Imaging Bone Metastases: Research Progress
-
摘要:
骨是恶性肿瘤常见的转移部位,骨转移瘤的发生率高于原发性骨肿瘤。近年来,各种恶性肿瘤患者的5年生存率逐渐提高,骨转移及骨骼相关事件发生的概率也有所增大。及时、准确地诊断骨转移以及治疗反应评估对临床制定个性化治疗方案、改善患者生存质量至关重要。本文对肿瘤骨转移诊断的影像学检查技术进行综述,探讨影像学新技术对肿瘤骨转移诊断的可行性。
Abstract:Bone is a common site for cancer metastasis, with a higher incidence than primary bone malignancies. As various cancer treatment regimens continue to improve, the five-year survival rate for cancer patients has risen steadily. However, this has also led to an increased likelihood of bone metastasis and skeletal-related events. Timely and accurate diagnosis of bone metastases, along with proper assessment of therapeutic response, is crucial for developing personalized treatment plans and improving patient survival. This paper reviews current imaging examinations for bone metastases, and explores the potential of new imaging techniques for diagnosing tumor-related bone metastases.
-
Keywords:
- CT /
- MRI /
- PET-CT /
- imagomics /
- bone metastases
-
骨是实体肿瘤的第3常见转移部位,约70%的晚期前列腺癌和乳腺癌患者存在骨转移[1]。大多数肿瘤主要转移到富含红骨髓的中轴骨,尤其是脊柱、颅骨、骨盆、肋骨以及近端肱骨、股骨[2]。骨转移通常导致骨骼相关事件(skeleta related events,SREs),包括病理性骨折、需要放射治疗来缓解的骨骼疼痛或减少骨骼内的结构损伤、对骨骼进行手术以预防或修复骨折、脊髓压迫和高钙血症。通常,SREs会降低总体生存率,并与行动能力和社会功能丧失、生活质量下降和医疗成本大幅增加相关[3]。及时和准确地诊断转移性骨肿瘤对相关患者具有重大临床意义。
目前,骨转移成像方法包括普通X射线、计算机断层扫描(computed tomography,CT)、磁共振成像(magnetic resonance imaging,MRI)和放射性核素骨显像[4]。本文将介绍上述各种影像学方法在实体肿瘤骨转移诊断中的应用及其相关进展。
1. X线和CT
基于骨中溶解或硬化的优势,骨转移的可分为溶骨型、成骨型及混合型,当破骨细胞介导的骨吸收占优时,会发生局灶性骨质破坏,导致溶解性损伤;在以成骨细胞活性增加占优时,转移骨表现为致密的骨硬化病变;当这两种过程在骨转移过程中同时存在时,导致“混合”病变,其中可见溶解成分和硬化成分[5]。由于X线平片图像重叠结构较多,检测骨转移瘤的敏感性(sensitivity,SN)较低,当骨质破坏超过50% 时,才会出现阳性结果[6]。但是X线检查经济、简单,在四肢骨可以更整体地看到病灶的形态及范围,在肿瘤骨转移的诊断及后期随诊中仍起着重要作用。
