ISSN 1004-4140
CN 11-3017/P

减少CT图像中金属伪影的研究进展

苏丹阳, 侯平, 张浩然, 马渊博, 刘金龙, 杨晓鹏

苏丹阳, 侯平, 张浩然, 等. 减少CT图像中金属伪影的研究进展[J]. CT理论与应用研究(中英文), 2025, 34(3): 1-7. DOI: 10.15953/j.ctta.2024.023.
引用本文: 苏丹阳, 侯平, 张浩然, 等. 减少CT图像中金属伪影的研究进展[J]. CT理论与应用研究(中英文), 2025, 34(3): 1-7. DOI: 10.15953/j.ctta.2024.023.
SU D Y, HOU P, ZHANG H R, et al. Research Progress on Reducing Metal Artifacts in CT Imaging[J]. CT Theory and Applications, 2025, 34(3): 1-7. DOI: 10.15953/j.ctta.2024.023. (in Chinese).
Citation: SU D Y, HOU P, ZHANG H R, et al. Research Progress on Reducing Metal Artifacts in CT Imaging[J]. CT Theory and Applications, 2025, 34(3): 1-7. DOI: 10.15953/j.ctta.2024.023. (in Chinese).

减少CT图像中金属伪影的研究进展

详细信息
    作者简介:

    苏丹阳,女,医学技术专业硕士研究生,主要从事CT对置入物的研究,E-mail:s839671366@163.com

    通讯作者:

    杨晓鹏✉,男,教授、硕士生导师,主要从事影像和骨修复方面的研究,E-mail:13837141925@163.com

  • 中图分类号: TP 391.41

Research Progress on Reducing Metal Artifacts in CT Imaging

  • 摘要:

    颅内动脉瘤栓塞术、口腔金属置入物、脊柱内固定物以及髋关节置换术等金属置入物在临床中的应用日益增加。采用CT图像对金属置入物术后患者进行评估时产生的金属伪影会使CT图像无法清晰显示金属-骨界面及邻近的组织结构,影响医生诊断的精准性。随着CT的发展,去金属伪影技术和虚拟单能量成像技术等手段有助于减少CT图像中的金属伪影,深度学习重建算法和光子计数CT的出现为金属置入物术后的精准评估提供更加可靠的依据。本文就减少CT图像中金属伪影的研究进展作一综述。

    Abstract:

    Intracranial aneurysm embolization, oral metal implants, spinal internal fixation, hip replacement, and other metal implants are increasingly used in clinical practice. Metal artifacts generated by computed tomography (CT) images during the evaluation of patients after placement of metal implants will prevent CT images from clearly showing the metal–bone interface and the adjacent tissue structure, which affects the accuracy of doctors' diagnosis. With the development of CT, metal artifact reduction technology and virtual monoenergetic imaging technology are helpful to reduce metal artifacts in CT imaging. The emergence of deep learning reconstruction algorithms and photon counting CT provides a more reliable basis for the accurate evaluation of metal implants after surgery. This paper reviews the progress of research on reducing metal artifacts in CT imaging.

  • 慢性阻塞性肺疾病(chronic obstruction pulmonary disease,COPD)是一种以小气道病变和肺气肿为主要特征的异质性疾病,其发生率男性高于女性,目前是世界第3大死亡原因,并且发病率和死亡率一直在上升[1-3]。目前COPD诊断的最佳标准仍然是肺功能检查[4],临床上用肺功能来判断COPD严重程度,但是肺功能无法区分气流阻塞的病理类型,也无法区分肺气肿及小气道病变的贡献程度[5]。肺功能正常的吸烟者通常会被认为没有疾病,但吸烟者有呼吸道症状和急性加重病史,并且此类患者在CT上常有肺气肿和支气管壁增厚,而在此类人群中CT发现肺气肿可以预测进行性肺气肿、肺功能丧失和更高的死亡率[6],所以早期发现COPD易感人群肺气肿的分布比例对于其病情评估及预后有重要作用。

    师美娟等[7]通过分析 CT双气相不同肺气肿阈值低衰减区(low attenuation area,LAA)占全肺体积百分比LAA%-950和LAA%-910可以评估不同严重程度肺气肿分布比例的不同;Galbán等[8]首次提出参数反应图(parameter response mapping,PRM)应用到CT扫描的可行性;此后研究表明双气相CT配准可以精确的区分及定量测量功能性小气道病变(fSAD)、肺气肿(Emph)和正常(Normal)区域[9];本课题组前期研究[10-12]表明胸部定量 CT能够早期、精准、客观的评估COPD严重程度,并且优于传统肺功能检查;梁志冉等[13]研究结果显示在无症状青年女性中存在少量肺气肿。因此我们推测在轻中度COPD中,肺气肿指标在判断疾病严重程度及早期诊断中具有极大临床实用价值,很有必要在COPD早期阶段筛选出最优CT定量肺气肿指标。

