ISSN 1004-4140
CN 11-3017/P

膝骨关节炎患者MRI变化与骨密度的相关性研究

王然, 杨健, 陈玥, 王威, 兰九钧, 陈君蓉

王然, 杨健, 陈玥, 等. 膝骨关节炎患者MRI变化与骨密度的相关性研究[J]. CT理论与应用研究(中英文), 2024, 33(5): 601-608. DOI: 10.15953/j.ctta.2024.024.
引用本文: 王然, 杨健, 陈玥, 等. 膝骨关节炎患者MRI变化与骨密度的相关性研究[J]. CT理论与应用研究(中英文), 2024, 33(5): 601-608. DOI: 10.15953/j.ctta.2024.024.
WANG R, YANG J, CHEN Y, et al. Correlation Between MRI Changes and Bone Mineral Density in Patients with Knee Osteoarthritis[J]. CT Theory and Applications, 2024, 33(5): 601-608. DOI: 10.15953/j.ctta.2024.024. (in Chinese).
Citation: WANG R, YANG J, CHEN Y, et al. Correlation Between MRI Changes and Bone Mineral Density in Patients with Knee Osteoarthritis[J]. CT Theory and Applications, 2024, 33(5): 601-608. DOI: 10.15953/j.ctta.2024.024. (in Chinese).

膝骨关节炎患者MRI变化与骨密度的相关性研究

基金项目: 四川省干部保健委员会科研项目(膝骨关节炎合并骨质疏松的多模态定量MR评估(川干研2021-609))。
详细信息
    作者简介:

    王然: 女,四川省骨科医院医学影像科住院医师,主要研究方向为骨肌影像,E-mail:13881967721@163.com

    通讯作者:

    陈君蓉: 女,四川省骨科医院医学影像科主任医师,主要研究方向为骨肌影像,E-mail:475470567@qq.com

  • 中图分类号: R  445;R  814

Correlation Between MRI Changes and Bone Mineral Density in Patients with Knee Osteoarthritis

  • 摘要:

    目的:分析探讨膝骨关节炎(KOA)患者软骨损伤、骨髓水肿分别与全身骨密度的关系。方法:选取2023年1月至2023年10月四川省骨科医院收治膝骨关节炎患者90例,均行膝关节MRI及胸部QCT检查。根据QTC结果将患者分为3组:骨密度正常组、骨量减少组、骨质疏松组;同时采集他们的性别、年龄、身体质量指数(BMI)、病程等一般信息。按照Recht关节软骨缺损评分系统、全膝关节磁共振成像评分系统(WORMS)评分分别在膝关节MR上评分,同时收集病例骨密度(BMD),将BMD值与MR软骨缺损评分、骨髓水肿评分做统计学分析。结果:3组的性别、BMI、病程无统计学差异,年龄有统计学差异;3组间的软骨缺损评分及骨髓水肿评分均显示骨量正常组与骨量减少组、骨量正常组与骨质疏松组有统计学意义,骨量减少组与骨质疏松组无统计学意义;KOA软骨损伤与骨密度相关,相关系数r=-0.412;KOA骨髓水肿与骨密度相关,相关系数r=-0.254。结论:KOA患者的全身骨密度值与膝关节软骨损伤、骨髓水肿相关,且全身骨密度减少时,可能提示膝关节软骨损伤程度加重或骨髓水肿程度加重。

    Abstract:

    Objective: To determine the relationship between cartilage injury, bone marrow edema, and total bone mineral density in patients with knee osteoarthritis (KOA). Methods: Ninety patients with KOA admitted to the Sichuan Province Orthopedic Hospital between March 2023 and October 2023 were selected, all of whom underwent knee joint MRI and chest QCT examinations. The patients were divided into three groups according to the QTC results: normal bone density, reduced bone mass, and osteoporosis. Patient information, such as sex, age, body mass index (BMI), and course of illness, was also obtained. MRIs of the knee joints were scored separately according to the Recht grading and Whole-organ Magnetic Resonance Imaging Score (WORMS). The bone mineral density (BMD) of the patients was calculated and the BMD values were statistically analyzed using the MR score. Results: No statistically significant differences were observed in sex, BMI, or disease duration among the three groups; however, a statistically significant difference was observed in age. The Recht and WORMS scores among the three groups showed statistical significance between the normal bone density group and the reduced bone mass and osteoporosis groups; however, no statistical significance was observed between the reduced bone mass and osteoporosis groups. KOA cartilage injury was negatively correlated with bone density with a correlation coefficient of r=−0.412, while KOA bone marrow edema was negatively correlated with bone density with a correlation coefficient of r=−0.254. Conclusion: The total bone density in patients with KOA is related to knee joint cartilage injury and bone marrow edema. A decrease in total bone density may indicate the severity of knee cartilage injury or bone marrow edema.