相较于X线,CT的分辨率高,能更好地显示较小的病灶以及病灶周围的解剖结构,但是对于骨髓浸润的敏感性较低[7]。Sun等[8]提出了一种基于CT能够区分良性和恶性骨肿瘤的诺模图(Nomograghy),通过结合放射组学特征和临床模型(由人口统计学和CT特征组成)获得的诺模图具有比临床模型更高的准确性,但与放射组学相比没有统计学差异(验证集线下面积(area under curve,AUC)=0.823)。Wang等[9]回顾性分析了44名乳腺癌患者的脊柱和骨盆转移,通过比较放疗前、放疗后1~3月、放疗后4~6月和放疗后7~9月的骨CT值,采用配对t检验和独立t检验对骨密度差异进行统计分析,发现放疗后转移灶的骨密度增高,认为CT值可以作为乳腺癌骨转移的定量评价指标。Ishiwata等[10]回顾性分析了83名恶性肿瘤患者的双能量计算机断层扫描(duel energy computed tomography,DECT)图像,发现DECT上的水羟基磷灰石(水HAP)图像对于骨转移的敏感性为100.0%、特异性(specificity,SP)为100.0%,敏感性显著高于常规CT图像(SN=70%),认为DECT上的水HAP成像能显著提高骨转移的诊断准确性。
我们认为X线检查与CT相较于其他影像学检查有经济、便捷的特点,并且现在的研究将影像组学与CT成像相结合或者通过CT新技术获得了较常规CT更高的准确性,未来X线与CT仍将是肿瘤骨转移的首选排查手段。
2. WBS及SPECT
目前,临床通常使用99mTc标记的双磷酸盐(99mTc-MDP)进行全身骨显像(whole-body bone scan,WBS)来对各种肿瘤实体骨转移进行分期和随访,由于骨转移病灶中的成骨活性和局部血流量增加,99mTc-MDP会通过化学吸附的方式在病灶区域浓聚,可以较为敏感的找出病灶[11],Yang等[12]的报道称WBS的灵敏度约为86.0%,特异性约为71.4%,而辅助单光子发射计算机断层扫描(single-photon emission computed tomography,SPECT)的特异性可达到92.8%。
但是由于骨扫描的评估高度依赖观察者的主观判断[13],所以Imbriaco等[14]为了量化评估前列腺患者骨转移骨扫描中转移性病灶的百分比,提出了骨扫描指数(bone scan index,BSI)。之后BSI被用于乳腺癌及肺癌骨转移的评估,但缺乏对其准确性的评估。Wuestemann等[15]使用人工神经网络(artificial neural network,ANN)基于深度学习技术自动估计BSI,除前列腺癌(SN=87%,SP=99%)、结直肠癌(SN=100%,SP=90%)达到了较高的敏感性和特异性;乳腺癌(SN=83%,SP=87%)、肺癌(SN=63%,SP=70%)和肾细胞癌(SN=75%,SP=84%)的敏感性和特异性较低。Isoda等[16]同样回顾性分析了50名不同肿瘤的患者骨扫描图像,前列腺癌、乳腺癌和肺癌患者的报告SN分别为86%、82% 和88%。研究表明使用ANN技术来评估BSI可以得到更高的敏感性和特异性,但是值得注意的是对于乳腺癌、肺癌等一些肿瘤骨转移的患者其敏感性仍偏低,分析认为造成这一差异的主要原因是由于前列腺癌以及结直肠癌的骨转移以成骨为主,而乳腺癌、肺癌等肿瘤的骨转移以溶骨性转移为主[15]。
我们认为尽管现在一些新的检查技术可以获得比平面骨扫描和SPECT更高的敏感性,但由于较低的成本、更快的采集速度和更高的可用性使平面骨扫描和SPECT在骨转移患者全身骨骼检查中仍占据重要位置。并且,如何引入量化标准以及结合计算机深度学习进行图像分析提高诊断的准确性是值得研究的方向。
3. MRI
MRI对肿瘤早期转移具有较高的敏感性(SN=91%)和特异性(SP=95%)[17]。它的多平面和多序列成像特征准确地显示了骨转移的位置、范围和对周围组织的侵袭,它是检测骨髓浸润的首选工具[6-7]。成骨型转移病变者病灶内主要为矿物质成分,故脂肪抑制T1WI以及脂肪抑制T2WI为低信号;溶骨型转移病变者则富含水分,故脂肪抑制T1WI为低信号,脂肪抑制T2WI为高信号;混合型病变者为混杂性信号。
同时,MRI也是病理性骨折导致脊髓受压疑似病例的首选影像学检查技术,受损的脊髓水肿将显示为局灶性T2WI高信号和短时间反转恢复序列(short TI inversion recovery,STIR)高信号。
3.1 DWI及DCE-MRI