    既往研究基本都是基于单气相CT定量指标来评估肺气肿,本研究纳入双气相CT配准新的定量指标进行评估肺气肿并与既往的指标比较。本研究纳入正常人群和轻中度COPD患者,来探讨双气相不同阈值和配准两种方法对轻中度COPD患者肺气肿的诊断效能及准确性,以筛选出最优的诊断轻中度COPD患者肺气肿的定量CT指标。

    回顾性收集延安大学附属医院2018年6月至2021年6月进行呼、吸双相胸部CT检查的吸烟人群,其中包括52例确诊COPD患者,纳入参加体检的正常对照者(肺功能检查未达COPD诊断标准(FEV1/FVC≥0.7)55例。

    纳入标准:所纳入的受试者年龄不低于40岁;双气相图像清晰完整,软件能够进行肺裂的正确分割。排除标准:年龄小于40岁或大于80岁;不能配合双气相扫描者;具有肺部手术、创伤史以及胸廓畸形等;大面积炎症、肺肿瘤、结核及大量胸腔积液患者;支气管哮喘、肺结核、支气管扩张及肺动脉高压等其他呼吸系统疾病患者;职业性粉尘接触史。

    本研究通过延安大学附属医院伦理委员会批准[2018032],所有受试者知情同意并签署了知情同意书。

    所有患者在检查前均进行深吸气末与深呼气末的屏气训练,采用联影UCT-760 128层螺旋CT对入选患者分别在深吸气及深呼气末行肺尖至肺底行全肺低剂量扫描。

    扫描参数:管电压120 kV,自适应动态管电流(选择剂量等级2,范围30~40 mAs,符合胸部低剂量参考推荐[14]),准直器宽度128×0.625 mm,螺距1.0875,转速0.5 s/圈,扫描层厚5 mm,双气相图像行骨算法1 mm薄层KARL迭代重建[11],视野350~450 mm,矩阵512×512。

    根据剂量报告并采用成人胸部有效剂量权重因子K=0.014,得出有效辐射剂量为(3.71±0.28)mSv[10]

    原始DICOM数据导入“数字肺”测试平台进行分析,基于肺裂为片状,利用Hough变换进行分割来获得5个肺叶,计算吸气相<-950 HU像素占全肺的比值(吸气相LAA%-950)、呼气相<-910 HU像素占全肺的比值(呼气相LAA%-910[9]。然后进行双气相图像配准,吸气和呼气图像的体积是空间上对齐到一个单一的几何框架使用一个薄板样条,以相互信息为对象函数。

    每个实质体素(即图像数据集中最小的体积单位)使用肺气肿指数和空气捕捉阈值进行分类,吸气扫描时由COPDGene定义为 -950 HU,呼气扫描时为 -856 HU,并用于生成体素成对实质体素HU值的联合密度直方图。这使得每个体素被分类为正常、肺气肿或功能性小气道疾病。

    通过将一个分类中的所有体素求和并归一化为总肺体积,计算出每个分类的相对体积[15]:吸气相CT值>-950 HU,呼气相CT值≤-856 HU的像素占全肺容积的百分比(the percentage of the area of functional small airway disease,PRMfSAD%)为小气道病变区,标记为黄色区;吸气相≤-950 HU,呼气相 ≤-856 HU的像素占全肺容积的百分比(the percentage of the area of emphysema,PRMEmph%)为肺气肿区,标记为红色区;吸气相>-950 HU,呼气相>-856 HU的像素占全肺容积的百分比(the percentage of the area of normal,PRMNormal%)为正常区,标记为绿色区。PRMfSAD%、PRMEmph%和PRMNormal%3种区域总和不等于100%,剩余区域不在阈值范围内,约占10%,被证实和肺功能无相关性,怀疑是噪音或是由于配准带来的误差,因而没有进行颜色编码[16]图1)。

    图  1  男,58岁,GOLD 1级
    Figure  1.  Male, 58 years old, GOLD grade 1

    患者均需在CT检查后的3天内且情况稳定时进行肺功能(pulmonary function test,PFT)检查,分别测量:用力肺活量(FVC)、第1秒用力呼气容积占预计值的百分比(FEV1%)、FEV1占用力肺活量的百分比(FEV1/FVC)。

    根据2023年慢性阻塞性肺疾病全球倡议(global initiative for chronic obstructive lung disease,GOLD)诊断标准[17]对COPD患者进行分级:GOLD 1级21例、GOLD 2级31例。

    采用SPSS 26.0软件进行统计学分析。计量资料符合正态分布时用$(\bar x \pm s)$表示,符合非正态分布时采用M(Q)表示;组间一般临床资料和肺功能差异采用独立样本t检验、Mann-Whitney U检验或卡方检验;采用Spearman相关分析吸气相LAA%-950、呼气相LAA%-910、PRMEmph%与FVC、FEV1%、FEV1/FVC的相关性。绘制受试者工作特征(receiver operating characteristic curve,ROC)曲线分析CT定量参数对轻中度COPD患者肺气肿评估的诊断效能。P<0.05有统计学意义。