  • 膝骨关节炎(knee osteoarthritis,KOA)是常见的慢性退行性关节病,多发生于中老年患者,女性多于男性[1]。KOA主要特征包括软骨变性破坏、软骨下骨重塑、骨髓水肿、半月板损伤、滑膜炎、关节间隙变窄等[2]。大多研究发现KOA患者常合并骨质疏松(osteoporosis,OP)[3-6]

    磁共振成像(magnetic resonance imaging,MRI)可观察膝关节软骨结构、骨髓水肿[7]。定量CT(quantitative computed tomography,QCT)是诊断骨质疏松的有效途径之一,在做常规胸部CT的同时测量骨密度(bone mineral density,BMD)[8]。故本研究采用QCT结合MR检查探讨KOA患者膝关节的影像学改变与骨密度、骨质疏松之间的关系,为临床干预治疗提供有效依据。

    纳入标准:年龄40~90岁;符合中华医学会骨科分会外科组学发布的骨关节炎诊断标准(2018年版本)[9];已行膝关节MRI、胸部QCT检查。

    排除标准:急性膝关节外伤;免疫性骨关节炎;感染性病变(包括关节结核、化脓性关节炎等);关节内肿瘤;人工膝关节置换术后;MRI禁忌证。

    从统计学角度来看,一般当样本量为30例,更接近正态分布,研究结果才具有意义。本研究中入组量也是依据这一结论,选择符合纳入标准的最低样本量。根据研究目的进行分组,得到每组30例,总共入组病例90例。

    本研究共90例患者,根据QTC结果将患者分为3组:骨密度正常组、骨量减少组、骨质疏松组。每组各30例;男性18例,女性72例;年龄40~90岁,平均(62.04±9.88)岁;BMI(25.96±3.60)kg·m-2;病程(52.17±66.43)月;3组患者的一般资料(年龄、性别、BMI、病程)做统计学分析。

    MRI检查。采用GE SIGNA Architect型3.0 T核磁共振设备对膝关节常规扫描,患者取仰卧、膝自然伸直、足先进。成像方位为矢状位快速自旋回波T2加权像(T2-FSE TR 5 500 ms,TE 120 ms)、质子加权成像脂肪抑制序列(PDWI-FS TR 2 800 ms,TE 42 ms);冠状位脂肪抑制序列(T2-FS FSE,TR 1 800 ms,TE 68 ms)、快速自旋回波T1加权像(T1-FSE TR 800 ms,TE 28 ms);横断位质子加权成像脂肪抑制序列(PDWI-FS TR 2 600 ms,TE 42 ms)。层厚3 mm,层距0.3 mm,视野180×180。

    QCT检查。采用SOMATOM 128-slice configuration syngo CT VA30设备对患者行胸部扫描,使用CT图像后处理软件(QCT PRO System)获得BMD。

    软骨缺损评分。根据Recht关节软骨损伤分级标准[10]对所得图像进行分级评分,0级正常关节软骨(1分);Ⅰ级软骨分层结构消失,软骨内出现局灶性低信号灶,软骨表面光滑(2分);Ⅱ级软骨表面轮廓轻度至中度不规则,软骨缺损深度未及全层厚度的50%(3分);Ⅲ 级软骨表面轮廓中度至重度不规则,软骨缺损深度超过全层厚度的50%,但未见完全脱落(4分);Ⅳ 级软骨全层缺损、剥脱,软骨下骨质暴露伴或不伴软骨下骨质信号改变(5分)。得分越高,表明膝关节软骨损伤越严重。本研究中评价区域为髌骨、股骨滑车、股骨内/外侧髁、胫骨平台内/外侧,最后各区域分数相加做统计学分析。

    骨髓水肿评分。根据全膝关节磁共振成像评分系统(whole-organ magnetic resonance imaging score,WORMS)[11]评价骨髓水肿情况,将膝关节分为15个亚区,根据骨髓水肿在每个亚区所占的百分比分级,0级无骨髓水肿;1级骨髓水肿区域<25% 亚区;2级骨髓水肿区域25%~50% 亚区;3级骨髓水肿区域>50% 亚区。最后各亚区分数相加做统计学分析。