因细胞死亡后肿瘤细胞体积早期减少,细胞外空间相应增加,导致在扩散加权成像(diffusion weighted imaging,DWI)序列上表现为转移沉积物的表观扩散系数(apparent diffusion coeffecient,ADC)值的增加,故DWI序列可以通过非定量的观察肿瘤负荷变化来评估治疗效果[11]。Park等[18]通过对回顾性分析36名前列腺患者的T1WI、DWI和磁共振快速动态增强(dynamic contrast enhanced,DCE)图像,使用U检验比较两组的损伤肌肉比(LMR)、ADC、体积转移常数(Ktrans)、回流率(Kep)和血管外细胞外基质体积分数(Ve)值,分析受试者工作特征(receiver operating characteristic,ROC)曲线。对于ROC曲线,比较曲线下面积(AUC),发现骨转移和良性骨髓沉积的LMR无明显差异,Ktrans、Kep、Ve和ADC值之间有明显差异,认为Ktrans、Kep、Ve和ADC值可作为鉴别前列腺癌骨转移和盆腔良性红骨髓沉积的成像工具。
DCE-MRI能够进行小血管的渗透特性及灌注成像,可用于评估肿瘤的侵袭性[19]。Guan等[20]对100名患者DCE灌注MRI成像得出的血浆体积分数(Vp)用Cohen k系数进行评估,恶性病变有更高的AUC,认为Vp能够用于脊柱恶性肿瘤及非肿瘤性病变的鉴别。我们认为磁共振技术的发展使我们可以获取更多参数用于骨转移的诊断,但目前的研究仍存在病例数较少的问题,需要更多的数据作为支撑。
3.2 WB-MRI
近些年来由于磁共振技术的发展,使得我们可以在一次磁共振扫描中进行全身扫描,而无需改变身体的方向,所以全身磁共振成像(whole-body magnetic resonance imaging,WB-MRI)也开始应用于恶性肿瘤的骨转移的诊断。Sun等[21]的研究表明WB-MRI与BS相比特异性大致相同(99% vs. 95%),但灵敏度明显更高(94% vs. 80%)。Kosmin等[22]对101例乳腺癌患者的WB-MRI和CT对比研究中发现约19% 在CT图像上无明显差异患者的WB-MRI图像表明病变出现了进展。
我们认为,虽然WB-MRI对于恶性肿瘤的骨转移有更高的敏感性,但由于其检查时间长、成本高,并不适用于早期恶性肿瘤骨转移的筛查。Ottosson等[23]对161名早期前列腺癌的患者的WB-MRI的研究发现约7% 的患者出现了骨转移。在更早的报道中Vargas等[24]对约
3765 名新诊断的前列腺癌患者的研究中发现仅1.5% 出现了骨转移。故对于早期恶性肿瘤是否应该使用WB-MRI进行骨转移的筛查亟待商榷。3.3 MRI与人工智能
影像组学是人工智能(artificial intelligence,AI)的一个新兴分支,将包含肿瘤病理生理学相关信息的数字医学图像转换为可测量和可量化的数据,这些数据与临床相结合,可以提高影像诊断准确性[25]。
Filograna等[26]对8名肿瘤患者的58个椎体的脂肪抑制T1WI及脂肪抑制T2WI图像进行分析,内部交叉验证显示脂肪抑制T1WI的AUC为0.81,脂肪抑制T2WI的AUC为0.91,认为MRI与放射组学结合分析能够更好地区分转移性和非转移性椎体。Lang等[27]回顾性分析了30例肺癌骨转移和31例非肺癌骨转移患者的DCE序列,使用传统卷积神经网络(convolutional neural networks,CNN)分类的平均准确率为(0.71 ± 0.043)%,而卷积长短期记忆网络(convolution long and short term memory neural network,CLSTM)的准确率为(0.81 ± 0.034)%,认为DCE-MRI机器学习分析方法具有预测脊柱肺癌转移的潜力,可用于指导后续检查以确定诊断。此外,Xiong等[28]通过几种机器学习模型评估了脂肪抑制T1WI和脂肪抑制T2WI序列在多发性骨髓瘤骨病变和转移之间的辨别能力,认为来自脂肪抑制T2WI图像的ANN分类器在区分骨髓瘤和转移瘤以及分类转移瘤亚型方面表现出最佳性能。Chen等[29]认为基于对比增强T1WI序列构建的多视角注意力引导网络在多发性骨髓瘤与脊柱转移瘤的鉴别中相较于人工有更高的AUC。