98.98%)高于医师(71.27%),漏检率(1.02%)较医师(28.27%)低,误检率(23.91%)较医师(0.46%)高,以上差异均具有统计学意义(表1)。

    表  1  AI软件及医师对结节的总体检出情况
    Table  1.  AI software and radiologists’ overall detection of nodules
    组别   AI 医师 $\chi^2 $ P
    共检出(%) 1337(123.91) 774(71.73)
    真阳性结节(%) 1068(98.98) 769(71.27)
    假阴性结节(%) 11(1.02) 305(28.27) 398.766 <0.001
    假阳性结节(%) 258(23.91) 5(0.46) 128.199 <0.001
    下载: 导出CSV 
    | 显示表格

    AI软件对直径<5 mm及5~10 mm真阳性结节的检出率(98.69%,100.00%)均高于医师(60.59%,80.25%),差异具有统计学意义;对于直径>10 mm真阳性结节的检出率(98.08%)稍高于医师(94.87%),但差异不具有统计意义(表2)。

    表  2  AI软件及医师对不同直径真阳性结节的检出价值
    Table  2.  The value of AI software and radiologists in detecting true positive nodules of different diameters
    组别 真阳性 AI 医师 $\chi^2 $ P
    <5(%) 609 601(98.69) 369(60.59) 272.521 <0.001
    5~10(%) 314 314(100.00) 252(80.25) 68.792 <0.001
    >10(%) 156 153(98.08) 148(94.87) 2.356 0.125
    下载: 导出CSV 
    | 显示表格

    AI软件对磨玻璃、实性、混合磨玻璃及钙化结节的检出率(98.47%,98.79%,100.00%,100.00%)均高于医师(75.52%,68.02%,72.73%,84.66%),差异具有统计学意义(表3)。

    表  3  AI软件及医师对不同性质真阳性结节的检出价值
    Table  3.  The value of AI software and radiologists in detecting true positive nodules of different nature
    组别 真阳性 AI 医师 $\chi^2 $ P
    磨玻璃(%) 131 129(98.47) 95(72.52) 35.582 <0.001
    实性(%)  741 732(98.79) 504(68.02) 253.375 <0.001
    混合磨玻璃(%)  44 44(100.00) 32(72.73) 13.895 <0.001
    钙化(%)  163 163(100.00) 138(84.66) 27.076 <0.001
    下载: 导出CSV 
    | 显示表格

    113名患者中共有115个结节经病理检查确诊,其中98例在我院行干预手术或CT引导下穿刺活检取得病理,17例经随访外院诊疗情况确定。

    115个结节的大小和性质见表4,AI软件及医师对结节良恶性的判断价值(表5表6),两种阅片方法对结节良恶性判断的效能比较(表7)。

    表  4  115个结节的大小和性质
    Table  4.  Size and nature of the 115 nodules
    组别磨玻璃结节个数实性结节个数混合磨玻璃结节个数钙化结节个数总和
    <5 mm493016
    5~10 mm6246137
    >10 mm64112362
    总和1674214115
    下载: 导出CSV 
    | 显示表格
    表  5  AI软件对结节良恶性的判断价值
    Table  5.  The value of AI software in judging benign and malignant nodules
    AI 病理 总计
    恶性 良性
    恶性 74 12 86
    良性 5 24 29
    总计 79 36 115
    下载: 导出CSV 
    | 显示表格
    表  6  医师对结节良恶性的判断价值
    Table  6.  The value of radiologists in judging benign and malignant nodules
    AI 病理 总计
    恶性 良性
    恶性 77 7 84
    良性 2 29 31
    总计 79 36 115
    下载: 导出CSV 
    | 显示表格
    表  7  两种方法对结节良恶性判断的效能比较
    Table  7.  Comparison of efficacy of the two methods in judging benign and malignant nodules
    组别灵敏度/%特异度/%准确度/%
    AI93.6766.6785.22
    医师97.4780.5692.17
    P>0.01>0.01<0.01
    下载: 导出CSV 
    | 显示表格