    骨密度测定。利用QCT PRO软件测量,将感兴趣区ROI放置于椎体中部松质骨区,避开骨岛等影响骨密度值区域;测量L1和L2椎体骨密度,计算平均值,避开骨折或病变椎体[12-13]

    以上评分由两名高年资影像医师采用独立双盲法评价,最后取平均值做统计分析。

    采用SPSS 25.0统计软件分析数据。年龄、BMI、病程计量资料以均值±标准差$ \left(\overline{x}\pm s\right) $表示;性别计数资料采用$\chi^2 $检验;3组间的软骨缺损评分、骨髓水肿评分做单因素方差分析;所有病例Recht评分、WORMS评分分别与骨密度值做Spearman相关性分析。以P<0.05为差异有统计学意义。

    3组的性别、BMI、病程无统计学差异,年龄有统计学差异(表1)。

    表  1  三组骨关节炎患者一般资料比较
    Table  1.  Comparison of the general data of patients with osteoarthritis in the three groups
    组别 年龄$ \left(\overline{x}\pm s\right) $/岁 性别/例 BMI$ \left(\overline{x}\pm s\right) $/kg·m-2 病程$ \left(\overline{x}\pm s\right) $/月
    骨量正常组(n=30) 55.03±7.42 7 23 26.20±3.68 44.23±71.20
    骨量减少组(n=30) 62.30±10.11 8 22 26.03±3.92 61.47±72.39
    骨质疏松组(n=30) 68.80±6.69 3 27 25.65±3.29 50.83±55.45
    检验值 F=21.139 $\chi^2 $=2.917 F=0.184 F=0.508
    P 0.000 0.233 0.832 0.603
    下载: 导出CSV 
    | 显示表格

    3组间有组间差异性。事后检验多重比较后,骨量正常组与骨量减少组有统计学意义;骨量正常组与骨质疏松组有统计学意义;骨量减少组与骨质疏松组无统计学意义(表2)。

    表  2  三组骨关节炎患者软骨评分比较
    Table  2.  Comparison of the cartilage scores of patients with osteoarthritis in the three groups
    组别 项目 统计检验
    骨量正常组(n=30) 骨量减少组(n=30) 骨质疏松组(n=30) F P
    得分$ \left(\overline{x}\pm s\right) $ 17.10±5.25 20.10±4.04 21.33±3.98 7.143 0.01
    下载: 导出CSV 
    | 显示表格

    3组间有组间差异性。事后检验多重比较后,骨量正常组与骨量减少组有统计学意义;骨量正常组与骨质疏松组有统计学意义;骨量减少组与骨质疏松组无统计学意义(表3)。

    表  3  三组骨关节炎患者骨髓水肿评分比较
    Table  3.  Comparison of the bone marrow edema scores of patients with osteoarthritis in the three groups
    项目 组别 统计检验
    骨量正常组(n=30) 骨量减少组(n=30) 骨质疏松组(n=30) F P
    得分$ \left(\overline{x}\pm s\right) $ 10.73±2.74 12.83±3.67 13.03±3.99 3.941 0.023
    下载: 导出CSV 
    | 显示表格

    90例患者Recht软骨评分与骨密度值做Spearman相关性分析,相关系数r=-0.412(图1)。

    图  1  Recht关节软骨评分与QCT骨密度值的相关性
    Figure  1.  Correlation between the Recht score and QCT bone mineral density

    90例患者WORMS骨髓水肿评分与骨密度值做Spearman 相关性分析,相关系数r=-0.254(图2)。3组患者膝关节MRI成像见图3

    图  2  WORMS骨髓水肿评分与QCT骨密度值的相关性
    Figure  2.  Correlation between WORMS and QCT bone mineral density
    图  3  三组患者膝关节核磁共振成像
    注:(a)骨密度正常组,左膝关节软骨完整,无骨髓水肿; (b)骨量减少组,左膝关节股骨内侧髁、胫骨平台内侧软骨损伤、骨髓水肿; (c)骨质疏松组,右膝关节股骨内侧髁、胫骨平台内侧、胫骨平台外侧软骨损伤、骨髓水肿。
    Figure  3.  MRI of the knee joint of patients in the three groups

    KOA是影响老年群体的常见慢性退行性关节疾病,随着年龄的增长而逐渐显现。KOA在病理学上的主要特征包括软骨损伤、骨质增生改变,这些会导致关节结构的变形和功能障碍[14]。临床表现为关节疼痛、肿胀、活动受限,尤其是在长时间负重或活动后症状加重,严重影响患者的生活质量。