Yin等[30]开发并验证了基于多参数前列腺MRI的放射组学模型,以区分原发性骶骨脊索瘤、巨细胞骶骨肿瘤和转移性骶骨肿瘤,从组合的脂肪抑制T2WI和增强T1WI(CE-T1WI)图像中提取的放射学特征超过了单独从脂肪抑制T2WI或脂肪抑制T1WI图像提取的特征,但脂肪抑制T2WI提取的放射性特征优于脂肪抑制T1WI提取的放射学特征。Wang等[31]认为多参数前列腺MRI使用放射组学特征,结合游离前列腺特异性抗原(prostate specific antigen,PSA)水平和Gleason评分,来自T2WI和动态增强T1WI(DCE-T1WI)图像的综合MRI特征显示出比来自单一序列和Gleason评分的特征更高的预后表现,放射组学MRI模型结合临床病理特征(游离PSA水平、年龄和Gleason评分)产生了最高的AUC(AUC=0.92),进一步提高了预测性能。此外,Jiang等[32]、Ren等[33]、Cao等[34]的研究证明基于多参数 MRI的放射组学在术前预测人表皮生长因子受体(EGFR)突变方面的潜力,认为基于放射组学开发的治疗前列线图可以潜在地指导肺腺癌患者的治疗。
我们认为放射组学不仅可以预测骨转移的存在,并且将没有病变的骨骼区域与含有转移的骨骼区域区分开来,甚至能够确定原发肿瘤,将转移与其他骨病变(良性和恶性)区分开来,在指导癌症患者的治疗选择方面有巨大的前景。
4. PET-CT与PET-MRI
近年来,正电子发射断层扫描-计算机断层扫描(PET-CT)已成为多种恶性肿瘤的诊断、分期、复发和治疗评估中一种重要的分子成像工具,因为PET提供代谢信息,而CT成像技术提供解剖信息[35],SN=90%、SP=97%[12]。过去18F-氟脱氧葡萄糖(18F-FDG)是肿瘤检测中使用最广泛的PET显像剂,但是由于大多数骨转移瘤的糖酵解率低以及膀胱活动的影响限制了临床检测的敏感性[36]。18F氟化钠(18F-NaF)在转移性病变中的平均摄取值约为相邻正常骨组织的3倍,可以获得比使用18F-FDG更高的敏感性[37-38]。Wouter等[39]对118例乳腺癌患者的 18F-NaF PET-CT检查分析发现,其SN=96%,SP=89%,这是因为一些非恶性的骨病变同样会导致18F-NaF摄取增强,限制了这种成像模式的诊断特异性[40]。此外,在前列腺癌的骨转移患者中,11C-胆碱、18F-胆碱、以及 68Ga标记的前列腺特异性膜抗原(68Ga-PSMA)[41-42],其中 68Ga-PSMA可以在低PSA水平下识别淋巴结、骨和软组织中的转移性病变。因此 68Ga-PSMA PET-CT被认为是诊断前列腺癌骨转移更好的方式[43]。此外,Wu等[44]对30例不同恶性肿瘤的骨转移患者进行回顾性分析发现,68Ga-DOTA-FAPI-04 PET-CT的SN=100%,而 18F-FDG PET-CT的SN=82%,但 68Ga-DOTA-FAPI-04 PET-CT出现了更多的假阳性病灶。
我们认为,伴随着各种放射性示踪剂的不断推出,PET-CT这种同时可以提供解剖及代谢信息的检查方式大大提高了恶性肿瘤骨转移的准确性。
Catalano等[45]对25例乳腺癌骨转移的患者同时进行了PET-CT以及PET-MRI的检查,发现25例患者中有22例的PET-CT显示转移,25例患者中有25例的PET-MRI显示转移。PET-CT显示90处转移灶,PET-MRI显示141处转移灶。PET-CT和PET-MRI的估计灵敏度分别为85% 和96%,PET-MRI的估计特异性为99%。Qiao等[46]的研究表明PET-MRI诊断前列腺癌骨转移的AUC为0.91,而骨扫描的AUC为0.70。PET-MRI的敏感性也高于骨扫描(90% vs. 43%)。不过,值得注意的是Çelebi[47]对8例乳腺癌骨转移的患者进行随访中发现PET-MRI发现病灶的总数(平均值3.57)虽高于仅PET(平均值2.87),但与全身MRI(平均值3.43)无显著统计学差异。
我们认为,当前由于PET-MRI其高昂的成本以及较长的扫描时间,导致PET-MRI在骨转移诊断方面的应用较少,但伴随着硬件和软件的进步,在其成像时间和成本减少的情况下,PET-MRI将逐步运用于骨转移的影像诊断中。
5. 展望