    经SPSS 25.0计算,AI的Kappa一致性是0.637,高度一致;医师的Kappa一致性是0.811,几乎完全一致(P<0.01)。

    本研究对比了AI及影像医师从肺结节的检出到良恶性判断的诊断全过程,真实的反映了AI在实际工作中对于高效诊断的辅助作用,同时该研究在市级三甲医院进行,得到的结果可以大致反映当地的诊疗水平及对新技术的应用程度。

    研究结果显示AI软件对真阳性结节的检出率明显高于影像医师,但是误检率较高,与之前研究报道结果基本一致[6-9]。结合误检图像分析,我们考虑是其对于诊断为结节的阈值过低,常将血管、局部增厚的胸膜、肺门淋巴结、肺内索条等饱满结构误认为是肺结节;影像医师的漏检率相对较高,是由于其对于微、小结节的辨识度低,在肺组织背景较杂乱时,难以将肺结节从中检出(图1(a)~图1(c))。医师对于混合磨玻璃结节及钙化结节的检出能力与AI相差不大,但是对于磨玻璃结节和实性结节的检出能力较差,常将边缘欠清晰的磨玻璃结节及较小的实性结节漏检,因此我们应该积极参考AI软件对于不同性质结节的检出结果。

    图  1  部分漏诊及误诊病例影像资料
    注:(a)右肺下叶血管旁结节,医师检出,AI漏检;(b)右肺下叶胸膜下实性微结节,AI检出,医师漏检;(c) 左侧局部增厚的胸膜,医师检出,AI误检为结节。(d) 右肺上叶实性结节,伴有分叶征,AI及医师均诊断为恶性,病理结果提示错构瘤;(e) 右肺下叶实性结节,形态略欠规整,周围伴有晕征,AI诊断为恶性,医师结合图像及患者痰培养、血象、查体等诊断为良性,病理结果提示肉芽肿;(f)右肺中叶实性结节,有浅分叶和毛刺征象,周围伴有点条状渗出、炎性改变,AI诊断为恶性,医师诊断为良性,病理结果提示浸润性腺癌。
    Figure  1.  Imaging data of some missed and misdiagnosed cases

    另外,AI软件对于不同直径的肺结节均有很高的检出价值,尤其是在直径小于5 mm及5~10 mm的结节中检出率显著高于医师,但李欣菱等[10]研究认为,AI对较小结节(特别是<5 mm的结节)诊断的临床意义有待商榷,若完全按照AI的结果进行临床干预会增加医疗负担及造成过度治疗。对于直径大于10 mm的肺结节,医师和AI的检出率相近,二者差异不具有统计学意义,刘亚斌等[11]研究得出专业医师 CT扫描对不同直径真阳性结节检出率均低于基于AI技术CT扫描,但专业医师CT扫描对直径>10 mm真阳性结节检出率可达95.12%。提示虽然医师可能会将部分微、小结节漏检,但其对于恶性程度可能较高的直径大于10 mm结节的检出率也高,伴随着较低的误检率,医师对肺结节的检出更灵活、更有意义。

    同时本研究就AI软件及医师对于肺结节良恶性的判断效能做出对比,结果显示医师对肺结节良恶性判断的灵敏度、特异度、准确度均较AI高,与既往研究结果基本一致[12-15],但灵敏度和特异度的差异不具有统计学意义,可能与样本选择偏差有关。AI软件的判断结果与病理高度一致,医师的判断结果与病理几乎完全一致。

    仔细分析误诊病例(图1(d)~图1(f))后我们考虑AI是根据既定的算法来判断结节的良恶性,无法结合患者的临床信息如肿瘤标记物,特殊病原体培养结果,年龄、性别、工作经历、是否吸烟等个人史,因此得出的结论存在一定的片面性,造成误诊率的上升。影像医师判断的准确性与参加工作时间、学习进修经历和学历等有直接关系,再加上肺结节本身的多变性和复杂性,日常工作中误诊是无法彻底避免的[16]。我们应尽可能提高AI和影像医师甄别同病异影、同影异病的能力,将误诊降到最低,提出对患者更加有利的诊疗方案。