    由于KOA与年龄增长密切相关,本研究显示患病人群的年龄分布存在统计学上的显著差异,这可能与老年人骨密度降低、软骨退化加速等因素有关。然而3组的性别无统计学意义,在以往研究中性别与骨关节炎、骨质疏松有一定的相关性,在本研究中可能因为未纳入更多的样本量,未能体现出统计学差异。

    因MRI对软组织的高分辨率和对软骨损伤敏感度高的特点,在评估KOA患者膝关节软骨损伤、骨质信号改变有很大的优越性[15-16]。QCT在骨密度测量方面优于双能X线法(dual-energy X-ray absorptiometry,DXA),QCT采用三维成像技术测量骨密度、图像分辨率高,不易受周边组织的影响;QCT可以完整地显示骨结构及其形态,能区分皮质骨和松质骨,测量的精确度和敏感度更高[17]。这使得QCT成为评估KOA患者骨密度变化的有效工具。

    研究表明KOA与软骨和软骨下骨变化有关[18],早期病理特征中最重要的就是关节软骨的磨损和退变。KOA患者由于软骨下骨密度增大,软骨下骨板、骨小梁厚度或者体积增加,导致下方的干骺端松质骨厚度变薄、骨密度减低,甚至发生骨质疏松[19-21]。有研究同样表明,重度KOA患者的骨小梁厚度明显高于轻度KOA患者[22]。全身骨密度可以预测骨关节炎的进展,且全身骨密度可以预测软骨体积减少和KOA的影像学改变[23-24]。也有研究表明,全身骨密度减低可引起软骨损伤[25]。在本研究中,全身骨密度与软骨损伤程度呈负相关,且KOA患者随着全身骨密度降低,软骨损伤程度愈重,这与前述研究结果一致。虽然有研究通过测量膝关节局部骨密度来探究与KOA的相关性,但KOA被认为是一种全身性的疾病,不单反应局部骨质改变。

    膝关节骨髓水肿是评估KOA的重要指标之一,但发病机制尚不明确,多认为与膝关节负荷、力线等因素相关[26-27]。骨髓水肿是一种常见的病理表现,以炎症细胞浸润、纤维组织增生、骨基质水肿为主[28]。MRI能在大部分KOA患者中检测到骨髓水肿,并且骨髓水肿可作为KOA进展的重要因素之一[29]

    如前所述,KOA患者会发生骨密度减低,甚至骨质疏松。骨关节炎和骨质疏松均属于退行性病变,有研究表明骨关节炎与骨质疏松是存在一定关联性的,骨密度值降低可能会随着骨质疏松加重而加剧KOA的严重程度[30]。膝关节承担负荷的间接表现之一是骨髓水肿,由于软骨磨损、骨质增生等引起的关节异常应力,使骨质压力增高、骨小梁断裂从而导致骨髓水肿[31-32]。当骨密度越低、局部负荷越大时,骨小梁断裂形成的骨髓水肿风险越大。

    本研究中,全身骨密度与骨髓水肿呈负相关,KOA患者骨密度减低,骨髓水肿程度越明显。KOA患者合并骨质疏松时骨量减少、骨微结构破坏、脆性增加,同时骨质疏松导致骨重建能力下降,在二者的作用下骨承重能力下降,加剧了骨髓水肿形成[33]

    本研究中骨量减少组与骨质疏松组在软骨损伤、骨髓水肿均无统计学差异,分析原因可能是两组间骨密度值差异不明显。此前研究表明KOA合并骨质疏松时,骨密度与软骨损伤、骨髓水肿存在一定的相关性[34]。骨量减少组相对于骨量正常组来说,骨密度下降程度不明显,因此未能表现出统计学差异。

    随着国人健康意识的提高,对做胸部CT肺结节、肺癌筛查及椎体骨密度检测的需求逐渐增加,而两次检查带来的辐射剂量令部分人群担忧。为此本研究采用胸部CT联合QCT骨密度一站式检查,保证在不影响临床诊断的前提下减少辐射剂量,消除辐射剂量过大的担忧,又节约了医疗成本。以往的研究常采用DXA来测量骨密度,但DXA是二维成像,测量骨密度容易受钙化、骨质增生等因素影响。

    QCT是三维容积数据分析,测量的是椎体真正的体积骨密度[35]。目前国际临床骨密度学会(ISCD)2007推荐测量2个腰椎椎体骨密度平均值(L1、L2椎体)来评估全身骨密度[36],本研究中胸部QCT扫描范围至L4椎体上缘,其测量方法与腰椎QCT测量一致。