综上所述,目前各种影像学检查方法各有优缺点。X线及CT具有良好的经济性及便捷性,但灵敏度不高,其引导的穿刺活检仍是诊断肿瘤骨转移的金标准。MRI具有比X线和CT更好的软组织分辨率,并且一些新技术可以提供病变的多种信息,拥有较高的灵敏度及特异度。平面骨扫描和SPE CT作为目前诊断骨转移临床应用最多的检查手段,拥有较高的灵敏度,但其特异性不高。
PET-CT/MRI对于骨转移拥有最高的敏感性及特异性,但因其高昂的检查费用,限制了其在临床上的广泛应用。影像组学将包含肿瘤病理生理学相关信息的数字医学图像转换为数据,并将这些数据与临床相结合,大大提高了骨转移和其他骨病变的鉴别能力。随着各种技术的发展,影像学检查对于骨转移的诊断必将更加精准。
-
[1] CECCHINI M G, WETTERWALD A, PLUIJM G V D, et al. Molecular and biological mechanisms of bone metastasis[J]. European Association of Urology Update Series, 2005, (3): 214-226. DOI: 10.1016/j.euus.2005.09.006.
[2] BUSSARD K M, GAY C V, MASTRO A M. The bone microenvironment in metastasis; What is special about bone?[J]. Cancer Metastasis Reviews, 2008, 27(1). DOI: 10.1007/s10555-007-9109-4.
[3] COLEMAN R, HADJI P, BODY J J, et al. Bone health in cancer: ESMO clinical practice guidelines[J]. Ann Oncol, 2020, 31(12). DOI: 10.1016/j.annonc.2020.07.019.
[4] O’SULLIVAN, CARTY F L, CRONIN C G. Imaging of bone metastasis: An update[J]. World Journal of Radiology, 2015, 7(8). DOI: 10.4329/wjr.v7.i8.202.
[5] YU H H, TSAI Y Y, HOFFE S E. Overview of diagnosis and management of metastatic disease to bone[J]. Cancer Control, 2012, 19(2). DOI: 10.1177/107327481201900202.
[6] CHOI J, RAGHAVAN M. Diagnostic imaging and image-guided therapy of skeletal metastases[J]. Cancer Control, 2012, 19(2). DOI: 10.1177/107327481201900204.
[7] MILLER T T. Bone tumors and tumorlike conditions: Analysis with conventional radiography[J]. Radiology, 2008, 246(3). DOI: 10.1148/radiol.2463061038.
[8] SUN W K, LIU S L, GUO J, et al. A CT-based radiomics nomogram for distinguishing between benign and malignant bone tumours[J]. Cancer Imaging, 2021, 21(1). DOI: 10.1186/s40644-021-00387-6.
[9] WANG Q, SUN B, MENG X, et al. Density of bone metastatic lesions increases after radiotherapy in patients with breast cancer[J]. Journal of Radiation Research, 2019, 60(3): 394-400. DOI: 10.1093/jrr/rry098.