    综上所述,AI软件辅助诊断对于肺结节确有较高的检出率,能大大降低漏检率,但误检率也随之上升;在肺结节良恶性鉴别中可为临床诊断提供辅助参考,但其准确性无法取代影像医师。计算机的输出结果是定量分析影像资料获得的,而医生面对的病例却是立体的、变化的。因此在将AI软件作为人工检测辅助手段、代替枯燥工作的同时,影像医师需要不断提升自己的辩证能力,充分结合患者临床信息来提高诊断的特异性,使AI软件更好地为诊断服务;且影像医师最能知道如何将来自互补成像技术的信息与临床数据相结合,这对软件的设计开发及数据库扩展至关重要。

    本研究还存在局限性,这项回顾性研究的病理结果已经在临床诊断和治疗中得到确认,因此样本选择方面会存在偏差,这些偏差将在后续的前瞻性试验中得到校正;由于试验样本量较小、设备无法统一及对部分病例失访等问题。我们得到的结论还亟待在更多地区、更多医院的大样本中进一步验证。

  • [1]

    CECCHINI M G, WETTERWALD A, PLUIJM G V D, et al. Molecular and biological mechanisms of bone metastasis[J]. European Association of Urology Update Series, 2005, (3): 214-226. DOI: 10.1016/j.euus.2005.09.006.

    [2]

    BUSSARD K M, GAY C V, MASTRO A M. The bone microenvironment in metastasis; What is special about bone?[J]. Cancer Metastasis Reviews, 2008, 27(1). DOI: 10.1007/s10555-007-9109-4.

    [3]

    COLEMAN R, HADJI P, BODY J J, et al. Bone health in cancer: ESMO clinical practice guidelines[J]. Ann Oncol, 2020, 31(12). DOI: 10.1016/j.annonc.2020.07.019.

    [4]

    O’SULLIVAN, CARTY F L, CRONIN C G. Imaging of bone metastasis: An update[J]. World Journal of Radiology, 2015, 7(8). DOI: 10.4329/wjr.v7.i8.202.

    [5]

    YU H H, TSAI Y Y, HOFFE S E. Overview of diagnosis and management of metastatic disease to bone[J]. Cancer Control, 2012, 19(2). DOI: 10.1177/107327481201900202.

    [6]

    CHOI J, RAGHAVAN M. Diagnostic imaging and image-guided therapy of skeletal metastases[J]. Cancer Control, 2012, 19(2). DOI: 10.1177/107327481201900204.

    [7]

    MILLER T T. Bone tumors and tumorlike conditions: Analysis with conventional radiography[J]. Radiology, 2008, 246(3). DOI: 10.1148/radiol.2463061038.

    [8]

    SUN W K, LIU S L, GUO J, et al. A CT-based radiomics nomogram for distinguishing between benign and malignant bone tumours[J]. Cancer Imaging, 2021, 21(1). DOI: 10.1186/s40644-021-00387-6.

    [9]

    WANG Q, SUN B, MENG X, et al. Density of bone metastatic lesions increases after radiotherapy in patients with breast cancer[J]. Journal of Radiation Research, 2019, 60(3): 394-400. DOI: 10.1093/jrr/rry098.

    [10]

    ISHIWATA Y, HIEDA Y, KAKI S, et al. Improved diagnostic accuracy of bone metastasis detection by water-hap associated to non-contrast CT[J]. Diagnostics (Basel), 2020, 10(10): 853-864. DOI: 10.3390/diagnostics10100853.

    [11]

    BÄUERLE T, SEMMLER W. Imaging response to systemic therapy for bone metastases[J]. European Society of Radiology, 2009, 19(10): 2495-2507. DOI: 10.1007/s00330-009-1443-1.

    [12]

    YANG H L, LIU T, WANG X M, et al. Diagnosis of bone metastases: A meta-analysis comparing 18F-FDG PET, CT, MRI and bone scintigraphy[J]. European Society of Radiology, 2011, 21(12): 2604-2617. DOI: 10.1007/s00330-011-2221-4.

    [13]

    SADIK M, SUURKULA M, HöGLUND P, et al. Quality of planar whole-body bone scan interpretations: A nationwide survey[J]. European Journal of Nuclear Medicine and Molecular Imaging, 2008, 35(8): 1464-1472. DOI: 10.1007/s00259-008-0721-5.