    本研究中KOA患者的全身骨密度值与膝关节软骨损伤、骨髓水肿存在一定相关性。当全身骨密度减少时,可能提示膝关节软骨损伤程度加重或骨髓水肿程度加重。KOA患者就诊时常规行胸部QCT检查,既能做到肺部疾病筛查,又能通过测量全身骨密度预测膝关节软骨损伤程度或骨髓水肿程度,进而提示膝骨关节炎进展趋势,对临床有一定的应用前景。

    在今后的研究中可扩大相关观察指标,如KOA半月板损伤、韧带损伤的评分,纳入更多的样本量,从而深入了解KOA的病理机制对患者整体骨骼健康的影响,为临床医生提供更为精确的治疗指导。

  • 图  1   Recht关节软骨评分与QCT骨密度值的相关性

    Figure  1.   Correlation between the Recht score and QCT bone mineral density

    图  2   WORMS骨髓水肿评分与QCT骨密度值的相关性

    Figure  2.   Correlation between WORMS and QCT bone mineral density

    图  3   三组患者膝关节核磁共振成像

    注:(a)骨密度正常组,左膝关节软骨完整,无骨髓水肿; (b)骨量减少组,左膝关节股骨内侧髁、胫骨平台内侧软骨损伤、骨髓水肿; (c)骨质疏松组,右膝关节股骨内侧髁、胫骨平台内侧、胫骨平台外侧软骨损伤、骨髓水肿。

    Figure  3.   MRI of the knee joint of patients in the three groups

    表  1   三组骨关节炎患者一般资料比较

    Table  1   Comparison of the general data of patients with osteoarthritis in the three groups

    组别 年龄$ \left(\overline{x}\pm s\right) $/岁 性别/例 BMI$ \left(\overline{x}\pm s\right) $/kg·m-2 病程$ \left(\overline{x}\pm s\right) $/月
    骨量正常组(n=30) 55.03±7.42 7 23 26.20±3.68 44.23±71.20
    骨量减少组(n=30) 62.30±10.11 8 22 26.03±3.92 61.47±72.39
    骨质疏松组(n=30) 68.80±6.69 3 27 25.65±3.29 50.83±55.45
    检验值 F=21.139 $\chi^2 $=2.917 F=0.184 F=0.508
    P 0.000 0.233 0.832 0.603
    下载: 导出CSV

    表  2   三组骨关节炎患者软骨评分比较

    Table  2   Comparison of the cartilage scores of patients with osteoarthritis in the three groups

    组别 项目 统计检验
    骨量正常组(n=30) 骨量减少组(n=30) 骨质疏松组(n=30) F P
    得分$ \left(\overline{x}\pm s\right) $ 17.10±5.25 20.10±4.04 21.33±3.98 7.143 0.01
    下载: 导出CSV

    表  3   三组骨关节炎患者骨髓水肿评分比较

    Table  3   Comparison of the bone marrow edema scores of patients with osteoarthritis in the three groups

    项目 组别 统计检验
    骨量正常组(n=30) 骨量减少组(n=30) 骨质疏松组(n=30) F P
    得分$ \left(\overline{x}\pm s\right) $ 10.73±2.74 12.83±3.67 13.03±3.99 3.941 0.023
    下载: 导出CSV
  • [1] 王斌, 邢丹, 董圣杰, 等. 中国膝骨关节炎流行病学和疾病负担的系统评价[J]. 中国循证医学杂志, 2018, 18(2): 134−142.

    WANG B, XING D, DONG S J, et al. Prevalence and disease burden of knee osteoarthritis in China: A systematic review[J]. Chinese Journal of Evidence-based Medicine, 2018, 18(2): 134−142. (in Chinese).

    [2]

    HARRELL C R, MARKOVIC B S, FELLABAUM C, et al. Mesenchymal stem cell-based therapy of osteoarthritis: Current knowledge and future perspectives[J]. Biomedicine Pharmacotherapy, 2019, 109: 2318−2326. DOI: 10.1016/j.biopha.2018.11.099.

    [3]

    MESSENT E A, WARD R J, TONKIN C J, et al. Differences in trabecular structure between knees with and without osteoarthritis quantified by macro and standard radiography, respectively[J]. Osteoarthritis Cartilage, 2006, 14(12): 1302−1305. DOI: 10.1016/j.joca.2006.07.012.

    [4]

    BUCKLAND-WRIGHT C. Subchondral bone changes in hand and knee osteoarthritis detected by radiography[J]. Osteoarthritis Cartilage, 2004, 12(S)A: S10-S19.