    轻中度COPD患者与正常对照组,年龄、BMI及FVC组间无统计学差异;正常对照组女性占比显著低于轻中度COPD患者,轻中度COPD患者吸烟指数较正常对照组增大,轻中度COPD患者FEV1%、FEV1/FVC数值小于正常对照组,组间存在统计学差异(表1)。

    表  1  一般资料结果比较
    Table  1.  Comparison of general information and results
    项目正常对照组(n=55)轻中度COPD患者(n=52)统计检验
    $t/ {\chi }^{2}/Z $P
      年龄/岁58.130±8.228 58.700±9.622 -0.735 0.464
      性别(男/女)53/240/128.8830.003
      BMI/(kg/m224.573±2.975 23.380±2.507 1.6840.096
      吸烟指数400.000(392.000)655.000(800.000)-3.327 0.001
      FVC/L3.461±0.7693.270±1.0521.2480.215
      FEV1%/%81.570±14.39569.640±13.6543.0080.003
      FEV1/FVC/%81.030±10.00058.880±9.771 12.236 <0.001
    注:正态资料用$\bar{x}$±s表示,偏态资料用M(Q)表示。
    下载: 导出CSV 
    | 显示表格

    轻中度COPD患者相比于正常对照组,吸气相LAA%-950、呼气相LAA%-910、PRMEmph%、PRMfSAD%四项指标均增大,PRMNormal%减小,且组间差异均有统计学意义(表2图2图3)。

    表  2  正常对照与轻中度COPD组间CT定量指标比较
    Table  2.  Comparison of CT quantitative indexes between the normal control and mild to moderate COPD groups
    项目正常对照组(n=55)轻中度COPD患者(n=52)统计检验
    ZP
    吸气相LAA%-950/% 19.210(7.890) 28.160(12.080)-4.323<0.001
    呼气相LAA%-910/% 10.380(10.360)26.210(26.680)-6.439<0.001
    PRMEmph%/%    4.055(3.570)15.610(18.590)-6.697<0.001
    PRMfSAD%/%    14.685(11.640)27.810(15.280)-4.806<0.001
    PRMNormal%/%    59.615(15.120)37.340(37.490)-5.273<0.001
    注:偏态资料用M(Q)表示。
    下载: 导出CSV 
    | 显示表格
    图  3  男,63岁,GOLD 2级。正常对照受试者与轻中度COPD患者PRMEmph%(红色区域)存在差异,轻中度COPD患者病变明显加重
    Figure  3.  Male, 63 years old, GOLD grade 2. There was a difference in PRMEmph% (red area) between normal controls and patients with mild to moderate COPD, and the lesions of patients with mild to moderate COPD were significantly aggravated
    图  2  女,57岁,正常对照受试者
    Figure  2.  Female, 57 years old, normal control subject

    呼气相LAA%-910、PRMEmph%与 FVC、FEV1%、FEV1/FVC均呈负相关,吸气相LAA%-950与 FEV1/FVC呈负相关,吸气相LAA%-950与FVC、FEV1% 无线性相关(表3)。

    表  3  CT定量参数与肺功能的相关性
    Table  3.  Correlations between CT quantitative parameters and pulmonary function
    CT定量参数相关系数及其检验rSP
    FVC/LFEV1%/%FEV1/FVC/%
    吸气相LAA%-950/% 0.044(0.655)-0.150(<0.122)-0.512(<0.001)
    呼气相LAA%-910/%-0.301(0.002)-0.394(<0.001)-0.668(<0.001)
    PRMEmph%/%    -0.269(0.005)-0.361(<0.001)-0.696(<0.001)
    下载: 导出CSV 
    | 显示表格

    吸气相LAA%-950、呼气相LAA%-910、PRMEmph%区分轻中度 COPD的曲线下面积分别为0.742、0.861和0.876,其中PRMEmph%指标的曲线下面积最大,对应的临界值为9.84%,敏感度76.90%,特异度94.50%(图4)。

    图  4  CT定量参数区分轻中度COPD患者肺气肿的ROC
    Figure  4.  ROC of CT quantitative parameters to differentiate emphysema in patients with mild to moderate COPD

    COPD的特征是呼吸道和肺实质的慢性炎症,不可避免地导致(部分不可逆的)肺改变。胸部CT的发展为COPD疾病异质性了解提供新的视角。目前CT检查是COPD患者重要的影像学检查方法[18],且双气相CT定量参数是COPD患者肺气肿的重要指标,CT上肺气肿范围的改变可以预测COPD患者的死亡率,因此为早期COPD筛选出最优CT定量肺气肿指标有重要意义[19-20]