[10] ISHIWATA Y, HIEDA Y, KAKI S, et al. Improved diagnostic accuracy of bone metastasis detection by water-hap associated to non-contrast CT[J]. Diagnostics (Basel), 2020, 10(10): 853-864. DOI: 10.3390/diagnostics10100853.
[11] BÄUERLE T, SEMMLER W. Imaging response to systemic therapy for bone metastases[J]. European Society of Radiology, 2009, 19(10): 2495-2507. DOI: 10.1007/s00330-009-1443-1.
[12] YANG H L, LIU T, WANG X M, et al. Diagnosis of bone metastases: A meta-analysis comparing 18F-FDG PET, CT, MRI and bone scintigraphy[J]. European Society of Radiology, 2011, 21(12): 2604-2617. DOI: 10.1007/s00330-011-2221-4.
[13] SADIK M, SUURKULA M, HöGLUND P, et al. Quality of planar whole-body bone scan interpretations: A nationwide survey[J]. European Journal of Nuclear Medicine and Molecular Imaging, 2008, 35(8): 1464-1472. DOI: 10.1007/s00259-008-0721-5.
[14] IMBRIACO M, LASON S M, YEUNG H W, et al. A new parameter for measuring metastatic bone involvement by prostate cancer: The bone scan index[J]. Clinical Cancer Research, 1998, 4(7): 1765-1772.
[15] WUESTEMANN J, HUPFELD S, KUPITZ D, et al. Analysis of bone scans in various tumor entities using a deep-learning-based artificial neural network algorithm-evaluation of diagnostic performance[J]. Cancers (Basel), 2020, 12(9). DOI: 10.3390/cancers12092654.
[16] ISODA T, BABA S, MARUOKA Y, et al. Influence of the different primary cancers and different types of bone metastasis on the lesion-based artificial neural network value calculated by a computer-aided diagnostic system, bonenavi, on bone scintigraphy images[J]. Asia Oceania Journal of Nuclear Medicine & Biology, 2017, 5(1). DOI: 10.22038/aojnmb.2016.7606.
[17] SHIBAHARA I, SAITO R, OSADA Y, et al. Incidence of initial spinal metastasis in glioblastoma patients and the importance of spinal screening using MRI[J]. Journal of Neuro-Oncology, 2019, 141(2). DOI: 10.1007/s11060-018-03036-4.
[18] PARK S, PARK J G, JUN S, et al. Differentiation of bone metastases from prostate cancer and benign red marrow depositions of the pelvic bone with multiparametric MRI[J]. Magnetic Resonance Imaging, 2020, 73. DOI: 10.1016/j.mri.2020.08.019.
[19] KUMAR V, GU Y, BASU S, et al. Radiomics: The process and the challenges[J]. Magnetic Resonance Imaging, 2012, 30(9). DOI: 10.1016/j.mri.2012.06.010.
[20] GUAN Y, PECK K K, JUN S, et al. T1-weighted dynamic contrast-enhanced MRI to differentiate nonneoplastic and malignant vertebral body lesions in the spine[J]. Radiology, 2020, 297(2). DOI: 10.1148/radiol.2020190553.
[21] SUN G, ZHANG Y X, LIU F, et al. Whole-body magnetic resonance imaging is superior to skeletal scintigraphy for the detection of bone metastatic tumors: A meta-analysis[J]. European Review for Medicaland Pharmacological Sciences, 2020, 24(13): 7240-7252. DOI: 10.26355/eurrev_202007_21879.
[22] KOSMIN M, PADHANI A R, GOGBASHIAN A, et al. Comparison of whole-body MRI, CT, and bone scintigraphy for response evaluation of cancer therapeutics in metastatic breast cancer to bone[J]. Radiology, 2020, 297(3): 622-629. DOI: 10.1148/RADIOL.2020192683.
[23] OTTOSSON F, BACO E, LAURITZEN, P M, et al. The prevalence and locations of bone metastases using whole-body MRI in treatment-naïve intermediate- and high-risk prostate cancer[J]. European Radiology, 2021, 31(5): 2747-2753. DOI: 10.1007/s00330-020-07363-x.