    [5]

    DEDRICK D K, GOLDSTEIN S A, BRANDT K D, et al. A longitudinal study of subchondral plate and trabecular bone in cruciate-deficient dogs with osteoarthritis followed up for 54 months[J]. Arthritis Rheumatic, 1993, 36(10): 1460−1467. DOI: 10.1002/art.1780361019.

    [6] 张程, 吴忠书, 李子祺, 等. 膝骨关节炎与骨质疏松症的相关性研究进展[J]. 中国骨质疏松杂志, 2021, 27(4): 618−624. DOI: 10.3969/j.issn.1006-7108.2021.04.028.

    ZHANG C, WU Z S, LI Z Q, et al. Research progress on the correlation between knee osteoarthritis and osteoporosis[J]. Chinese Journal of Osteoporosis, 2021, 27(4): 618−624. DOI: 10.3969/j.issn.1006-7108.2021.04.028. (in Chinese).

    [7]

    BENNELL K L, CREABY M W, WRIGLEY T V, et al. Bone marrow lesions are related to dynamic knee loading in medial knee osteoarthritis[J]. Annals of the Rheumatic Diseases, 2010, 69(6): 1151−1154. DOI: 10.1136/ard.2009.118182.

    [8] 王勇朋, 阳琰, 何生生, 等. 低剂量胸部CT与QCT椎体骨密度测量一站式扫描可行性研究[J]. 放射学实践, 2018, 33(11): 1194−1197.

    WANG Y P, YANG Y, HE S S, et al. Low-dose chest CT and QCT “one-stop-shop” scan technology: A feasibility study[J]. Radiologic Practice, 2018, 33(11): 1194−1197. (in Chinese).

    [9] 中华医学会骨科学分会关节外科学组. 骨关节炎诊疗指南(2018年版)[J]. 中华骨科杂志, 2018, 38(12): 705−715. DOI: 10.3760/cma.j.issn.0253-2352.2018.12.001.

    Osteoporosis Group of Chinese Orthopaedic Associationg. Chinese guideline for diagnosis and management of osteoarthritis (2018 edition)[J]. Chinese Journal of Orthopaedics, 2018, 38(12): 705−715. DOI: 10.3760/cma.j.issn.0253-2352.2018.12.001. (in Chinese).

    [10]

    RECHT M P, KRAMER J, MARCELIS S, et al. Abnormalities of articular cartilage in the knee: Analysis of available MR techniques[J]. Radiology, 1993, 187(2): 473−478. DOI: 10.1148/radiology.187.2.8475293.

    [11]

    PETERFY C G, GUERMAZI A, ZAIM S, et al. Whole-organ magnetic resonance imaging score (WORMS) of the knee in osteoarthritis[J]. Osteoarthritis Cartilage, 2004, 12(3): 177−190. DOI: 10.1016/j.joca.2003.11.003.

    [12] 李凯, 陈捷, 赵林芬, 等. 中国人群定量CT(QCT)脊柱骨密度正常参考值的建立和骨质疏松症QCT诊断标准的验证[J]. 中国骨质疏松杂志, 2019, 25(9): 1257−1262. DOI: 10.3969/j.issn.1006-7108.2019.09.011.

    LI K, CHEN J, ZHAO L F, et al. The establishment of QCT spinal vBMD re ference database and the validation of the diagnosis criteria of oste oporosis with QCT for Chinese[J]. Chinese Journal of Osteoporosis, 2019, 25(9): 1257−1262. DOI: 10.3969/j.issn.1006-7108.2019.09.011. (in Chinese).

    [13] 舒意, 杨沛, 廖紫祾, 等. 一站式低剂量扫描在胸部及腰椎QCT体检人群中的应用[J]. CT理论与应用研究, 2022, 31(2): 244−250. DOI: 10.15953/j.1004-4140.2022.31.02.12.

    SHU Y, YANG P, LIAO Z L, et al. To explore the low-dose CT and QCT “one-stop-shop” scan technology for physical examination crowd[J]. CT Theory and Applications, 2022, 31(2): 244−250. DOI: 10.15953/j.1004-4140.2022.31.02.12. (in Chinese).

    [14] 赵敏, 刘鸿雁, 王国华, 等. 膝关节骨关节炎半月板损伤程度与关节软骨T1 rho、T2 mapping相关性研究[J]. 中国临床医学影像杂志, 2019, 30(11): 812−816.

    ZHAO M, LIU H Y, WANG G H, et al. The correlation between the degree of meniscus injury of knee osteoarthritis and T1 rho, T2 mapping of the articular cartilage[J]. Journal of China Clinic Medical Imaging, 2019, 30(11): 812−816. (in Chinese).