    本研究结果显示年龄与BMI组间无统计学差异,减小了由年龄与BMI对组间受试者的影响。组间性别有差异,轻中度COPD患者组女性占比显著高于正常对照组,轻中度COPD患者的吸烟指数显著高于正常对照组。结果说明女性较男性更容易受到吸烟的有害影响[21-22],吸烟是导致COPD的危险因素之一,故年龄高于40岁且吸烟的人群是COPD的易感人群[1],通过双气相CT定量可以更好的评估病变程度。

    本研究使用吸气相LAA%-950、呼气相LAA%-910、PRMEmph%来研究COPD患者肺气肿的诊断效能,其中PRMEmph%不仅可以区分COPD的主要病理生理学(肺气肿)改变,还可以可视化定量分析正常区域、功能性小气道区域及肺气肿区域等。既往研究[23]表明吸气相 LAA%-950是量化肺气肿的最佳阈值,且与肺功能相关性良好。本文中呼气相LAA%-910与 FEV1% 的相关性最高,而FEV1% 是COPD分级的指标,因此可以说明呼气相LAA%-910对评估COPD的严重程度比较敏感,这与本团队之前的研究[12]结果一致。双气相定量PRM能够可视化及量化肺气肿的改变,与肺功能指标相关联[24],另有研究证实PRMEmph%与肺气肿相关,且与吸气相LAA%-950、呼气相LAA%-910两项指标相比,PRMEmph%与FEV1/FVC相关性更好[9-25]。吸气相LAA%-950、呼气相LAA%-910、PRMEmph%3项指标分别区分正常对照组和 COPD轻中度患者的肺气肿,ROC结果的曲线下面积分别为0.742、0.861和0.876,并且都有一定意义,诊断效能均比较好。其中PRMEmph%的AUC最大,且考虑到其包含的信息较多,诊断效能优于吸气相LAA%-950和呼气相LAA%-910

    本研究在相关分析的基础上绘制了ROC曲线,结果论证了双气相配准指标优于单气相指标。由于肺气肿是COPD中晚期的主要病变,目前对早期COPD的研究主要是小气道,而本研究主要针对轻中度COPD患者的肺气肿情况,寻找诊断轻中度COPD患者肺气肿的最优定量CT指标,而筛选最优肺气肿定量分析指标也是本研究最大创新点。

    本研究团队之前的研究表明呼气相LAA%-910是准确评估COPD严重程度的敏感指标,并且与临床肺功能具有良好的相关性,这与本研究的结论一致,可以对COPD患者进行更全面的评估提供参考[15]。研究表明[26]PRM增加了目前已知的CT测量在诊断COPD方面的价值,其与临床参数的强相关性表明,PRM可以提供关于疾病表型和严重程度的重要信息。因此PRM的优点是能够区分肺气肿和非肺气肿的空气滞留,从而能够更真实地评估COPD患者的肺气肿情况。PRMEmph%可以区分以肺气肿为特征的COPD的临床异质性,这是PRM的一个重要特征,因为不同的表型可能会有不同的生命过程及结果,因此可以用来确定患者的特征,且可以为不能行肺功能检查的患者进行肺功能的检测及分级,并在未来制定个性化治疗方案。

    随着胸部低剂量CT技术的发展,不仅应用于肺癌筛查,也可用于肺部其他疾病,对于COPD易感人群行双气相扫描也符合伦理要求[10],定量CT可以更加精确、客观的分析肺部异常,在早期有效的发现病变,且可用于不能进行肺功能检查的特殊人群。综上,我们认为PRM是一种很有前途且优于单气相的CT指标。

    本研究的局限性是样本量较少,后续研究可以增加样本量,尤其是女性患者,对COPD患者进行性别分组研究。此外,本研究只区分正常对照组和轻中度COPD患者,之后可以进行跟踪随访,进一步对疾病严重程度进行诊断。

    综上所述,吸气相LAA%-950、呼气相LAA%-910、PRMEmph%都能很好地诊断轻中度COPD患者的肺气肿,其中PRMEmph%可以更为准确、敏感地识别轻中度COPD患者肺气肿的改变,可作为轻中度COPD患者肺气肿诊断的可靠指标,有效的应用于临床实践。

  • [1] 李昊翔, 朱凯, 孙重阳, 等. 宝石能谱CT在减少金属伪影方面的应用进展[J]. 中国医药导报, 2015, 12(11): 42-45.

    LI H X, ZHU K, SUN C Y, et al. Advances in the application of gemstone spectral CT in reducing metal artifacts[J]. China Medicine Guide, 2015, 12(11): 42-45. (in Chinese).

    [2]

    JEONG S, KIM S H, HWANG E J, et al. Usefulness of a metal artifact reduction algorithm for orthopedic implants in abdominal CT: Phantom and clinical study results[J]. American Journal of Roentgenology, 2015, 204(2): 307-317. DOI: 10.2214/ajr.14.12745.