[24] VARGAS H A, SCHOR-BARDACH R, LONG N, et al. Prostate cancer bone metastases on staging prostate MRI: Prevalence and clinical features associated with their diagnosis[J]. Abdominal Radiology (NY), 2017, 42(1): 271-277. DOI: 10.1007/s00261-016-0851-3.
[25] LAMBIN P, RIOS-VELAZQUEZ E, LEIJENAAR R, et al. Radiomics: Extracting more information from medical images ssing advanced feature analysis[J]. European Journal of Cancer, 2012, 48(4): 441-446. DOI: 10.1016/j.ejca.2011.11.036.
[26] FILOGRANA L, LENKOWICZ J, CELLINI F, et al. Identification of the most significant magnetic resonance imaging (MRI) radiomic features in oncological patients with vertebral bone marrow metastatic disease: A feasibility study[J]. La Radiologia Medica, 2019, 124(1). DOI: 10.1007/s11547-018-0935-y.
[27] LANG N, ZHANG Y, ZHANG E L, et al. Differentiation of spinal metastases originated from lung and other cancers using radiomics and deep learning based on DCE-MRI[J]. Magnetic Resonance Imaging, 2019, 64: 4-12. DOI: 10.1016/j.mri.2019.02.013.
[28] XIONG X, WANG J, HU S, et al. Differentiating between multiple myeloma and metastasis subtypes of lumbar vertebra lesions using machine learning-based radiomics[J]. Frontiers in Oncology, 2021: 601699. DOI: 10.3389/fonc.2021.601699.
[29] CHEN K, CAO J, ZHANG X, et al. Differentiation between spinal multiple myeloma and metastases originated from lung using multi-view attention-guided network[J]. Frontiers in Oncology, 2022, 12: 981769. DOI: 10.3389/fonc.2022.981769.
[30] YIN P, MAO N, ZHANG C, et al. A triple-classification radiomics model for the differentiation of primary chordoma, giant cell tumor, and metastatic tumor of sacrum based on T2-weighted and contrast-enhanced T1-weighted MRI[J]. Journal of Magnetic Resonance Imaging, 2019, 49(3): 1-8. DOI: 10.1002/jmri.26238.
[31] WANG Y R, YU B, ZHONG F, et al. MRI-based texture analysis of the primary tumor for pre-treatment prediction of bone metastases in prostate Cancer[J]. Magnetic Resonance Imaging, 2019, (3): 7-18. DOI: 10.1016/j.mri.2019.03.007.
[32] JIANG X, REN M, SHUANG X, et al. Multiparametric MRI-based radiomics approaches for preoperative prediction of EGFR mutation status in spinal bone metastases in patients with lung adenocarcinoma[J]. Journal of Magnetic Resonance Imaging, 2021, 54(2): 497-507. DOI: 10.1002/jmri.27579.
[33] REN M L, YANG H Z, LAI Q Y, et al. MRI-based radiomics analysis for predicting the EGFR mutation based on thoracic spinal metastases in lung adenocarcinoma patients[J]. Medical Physics, 2021, 48(9): 1-10. DOI: 10.1002/mp.15137.
[34] CAO R, DONG Y, WANG X, et al. MRI-based radiomics nomogram as a potential biomarker to predict the EGFR mutations in exon 19 and 21 based on thoracic spinal metastases in lung adenocarcinoma[J]. Academic Radiology, 2022, 29(3): e9-e17. DOI: 10.1016/j.acra.2021.06.004.
[35] HAMAOKA T, MADEWELL J E, PODOLOFF D A, et al. Bone imaging in metastatic breast cancer[J]. Journal Clinical Oncology, 2004, 22(14): 2942-2953. DOI: 10.1200/JCO.2004.08.181.