    [14]

    IMBRIACO M, LASON S M, YEUNG H W, et al. A new parameter for measuring metastatic bone involvement by prostate cancer: The bone scan index[J]. Clinical Cancer Research, 1998, 4(7): 1765-1772.

    [15]

    WUESTEMANN J, HUPFELD S, KUPITZ D, et al. Analysis of bone scans in various tumor entities using a deep-learning-based artificial neural network algorithm-evaluation of diagnostic performance[J]. Cancers (Basel), 2020, 12(9). DOI: 10.3390/cancers12092654.

    [16]

    ISODA T, BABA S, MARUOKA Y, et al. Influence of the different primary cancers and different types of bone metastasis on the lesion-based artificial neural network value calculated by a computer-aided diagnostic system, bonenavi, on bone scintigraphy images[J]. Asia Oceania Journal of Nuclear Medicine & Biology, 2017, 5(1). DOI: 10.22038/aojnmb.2016.7606.

    [17]

    SHIBAHARA I, SAITO R, OSADA Y, et al. Incidence of initial spinal metastasis in glioblastoma patients and the importance of spinal screening using MRI[J]. Journal of Neuro-Oncology, 2019, 141(2). DOI: 10.1007/s11060-018-03036-4.

    [18]

    PARK S, PARK J G, JUN S, et al. Differentiation of bone metastases from prostate cancer and benign red marrow depositions of the pelvic bone with multiparametric MRI[J]. Magnetic Resonance Imaging, 2020, 73. DOI: 10.1016/j.mri.2020.08.019.

    [19]

    KUMAR V, GU Y, BASU S, et al. Radiomics: The process and the challenges[J]. Magnetic Resonance Imaging, 2012, 30(9). DOI: 10.1016/j.mri.2012.06.010.

    [20]

    GUAN Y, PECK K K, JUN S, et al. T1-weighted dynamic contrast-enhanced MRI to differentiate nonneoplastic and malignant vertebral body lesions in the spine[J]. Radiology, 2020, 297(2). DOI: 10.1148/radiol.2020190553.

    [21]

    SUN G, ZHANG Y X, LIU F, et al. Whole-body magnetic resonance imaging is superior to skeletal scintigraphy for the detection of bone metastatic tumors: A meta-analysis[J]. European Review for Medicaland Pharmacological Sciences, 2020, 24(13): 7240-7252. DOI: 10.26355/eurrev_202007_21879.

    [22]

    KOSMIN M, PADHANI A R, GOGBASHIAN A, et al. Comparison of whole-body MRI, CT, and bone scintigraphy for response evaluation of cancer therapeutics in metastatic breast cancer to bone[J]. Radiology, 2020, 297(3): 622-629. DOI: 10.1148/RADIOL.2020192683.

    [23]

    OTTOSSON F, BACO E, LAURITZEN, P M, et al. The prevalence and locations of bone metastases using whole-body MRI in treatment-naïve intermediate- and high-risk prostate cancer[J]. European Radiology, 2021, 31(5): 2747-2753. DOI: 10.1007/s00330-020-07363-x.

    [24]

    VARGAS H A, SCHOR-BARDACH R, LONG N, et al. Prostate cancer bone metastases on staging prostate MRI: Prevalence and clinical features associated with their diagnosis[J]. Abdominal Radiology (NY), 2017, 42(1): 271-277. DOI: 10.1007/s00261-016-0851-3.

    [25]

    LAMBIN P, RIOS-VELAZQUEZ E, LEIJENAAR R, et al. Radiomics: Extracting more information from medical images ssing advanced feature analysis[J]. European Journal of Cancer, 2012, 48(4): 441-446. DOI: 10.1016/j.ejca.2011.11.036.

    [26]

    FILOGRANA L, LENKOWICZ J, CELLINI F, et al. Identification of the most significant magnetic resonance imaging (MRI) radiomic features in oncological patients with vertebral bone marrow metastatic disease: A feasibility study[J]. La Radiologia Medica, 2019, 124(1). DOI: 10.1007/s11547-018-0935-y.