    [3]

    PESSIS E, CAMPAGNA R, SVERZUT J M, et al. Virtual monochromatic spectral imaging with fast kilovoltage switching: Reduction of metal artifacts at CT[J]. Radiographics, 2013, 33(2): 573-583. DOI: 10.1148/rg.332125124.

    [4]

    LEE Y H, PARK K K, SONG H T, et al. Metal artefact reduction in gemstone spectral imaging dual-energy CT with and without metal artefact reduction software[J]. European Radiology, 2012, 22(6): 1331-1340. DOI: 10.1007/s00330-011-2370-5.

    [5] 汪涛, 夏文军, 赵云松, 等. CT金属伪影去除研究进展[J]. 中国体视学与图像分析, 2020, 25(3): 207-223. DOI: 10.1148/rg.332125124.

    WANG T, XIA W J, ZHAO Y S, et al. Advances in metal artifact removal in CT[J]. Chinese Journal of Stereology and Image Analysis, 2020, 25(3): 207-223. DOI: 10.1148/rg.332125124. (in Chinese).

    [6]

    KOHYAMA S, YOSHII Y, OKAMOTO Y, et al. Advances in bone joint imaging-metal artifact reduction[J]. Diagnostics (Basel), 2022, 12(12). DOI: 10.3390/diagnostics12123079.

    [7] 魏亦龙, 崔钢, 张跃, 等. 口腔不同金属材料全冠修复体CT成像伪影的实验研究[J]. 海南医学院学报, 2013, 19(12): 1764-1766, 1770. DOI: 10.13210/j.cnki.jhmu.2013.12.166.

    WEI Y L, CUI G, ZHANG Y, et al. Experimental study on CT imaging artifacts of dental crowns made of different metal materials[J]. Journal of Hainan Medical College, 2013, 19(12): 1764-1766, 1770. DOI: 10.13210/j.cnki.jhmu.2013.12.166. (in Chinese).

    [8] 黄钟杰, 曹楚瑜, 刘源. 宝石能谱CT去除金属伪影软件减除脊柱和髋关节植入金属物伪影的价值[J]. 汕头大学医学院学报, 2014, 27(2): 115-118. DOI: 10.13401/j.cnki.jsumc.2014.02.024.

    HUANG Z J, CAO C Y, LIU Y. The value of gemstone spectral CT metal artifact removal software in reducing metal artifacts of spinal and hip implants[J]. Journal of Shantou University Medical College, 2014, 27(2): 115-118. DOI: 10.13401/j.cnki.jsumc.2014.02.024. (in Chinese).

    [9]

    BARRETT J F, KEAT N. Artifacts in CT: Recognition and avoidance[J]. Radiographics, 2004, 24(6): 1679-1691. DOI: 10.1148/rg.246045065.

    [10]

    NEROLADAKI A, MARTIN S P, BAGETAKOS I, et al. Metallic artifact reduction by evaluation of the additional value of iterative reconstruction algorithms in hip prosthesis computed tomography imaging[J]. Medicine (Baltimore), 2019, 98(6): e14341. DOI: 10.1097/md.0000000000014341.

    [11]

    WINKLHOFER S, BENNINGER E, SPROSS C, et al. CT metal artefact reduction for internal fixation of the proximal humerus: Value of mono-energetic extrapolation from dual-energy and iterative reconstructions[J]. Clinical Radiology, 2014, 69(5): e199-206. DOI: 10.1016/j.crad.2013.12.011.

    [12]

    NIKBIN A, DALILI KAJAN Z, TARAMSARI M, et al. Effect of object position in the field of view and application of a metal artifact reduction algorithm on the detection of vertical root fractures on cone-beam computed tomography scans: An in vitro study[J]. Imaging Science in Dentistry, 2018, 48(4): 245-254. DOI: 10.5624/isd.2018.48.4.245.

    [13]

    JOHNSON T R, KRAUSS B, SEDLMAIR M, et al. Material differentiation by dual energy CT: Initial experience[J]. European Radiology, 2007, 17(6): 1510-1517. DOI: 10.1007/s00330-006-0517-6.

    [14]

    HAN S C, CHUNG Y E, LEE Y H, et al. Metal artifact reduction software used with abdominopelvic dual-energy CT of patients with metal hip prostheses: Assessment of image quality and clinical feasibility[J]. American Journal of Roentgenology, 2014, 203(4): 788-795. DOI: 10.2214/ajr.13.10980.

    [15]

    KIDOH M, NAKAURA T, NAKAMURA S, et al. Reduction of dental metallic artefacts in CT: Value of a newly developed algorithm for metal artefact reduction (O-MAR)[J]. Clinical Radiology, 2014, 69(1): e11-16. DOI: 10.1016/j.crad.2013.08.008.