[36] EVEN-SAPIR E, METSER U I, GENNADY, et al. The detection of bone metastases in patients with high-risk prostate cancer: 99mTc-MDP planar bone scintigraphy, single- and multi-field-of-view SPECT, 18F-fluoride PET, and 18F-fluoride PET/CT[J]. Journal of Nuclear Medicine, 2006, 47(2): 287-297.
[37] CUCCURULLO V, CASCINI G L, TAMBURRINI O, et al. Bone metastases radiopharmaceuticals: An overview[J]. Current Radiopharmaceuticals, 2013, 6(1): 41-47. DOI: 10.2174/1874471011306010007.
[38] BASTAWROUS S, BHARGAVA P, BEHNIA F, et al. Newer PET application with an old tracer: Role of 18F-Naf skeletal PET/CT in oncologic practice[J]. Radiographics, 2014, 34(5): 1295-1316. DOI: 10.1148/rg.345130061.
[39] WOUTER A M, BROOS, FRISO M, et al. Accuracy of 18F-Naf PET/CT in bone metastasis detection and its effect on patient management in patients with breast carcinoma[J]. Nuclear Medicine Communication, 2018, 39(4): 325-333. DOI: 10.1097/MNM.0000000000000807.
[40] LEE J W, PARK Y J, JEON Y S, et al. Clinical value of dual-phase F-18 sodium fluoride PET/CT for diagnosing bone metastasis in cancer patients with solitary bone lesion[J]. Quantitative Imaging in Medicine and Surg, 2020, 10(11): 2098-2111. DOI: 10.21037/qims-20-607.
[41] HEIDENREICH A, BASTIAN P J, BELLMUNT J, et al. EAU guidelines on prostate cancer. Part 1: Screening, diagnosis, and local treatment with curative intent-update 2013[J]. European Urology, 2014, 65(1): 124-137. DOI: 10.1016/j.eururo.2013.09.046.
[42] AFSHAR-OROMIEH A, HOLLAND-LETZ T, GIESEL F L, et al. Diagnostic performance of 68Ga-PSMA-11 (HBED-CC) PET/CT in patients with recurrent prostate cancer: Evaluation in 1007 patients[J]. European Journal of Nuclear Medicine and Molecular Imaging, 2017, 44(8): 1258-1268. DOI: 10.1007/s00259-017-3711-7.
[43] JANSSEN J C, MEISSNER S, WOYTHAL N, et al. Comparison of hybrid 68Ga-PSMA-PET/CT and 99mTc-DPD-SPECT/CT for the detection of bone metastases in prostate cancer patients: Additional value of morphologic information from low dose CT[J]. European Radiology, 2018, 28(2): 610-619. DOI: 10.1007/s00330-017-4994-6.
[44] WU J, WANG Y, LIAO T, et al. Comparison of the relative diagnostic performance of [68G9]Ga-DOTA-FAPI-04 and 18F-FDG PET/CT for the detection of bone metastasis in patients with different cancers[J]. Frontiers in Oncology, 2021, 11(0): 737827. DOI: 10.3389/fonc.2021.737827.
[45] CATALANO O A, NICOLAI E, ROSEN B R, et al. Comparison of CE-FDG-PET/CT with CE-FDG-PET/MR in the evaluation of osseous metastases in breast cancer patients[J]. British Journal of Cancer, 2015, 112(9): 1452-1460. DOI: 10.1038/bjc.2015.112.
[46] QIAO Z Y, WANG S D, WANG H Y, et al. Diagnostic capability of 18F-PSMA PET-MRI and pelvic MRI plus bone scan in treatment-naive prostate cancer: A single-center paired validating confirmatory study[J]. International Journal of Surgery, 2024, 110(1): 87-94. DOI: 10.1097/JS9.0000000000000787.
[47] ÇELEBI F. What is the diagnostic performance of 18F-FDG-PET/MRI in the detection of bone metastasis in patients with breast cancer?[J]. European Journal of Breast Health, 2019, 15(4): 213-216. DOI: 10.5152/ejbh.2019.4885.
计量
- 文章访问数: 113
- HTML全文浏览量: 158
- PDF下载量: 27