    [27]

    LANG N, ZHANG Y, ZHANG E L, et al. Differentiation of spinal metastases originated from lung and other cancers using radiomics and deep learning based on DCE-MRI[J]. Magnetic Resonance Imaging, 2019, 64: 4-12. DOI: 10.1016/j.mri.2019.02.013.

    [28]

    XIONG X, WANG J, HU S, et al. Differentiating between multiple myeloma and metastasis subtypes of lumbar vertebra lesions using machine learning-based radiomics[J]. Frontiers in Oncology, 2021: 601699. DOI: 10.3389/fonc.2021.601699.

    [29]

    CHEN K, CAO J, ZHANG X, et al. Differentiation between spinal multiple myeloma and metastases originated from lung using multi-view attention-guided network[J]. Frontiers in Oncology, 2022, 12: 981769. DOI: 10.3389/fonc.2022.981769.

    [30]

    YIN P, MAO N, ZHANG C, et al. A triple-classification radiomics model for the differentiation of primary chordoma, giant cell tumor, and metastatic tumor of sacrum based on T2-weighted and contrast-enhanced T1-weighted MRI[J]. Journal of Magnetic Resonance Imaging, 2019, 49(3): 1-8. DOI: 10.1002/jmri.26238.

    [31]

    WANG Y R, YU B, ZHONG F, et al. MRI-based texture analysis of the primary tumor for pre-treatment prediction of bone metastases in prostate Cancer[J]. Magnetic Resonance Imaging, 2019, (3): 7-18. DOI: 10.1016/j.mri.2019.03.007.

    [32]

    JIANG X, REN M, SHUANG X, et al. Multiparametric MRI-based radiomics approaches for preoperative prediction of EGFR mutation status in spinal bone metastases in patients with lung adenocarcinoma[J]. Journal of Magnetic Resonance Imaging, 2021, 54(2): 497-507. DOI: 10.1002/jmri.27579.

    [33]

    REN M L, YANG H Z, LAI Q Y, et al. MRI-based radiomics analysis for predicting the EGFR mutation based on thoracic spinal metastases in lung adenocarcinoma patients[J]. Medical Physics, 2021, 48(9): 1-10. DOI: 10.1002/mp.15137.

    [34]

    CAO R, DONG Y, WANG X, et al. MRI-based radiomics nomogram as a potential biomarker to predict the EGFR mutations in exon 19 and 21 based on thoracic spinal metastases in lung adenocarcinoma[J]. Academic Radiology, 2022, 29(3): e9-e17. DOI: 10.1016/j.acra.2021.06.004.

    [35]

    HAMAOKA T, MADEWELL J E, PODOLOFF D A, et al. Bone imaging in metastatic breast cancer[J]. Journal Clinical Oncology, 2004, 22(14): 2942-2953. DOI: 10.1200/JCO.2004.08.181.

    [36]

    EVEN-SAPIR E, METSER U I, GENNADY, et al. The detection of bone metastases in patients with high-risk prostate cancer: 99mTc-MDP planar bone scintigraphy, single- and multi-field-of-view SPECT, 18F-fluoride PET, and 18F-fluoride PET/CT[J]. Journal of Nuclear Medicine, 2006, 47(2): 287-297.

    [37]

    CUCCURULLO V, CASCINI G L, TAMBURRINI O, et al. Bone metastases radiopharmaceuticals: An overview[J]. Current Radiopharmaceuticals, 2013, 6(1): 41-47. DOI: 10.2174/1874471011306010007.

    [38]

    BASTAWROUS S, BHARGAVA P, BEHNIA F, et al. Newer PET application with an old tracer: Role of 18F-Naf skeletal PET/CT in oncologic practice[J]. Radiographics, 2014, 34(5): 1295-1316. DOI: 10.1148/rg.345130061.

    [39]

    WOUTER A M, BROOS, FRISO M, et al. Accuracy of 18F-Naf PET/CT in bone metastasis detection and its effect on patient management in patients with breast carcinoma[J]. Nuclear Medicine Communication, 2018, 39(4): 325-333. DOI: 10.1097/MNM.0000000000000807.