    [16]

    LI H, NOEL C, CHEN H, et al. Clinical evaluation of a commercial orthopedic metal artifact reduction tool for CT simulations in radiation therapy[J]. Medical Physics, 2012, 39(12): 7507-7517. DOI: 10.1118/1.4762814.

    [17]

    AXENTE M, PAIDI A, Von EYBEN R, et al. Clinical evaluation of the iterative metal artifact reduction algorithm for CT simulation in radiotherapy[J]. Medical Physics, 2015, 42(3): 1170-1183. DOI: 10.1118/1.4906245.

    [18]

    WAGENAAR D, Van der GRAAF E R, Van der SCHAAF A, et al. Quantitative comparison of commercial and non-commercial metal artifact reduction techniques in computed tomography[J]. PLoS One, 2015, 10(6): e0127932. DOI: 10.1371/journal.pone.0127932.

    [19] 金大永, 李笑石, 耿纪刚, 等. SEMAR与AIDR 3D去金属伪影算法相结合在髋关节置换术后CT检查中的临床应用价值[J]. 临床医学研究与实践, 2022, 7(2): 82-85, 102. DOI: 10.19347/j.cnki.2096-1413.202202023.

    JIN D Y, LI X S, GENG J G, et al. Clinical application value of SEMAR combined with AIDR 3D metal artifact reduction algorithm in CT examination after hip replacement[J]. Clinical Medical Research & Practice, 2022, 7(2): 82-85, 102. DOI: 10.19347/j.cnki.2096-1413.202202023. (in Chinese).

    [20]

    LELL M M, MEYER E, KUEFNER M A, et al. Normalized metal artifact reduction in head and neck computed tomography[J]. Investigative Radiology, 2012, 47(7): 415-421. DOI: 10.1097/RLI.0b013e3182532f17.

    [21]

    YU L, LENG S, MCCOLLOUGH C H. Dual-energy CT-based monochromatic imaging[J]. American Journal of Roentgenology, 2012, 199(S5): s9-s15. DOI: 10.2214/ajr.12.9121.

    [22]

    ZHOU C, ZHAO Y E, LUO S, et al. Monoenergetic imaging of dual-energy CT reduces artifacts from implanted metal orthopedic devices in patients with factures[J]. Academic Radiology, 2011, 18(10): 1252-1257. DOI: 10.1016/j.acra.2011.05.009.

    [23]

    KAZA R K, PLATT J F, COHAN R H, et al. Dual-energy CT with single- and dual-source scanners: Current applications in evaluating the genitourinary tract[J]. Radiographics, 2012, 32(2): 353-369. DOI: 10.1148/rg.322115065.

    [24]

    HAKVOORT E T, WELLENBERG R H H, STREEKSTRA G J. Quantifying near metal visibility using dual energy computed tomography and iterative metal artifact reduction in a fracture phantom[J]. Physica Medica, 2020, 69: 9-18. DOI: 10.1016/j.ejmp.2019.11.006.

    [25]

    KOETZIER L R, MASTRODICASA D, SZCZYKUTOWICZ T P, et al. Deep learning image reconstruction for CT: Technical principles and clinical prospects[J]. Radiology, 2023, 306(3): e221257. DOI: 10.1148/radiol.221257.

    [26]

    BUSI M, KEHL C, FRISVAD J R, et al. Metal artifact reduction in spectral X-ray CT using spectral deep learning[J]. Journal of Imaging, 2022, 8(3). DOI: 10.3390/jimaging8030077.

    [27]

    GONG H, MARSH J F, D'SOUZA K N, et al. Deep-learning-based direct synthesis of low-energy virtual monoenergetic images with multi-energy CT[J]. Journal of Medical Imaging (Bellingham), 2021, 8(5): 052104. DOI: 10.1117/1.Jmi.8.5.052104.

    [28]

    LIANG K, ZHANG L, YANG H, et al. Metal artifact reduction for practical dental computed tomography by improving interpolation-based reconstruction with deep learning[J]. Medical Physics., 2019, 46(12): e823-e834. DOI: 10.1002/mp.13644.

    [29]

    PARK J, KIM S H, HAN J K. Combined application of virtual monoenergetic high keV images and the orthopedic metal artifact reduction algorithm (O-MAR): Effect on image quality[J]. Abdominal Radiology (New York), 2019, 44(2): 756-765. DOI: 10.1002/mp.13644.

    [30] 孙彤彤, 黄熙菎, 罗腾龙, 等. 双层探测器光谱CT虚拟单能量成像联合去除植入物金属伪影用于减少置换髋关节假体金属伪影[J]. 中国医学影像技术, 2023, 39(7): 1084-1088. DOI: 10.13929/j.issn.1003-3289.2023.07.030.