    [15] 王佳, 朱吉云, 茅博伟, 等. 膝关节骨性关节炎软骨损伤的MRI形态评分及T2值变化与临床表现的相关性[J]. 影像研究与医学应用, 2021, 5(21): 26−27. DOI: 10.3969/j.issn.2096-3807.2021.21.012.

    WANG J, ZHU J Y, MAO B W, et al. MRI morphological scores of cartilage injury in knee joint osteoarthritis and correlation between changes of T2 value and clinical features[J]. Journal of Imaging Research and Medical, 2021, 5(21): 26−27. DOI: 10.3969/j.issn.2096-3807.2021.21.012. (in Chinese).

    [16] 刘艳平, 廖忠剑, 李正南. 磁共振成像检查在评估膝关节退行性骨关节炎患者关节损伤程度中的价值[J]. 中国当代医药, 2021, 28(34): 158−161. DOI: 10.3969/j.issn.1674-4721.2021.34.043.

    LIU Y P, LIAO Z J, LI Z N. The value of magnetic resonance imaging in assessing the degree of joint damage in patients with knee degenerative osteoarthritis[J]. China Modern Medicine, 2021, 28(34): 158−161. DOI: 10.3969/j.issn.1674-4721.2021.34.043. (in Chinese).

    [17] 韩雪莉. 迭代模型重建技术在低剂量胸部CT联合腰椎QCT扫描中的研究[D]. 郑州: 郑州大学, 2018.

    HAN X L. The study of iterative model reconstruction technique on the low dose chest CT combined with lumbar vertebrae quantitative CT[D]. Zhengzhou: Zhengzhou University, 2018. (in Chinese).

    [18]

    LEE J Y, HARVEY W F, PRICE L L, et al. Relationship of bone mineral density to progression of knee osteoarthritis[J]. Arthritis Rheumatic, 2013, 65(6): 1541−1546. DOI: 10.1002/art.37926.

    [19]

    BOBINAC D, SPANJOL J, ZORICIC S, et al. Changes in articular cartilage and subchondral bone histomorphometry in osteoarthritic knee joints in humans[J]. Bone, 2003, 32(3): 284−290. DOI: 10.1016/S8756-3282(02)00982-1.

    [20]

    KAMIBAYASHI L, WYSS U P, COOKE T D, et al. Trabecular microstructure in the medial condyle of the proximal tibia of patients with knee osteoarthritis[J]. Bone, 1995, 17(1): 27−35. DOI: 10.1016/8756-3282(95)00137-3.

    [21]

    LI B, ASPDEN R M. Composition and mechanical properties of cancellous bone from the femoral head of patients with osteoporosis or osteoarthritis[J]. Journal of Bone and Mineral Research, 1997, 12(4): 641−651. DOI: 10.1359/jbmr.1997.12.4.641.

    [22]

    TOKGÖZ M A, ATIK O Ş, ESENDAĞLI G, et al. Is it possible that the pathogenesis of osteoarthritis could start with subchondral trabecular bone loss like osteoporosis?[J]. Eklem Hastalik Cerrahisi, 2018, 29(3): 152−158. DOI: 10.5606/ehc.2018.007.

    [23]

    MARCUCCI G, BRANDI M L. Rare causes of osteoporosis[J]. Clinical Cases in Mineral and Bone Metabolism, 2015, 12(2): 151−156.

    [24]

    RYD L, BRITTBERG M, ERIKSSON K, et al. Pre-osteoarthritis: Definition and diagnosis of an elusive clinical entity[J]. Cartilage, 2015, 6(3): 156−165. DOI: 10.1177/1947603515586048.

    [25]

    WEN L, SHIN M H, KANG J H, et al. The relationships between bone mineral density and radiographic features of hand or knee osteoarthritis in older adults: Data from the Dong-gu study[J]. Rheumatology (Oxford), 2016, 55(3): 495−503.

    [26]

    ROEMER F W, NEOGI T, NEVITT M C, et al. Subchondral bone marrow lesions are highly associated with, and predict subchondral bone attrition longitudinally: The MOST study[J]. Osteoarthritis Cartilage, 2010, 18(1): 47−53. DOI: 10.1016/j.joca.2009.08.018.

    [27]

    DORE D, MARTENS A, QUINN S, et al. Bone marrow lesions predict site-specific cartilage defect development and volume loss: A prospective study in older adults[J]. Arthritis Research Therapy, 2010, 12(6): R222. DOI: 10.1186/ar3209.