    [40]

    LEE J W, PARK Y J, JEON Y S, et al. Clinical value of dual-phase F-18 sodium fluoride PET/CT for diagnosing bone metastasis in cancer patients with solitary bone lesion[J]. Quantitative Imaging in Medicine and Surg, 2020, 10(11): 2098-2111. DOI: 10.21037/qims-20-607.

    [41]

    HEIDENREICH A, BASTIAN P J, BELLMUNT J, et al. EAU guidelines on prostate cancer. Part 1: Screening, diagnosis, and local treatment with curative intent-update 2013[J]. European Urology, 2014, 65(1): 124-137. DOI: 10.1016/j.eururo.2013.09.046.

    [42]

    AFSHAR-OROMIEH A, HOLLAND-LETZ T, GIESEL F L, et al. Diagnostic performance of 68Ga-PSMA-11 (HBED-CC) PET/CT in patients with recurrent prostate cancer: Evaluation in 1007 patients[J]. European Journal of Nuclear Medicine and Molecular Imaging, 2017, 44(8): 1258-1268. DOI: 10.1007/s00259-017-3711-7.

    [43]

    JANSSEN J C, MEISSNER S, WOYTHAL N, et al. Comparison of hybrid 68Ga-PSMA-PET/CT and 99mTc-DPD-SPECT/CT for the detection of bone metastases in prostate cancer patients: Additional value of morphologic information from low dose CT[J]. European Radiology, 2018, 28(2): 610-619. DOI: 10.1007/s00330-017-4994-6.

    [44]

    WU J, WANG Y, LIAO T, et al. Comparison of the relative diagnostic performance of [68G9]Ga-DOTA-FAPI-04 and 18F-FDG PET/CT for the detection of bone metastasis in patients with different cancers[J]. Frontiers in Oncology, 2021, 11(0): 737827. DOI: 10.3389/fonc.2021.737827.

    [45]

    CATALANO O A, NICOLAI E, ROSEN B R, et al. Comparison of CE-FDG-PET/CT with CE-FDG-PET/MR in the evaluation of osseous metastases in breast cancer patients[J]. British Journal of Cancer, 2015, 112(9): 1452-1460. DOI: 10.1038/bjc.2015.112.

    [46]

    QIAO Z Y, WANG S D, WANG H Y, et al. Diagnostic capability of 18F-PSMA PET-MRI and pelvic MRI plus bone scan in treatment-naive prostate cancer: A single-center paired validating confirmatory study[J]. International Journal of Surgery, 2024, 110(1): 87-94. DOI: 10.1097/JS9.0000000000000787.

    [47]

    ÇELEBI F. What is the diagnostic performance of 18F-FDG-PET/MRI in the detection of bone metastasis in patients with breast cancer?[J]. European Journal of Breast Health, 2019, 15(4): 213-216. DOI: 10.5152/ejbh.2019.4885.

  • 期刊类型引用(4)

    1. 张彩云,韩志海. 2024年版肺结节诊治中国专家共识解读. 河北医科大学学报. 2025(04): 373-378 . 百度学术
    2. 王皓,白卓杰. 基于CT的人工智能技术在肺结节诊断中的应用进展. 中国临床研究. 2025(05): 667-671+676 . 百度学术
    3. 刘洋,孙旭,王涟. 国内医疗健康领域人工智能研究热点及趋势分析. 中国医药导报. 2024(25): 191-196 . 百度学术
    4. 康文文,韩贺东,吕镗烽,宋勇. 精准医疗时代下肺癌筛查的难点与对策. 中华结核和呼吸杂志. 2024(12): 1211-1216 . 百度学术

    其他类型引用(1)

计量
  • 文章访问数:  162
  • HTML全文浏览量:  174
  • PDF下载量:  38
  • 被引次数: 5
出版历程
  • 收稿日期:  2023-12-04
  • 修回日期:  2024-04-14
  • 录用日期:  2024-04-27
  • 网络出版日期:  2024-05-20
  • 刊出日期:  2025-03-04

目录

/

返回文章
返回
x 关闭 永久关闭