    SUN T T, HUANG X K, LUO T L, et al. Virtual monoenergetic imaging combined with orthopedic metal artifact reduction for reducing metal artifacts of hip prosthesis based on dual-layer detector spectral CT[J]. Chinese Journal of Medical Imaging Technology, 2023, 39(7): 1084-1088. DOI: 10.13929/j.issn.1003-3289.2023.07.030. (in Chinese).

    [31]

    BONGERS M N, SCHABEL C, THOMAS C, et al. Comparison and combination of dual-energy- and iterative-based metal artefact reduction on hip prosthesis and dental implants[J]. PLoS One, 2015, 10(11): e0143584. DOI: 10.1371/journal.pone.0143584.

    [32]

    ANHAUS J A, SCHMIDT S, KILLERMANN P, et al. Iterative metal artifact reduction on a clinical photon counting system-technical possibilities and reconstruction selection for optimal results dependent on the metal scenario[J]. Physics in Medicine and Biology, 2022, 67(11). DOI: 10.1088/1361-6560/ac71f0.

    [33]

    SCHMITT N, WUCHERPFENNIG L, ROTKOPF L T, et al. Metal artifacts and artifact reduction of neurovascular coils in photon-counting detector CT versus energy-integrating detector CT - in vitro comparison of a standard brain imaging protocol[J]. European Radiology, 2023, 33(2): 803-811. DOI: 10.1007/s00330-022-09073-y.

    [34] 张恒龙, 杨新国, 田昭俭, 等. O-MAR重建在去除颅内动脉瘤弹簧圈栓塞术后金属伪影的价值[J]. 实用医学影像杂志, 2019, 20(3): 217-220. DOI: 10.16106/j.cnki.cn14-1281/r.2019.03.001.

    ZHANG H L, YANG X G, TIAN Z J, et al. Value of O-MAR reconstruction in removing metal artifacts after coil embolization of intracranial aneurysms[J]. Journal of Practical Medical Imaging, 2019, 20(3): 217-220. DOI: 10.16106/j.cnki.cn14-1281/r.2019.03.001. (in Chinese).

    [35]

    DUNET V, BERNASCONI M, HAJDU S D, et al. Impact of metal artifact reduction software on image quality of gemstone spectral imaging dual-energy cerebral CT angiography after intracranial aneurysm clipping[J]. Neuroradiology, 2017, 59(9): 845-852. DOI: 10.1007/s00234-017-1871-6.

    [36] 余娜, 严敏, 傅浪舟, 等. 应用能谱CT技术去除颅内动脉瘤弹簧圈栓塞术后金属伪影[J]. 第三军医大学学报, 2020, 42(20): 2069-2074. DOI: 10.16016/j.1000-5404.202005207.

    YU N, YAN M, FU L Z, et al. Removal of metal artifacts after coil embolization of intracranial aneurysms using spectral CT[J]. Journal of the Third Military Medical University, 2020, 42(20): 2069-2074. DOI: 10.16016/j.1000-5404.202005207. (in Chinese).

    [37] 董鑫, 吕国士, 刘伟, 等. 能谱CT的MONO成像联合MARs技术在颅内弹簧圈植入物伪影的应用研究[J]. 临床放射学杂志, 2016, 35(5): 794-798. DOI: 10.13437/j.cnki.jcr.2016.05.037.

    DONG X, LV G S, LIU W, et al. Application effects of energy spectral CT mono imaging technology united with MARs in removing artifacts of intracranial spring coil implant[J]. Journal of Clinical Radiology, 2016, 35(5): 794-798. DOI: 10.13437/j.cnki.jcr.2016.05.037. (in Chinese).

    [38]

    ABDOLI M, AY M R, AHMADIAN A, et al. Reduction of dental filling metallic artifacts in CT-based attenuation correction of PET data using weighted virtual sinograms optimized by a genetic algorithm[J]. Medical Physics, 2010, 37(12): 6166-6677. DOI: 10.1118/1.3511507.

    [39]

    FELDHAUS F, BöNING G, JONCZYK M, et al. Metallic dental artifact reduction in computed tomography (Smart MAR): Improvement of image quality and diagnostic confidence in patients with suspected head and neck pathology and oral implants[J]. European Journal of Radiology, 2019, 118: 153-160. DOI: 10.1016/j.ejrad.2019.07.015.

    [40] 唐丽, 刘星, 侯平, 等. 深度学习重建联合Smart去金属伪影算法对颈部CT图像中口腔金属植入物伪影的影响[J]. 中国医学影像技术, 2023, 39(11): 1731-1735. DOI: 10.13929/j.issn.1003-3289.2023.11.031.

    TANG L, LIU X, HOU P, et al. Effect of deep learning reconstruction combined with Smart metal artifact reduction algorithm on artifacts of dental metal implants in neck CT images[J]. Chinese Journal of Medical Imaging Technology, 2023, 39(11): 1731-1735. DOI: 10.13929/j.issn.1003-3289.2023.11.031. (in Chinese).