    [28]

    de SÁ G A, DOS S A, NOGUEIRA J M, et al. Angiotensin II triggers knee joint lesions in experimental osteoarthritis[J]. Bone, 2021, 145: 115842. DOI: 10.1016/j.bone.2021.115842.

    [29]

    HEILMEIER U, WAMBA J M, JOSEPH G B, et al. Baseline knee joint effusion and medial femoral bone marrow edema, in addition to MRI-based T2 relaxation time and texture measurements of knee cartilage, can help predict incident total knee arthroplasty 4~7 years later: Data from the Osteoarthritis Initiative[J]. Skeletal Radiology, 2019, 48(1): 89−101. DOI: 10.1007/s00256-018-2995-4.

    [30] 曾国庆, 董铿, 黄建军. 膝骨关节炎与骨质疏松症的相关性分析[J]. 中国卫生标准管理, 2023, 14(18): 94−97. DOI: 10.3969/j.issn.1674-9316.2023.18.022.

    ZENG G Q, DONG K, HUANG J J. Analysis of the correlation between knee osteoarthritis and osteoporosis[J]. China Health Standard Management, 2023, 14(18): 94−97. DOI: 10.3969/j.issn.1674-9316.2023.18.022. (in Chinese).

    [31] 周自明, 常时新, 田芳, 等. 膝骨关节炎软骨下骨髓水肿样及囊样病变与软骨病损的相关性研究[J]. 中国医学计算机成像杂志, 2012, 18(3): 243−248. DOI: 10.3969/j.issn.1006-5741.2012.03.012.

    ZHOU Z M, CHANG S X, TIAN F, et al. Relationship between subchondral bone marrow edema-like or cyst-like lesions and cartilage loss in patients with knee osteoarthritis[J]. Chinese Computed Medical Imaging, 2012, 18(3): 243−248. DOI: 10.3969/j.issn.1006-5741.2012.03.012. (in Chinese).

    [32] 何勇, 张乾, 高华利, 等. 类风湿关节炎膝关节骨髓水肿病变的影像学研究[J]. 中国矫形外科杂志, 2019, 27(5): 421−425.

    HE Y, ZHANG Q, GAO H L, et al. Bone marrow edema in rheumatoid arthritis knee: A study based on MRI[J]. Orthopedic Journal of China, 2019, 27(5): 421−425. (in Chinese).

    [33] 肖龙文, 桑志成. 重度膝骨关节炎患者骨髓水肿与骨质疏松的相关性研究[J]. 中国骨伤, 2023, 36(4): 371−375.

    XIAO L W, SANG Z C. Study on correlation between bone marrow edema and osteoporosis in patients with severe knee osteoarthritis[J]. China Journal of Orthopaedics and Traumatology, 2023, 36(4): 371−375. (in Chinese).

    [34] 郭子瑊, 毛兴佳, 高英杰, 等. 膝骨关节炎与膝关节周围骨密度的相关性研究进展[J]. 中华关节外科杂志(电子版), 2021, 15(5): 586−595.

    GUO Z J, MAO X J, GAO Y J, et al. Research progress on relationship between knee osteoarthritis and bone mineral density around knee joint[J]. Chinese Journal of Joint Surgery (Electronic Edition), 2021, 15(5): 586−595. (in Chinese).

    [35] 程晓光, 王亮, 曾强, 等. 中国定量CT(QCT)骨质疏松症诊断指南(2018)[J]. 中国骨质疏松杂志, 2019, 25(6): 733−737.

    CHENG X G, WANG L, ZENG Q, et al. The China guideline for the diagnosis criteria of osteoporosis with quantitative computed tomography (QCT) (2018)[J]. Chinese Journal of Osteoporosis, 2019, 25(6): 733−737. (in Chinese).

    [36]

    ENGELKE K, ADAMS J E, ARMBRECHT G, et al. Clinical use of quantitative computed tomography and peripheral quantitative computed tomography in the management of osteoporosis in adults: The 2007 ISCD official positions[J]. Journal of Clinical Densitometry, 2008, 11(1): 123−162. DOI: 10.1016/j.jocd.2007.12.010.

图(3)  /  表(3)
计量
  • 文章访问数:  156
  • HTML全文浏览量:  34
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-02
  • 修回日期:  2024-05-20
  • 录用日期:  2024-05-21
  • 网络出版日期:  2024-06-10
  • 刊出日期:  2024-09-04

目录

/

返回文章
返回
x 关闭 永久关闭