    [41]

    DONG Y, SHI A J, WU J L, et al. Metal artifact reduction using virtual monochromatic images for patients with pedicle screws implants on CT[J]. European Spine Journal, 2016, 25(6): 1754-1763. DOI: 10.1007/s00586-015-4053-4.

    [42]

    WANG Y, QIAN B, LI B, et al. Metal artifacts reduction using monochromatic images from spectral CT: Evaluation of pedicle screws in patients with scoliosis[J]. European Journal of Radiology, 2013, 82(8): e360-e366. DOI: 10.1016/j.ejrad.2013.02.024.

    [43]

    RAU A, STRAEHLE J, STEIN T, et al. Photon-counting Computed Tomography (PC-CT) of the spine: Impact on diagnostic confidence and radiation dose[J]. European Radiology, 2023, 33(8): 5578-5586. DOI: 10.1007/s00330-023-09511-5.

    [44] 张晓军. 半髋与全髋关节置换术在老年股骨颈骨折治疗中的疗效对比[J]. 中国药物与临床, 2020, 20(2): 231-233.

    ZHANG X J. A comparative study of hemiarthroplasty and total hip arthroplasty in the treatment of femoral neck fractures in the elderly[J]. Chinese Remedies & Clinics, 2020, 20(2): 231-233. (in Chinese).

    [45]

    WELLENBERG R H, BOOMSMA M F, Van OSCH J A, et al. Quantifying metal artefact reduction using virtual monochromatic dual-layer detector spectral CT imaging in unilateral and bilateral total hip prostheses[J]. European Journal of Radiology, 2017, 88: 61-70. DOI: 10.1016/j.ejrad.2017.01.002.

    [46]

    KIM Y J, CHA J G, KIM H, et al. Dual-energy and iterative metal artifact reduction for reducing artifacts due to metallic hardware: A loosening hip phantom study[J]. American Journal of Roentgenology, 2019, 212(5): 1106-1111. DOI: 10.2214/ajr.18.20413.

    [47] 赵立, 胡志海, 刘笑颜, 等. 对比单能量图像和单能去金属伪影技术在髋关节和膝关节置换术后的应用价值[J]. 医学影像学杂志, 2022, 32(9): 1641-1645.

    ZHAO L, HU Z H, LIU X Y, et al. Comparison of the application value of monoenergetic imaging and monoenergetic metal artifact reduction technology in hip and knee arthroplasty[J]. Journal of Medical Imaging, 2022, 32(9): 1641-1645. (in Chinese).

    [48]

    KIDOH M, UTSUNOMIYA D, ODA S, et al. CT venography after knee replacement surgery: Comparison of dual-energy CT-based monochromatic imaging and single-energy metal artifact reduction techniques on a 320-row CT scanner[J]. Acta Radiologica Open, 2017, 6(2): 2058460117693463. DOI: 10.1177/2058460117693463.

    [49] 马双, 杨楠, 祁昕, 等. 能谱CT去伪影技术在儿童消化道金属异物扫描中的应用评估[J]. 中国临床医学影像杂志, 2023, 34(12): 878-882.

    MA S, YANG N, QI X, et al. Application and evaluation of spectral CT artifact reduction technology in the scanning of metallic foreign bodies in the digestive tract of children[J]. Journal of China Clinic Medical Imaging, 2023, 34(12): 878-882. (in Chinese).

    [50] 何亮, 唐彩银, 张继, 等. 能谱CT金属伪影抑制算法在胸部穿刺活检中的应用价值[J]. 中国CT和MRI杂志, 2023, 21(11): 50-52. DOI: 10.3969/j.issn.1672-5131.2023.11.016.

    HE L, TANG C Y, ZHANG J, et al. Application value of metal artifact reduction algorithm in spectral CT chest biopsy[J]. Chinese Journal of CT and MRI, 2023, 21(11): 50-52. DOI: 10.3969/j.issn.1672-5131.2023.11.016. (in Chinese).

    [51] 杨帆, 曾懿. 双能量CT虚拟单能谱成像技术在TIPS术后支架评估中的应用[J]. 中国中西医结合影像学杂志, 2019, 17(3): 266-268. DOI: 10.3969/j.issn.1672-0512.2019.03.014.

    YANG F, ZENG Y. Application of virtual monoenergetic spectral imaging of dual-energy CT in stent evaluation after TIPS[J]. Chinese Journal of Integrated Traditional Chinese and Western Medicine Imaging, 2019, 17(3): 266-268. DOI: 10.3969/j.issn.1672-0512.2019.03.014. (in Chinese).

计量
  • 文章访问数:  485
  • HTML全文浏览量:  91
  • PDF下载量:  106
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-31
  • 修回日期:  2024-04-06
  • 录用日期:  2024-04-08
  • 网络出版日期:  2024-05-14

目录

/

返回文章
返回
x 关闭 永久关闭