Application of Multi-scale Curvature in Fault Interpretation of K Oilfield in Bohai Sea
-
摘要:
复杂断裂系统是影响K油田开发的关键问题,常规属性(如相干属性、纹理属性等)在解释断层方面存在局限,特别是微小断层的识别和多尺度复杂断裂系统的成像效果较差,并且容易受噪音干扰。为了解决这些问题,本文采用保边平滑滤波(EPS)技术对地震资料进行预处理,既能有效压制随机噪音,提高信噪比,又保持地震数据的边缘结构信息。在此基础上,利用时频波数域多尺度算子实现多尺度曲率分析。这种组合创新方法在渤海K油田的断裂识别和解释中表现良好,为开发井位的顺利实施提供有力指导,帮助规避风险断层,提高了开发效率和成功率。
Abstract:Ascertaining the curvature attributes of fault systems depends on the partial derivative, which is easily disturbed by noise. Therefore, an edge-preserving de-noising filter is used to preprocess seismic data, effectively improving the signal-to-noise ratio and maintaining information on the edge structure. On this basis, multi-scale curvature analysis is realized by using multi-scale operators in a time–frequency–wavenumber domain. This attribute fully considers the complexity of geological structure and fault distribution characteristics. Small-scale curvature attributes can better represent subtle changes in geological structure, which is conducive to avoiding risk faults in the oilfield development phase. Large-scale curvature attributes are conducive to the macro analysis of fault distribution characteristics, which plays an important role in regional exploration. The multi-scale curvature method has been well applied to fault interpretation in the Bohai K Oilfield and has proven beneficial to the drilling of oilfield development wells.
-
-
-
[1] 魏天罡, 李福强, 李久, 等. 基于匹配追踪的反射系数反演在渤海PL油田的应用[J]. 海洋技术学报, 2022, 41: 69−75. DOI: 10.3969/j.issn.1003-2029.2022.02.009. WEI T G, LI F Q, LI J, et al. The application of reflection coefficient inversion based on matching pursuit in Bohai PL Oilfield[J]. Journal of Ocean Technology, 2022, 41: 69−75. DOI: 10.3969/j.issn.1003-2029.2022.02.009. (in Chinese).
[2] LISLE R J. Detection of zones of abnormal strains in structures using gaussian curvature analysis[J]. AAPG Bulletin, 1994, 78: 1811−1819.
[3] ERICSSON J B. Facies and curvature controlled 3D fracture models in a cretaceous carbonate reservoir, Arabian Gulf[J]. Geological Society, London, Special Publications, 1998, 147: 299−312. DOI: 10.1144/GSL.SP.1998.147.01.20.
[4] ROBERTS A. Curvature attributes and their application to 3D interpreted horizons[J]. First Break, 2001, 19(2): 85−100. DOI: 10.1046/j.0263-5046.2001.00142.x.
[5] AL-DOSSARY S, MARFURT K J. 3D volumetric multispectral estimates of reflector curvature and rotation[J]. Geophysics, 2006, 71(5): 41−51. DOI: 10.1190/1.2242449.
[6] CHEN X H. The algorithm of 3D multi-scale volumetric curvature and its application[J]. Applied Geophysics, 2012, 9(1): 65−72. DOI: 10.1007/s11770-012-0315-7.
[7] 杨威, 贺振华, 陈学华. 三维体曲率属性在断层识别中的应用[J]. 地球物理学进展, 2011, 26(1): 110−115. DOI: 10.3969/j.issn.1004-2903.2011.01.011. YANG W, HE Z H, CHEN X H. Application of three-dimensional volumetric curvature attributes to fault identification[J]. Progress in Geophysics, 2011, 26(1): 110−115. DOI: 10.3969/j.issn.1004-2903.2011.01.011. (in Chinese).
[8] 杨威. 曲率属性分析及应用[D]. 成都: 成都理工大学, 2011. [9] 郑静静. 基于曲波变换和贝叶斯理论的储层预测方法研究[D]. 东营: 中国石油大学(华东), 2011. [10] 高京华. 基于离心窗扫描的地震几何属性提取方法研究[D]. 东营: 中国石油大学(华东), 2015. [11] 张文, 伍新明, 漆杰. 地震几何属性的快速算法实现[J]. 地球物理学报, 2023, 66(8): 3374−3390. DOI: 10.6038/cjg2022Q0367. ZHANG W, WU X M, QI J. Fast computation of seismic geometric attributes[J]. Chinese Journal of Geophysics, 2023, 66(8): 3374−3390. DOI: 10.6038/cjg2022Q0367. (in Chinese).
[12] 胡建波, 刘之的, 段玉顺, 等. 小尺度断裂沿层曲率敏感性研究[J]. 地质与勘探, 2023, 59(4): 0891−0900. DOI: 10.12134/j.dzykt.2023.04.015. HU J B, LIU Z D, DUAN Y S, et al. Sensitivity of small-scale faults curvature along the layer[J]. Geology and Exploration, 2023, 59(4): 0891−0900. DOI: 10.12134/j.dzykt.2023.04.015. (in Chinese).
[13] CHOPRA S, MARFURT K J. Curvature attribute applications to 3D surface seismic data[J]. The Leading Edge, 2007, 26(4): 404−414. DOI: 10.1190/1.2723201.
[14] CHOPRA S, MARFURT K J. Volumetric curvature attributes add value to 3D seismic data interpretation[J]. The Leading Edge, 2007, 26(7): 856−867. DOI: 10.1190/1.2756864.
[15] CHOPRA S, MARFURT K J. Emerging and future trends in seismic attributes[J]. The Leading Edge, 2008, 27(3): 298−318. DOI: 10.1190/1.2896620.
[16] 王伟. 地震几何属性识别断层技术研究及应用[D]. 东营: 中国石油大学(华东), 2009. [17] 张军华, 王伟, 谭明友, 等. 曲率属性及其在构造解释中的应用[J]. 油气地球物理, 2009, 7(2): 1−7. ZHANG J H, WANG W, TAN M Y, et al. Curvature attributes and their application in structural interpretation[J]. Petroleum Geophysics, 2009, 7(2): 1−7. (in Chinese).
[18] LUO Y. Edge preserving smoothing and its applications in seismic edge detection[J]. The Leading Edge, 2002, 21: 136−141. DOI: 10.1190/1.1452603.
[19] LIU Y, LUO Y. Edge preserving smoothing for oblique images[J]. Geophysical Research Letters, 2003, 30(13).
[20] ALBINHASSAN N M, LUO Y, MOHAMMED N. 3D edge preserving smoothing and applications[J]. Geophysics, 2006, 71(4): 5−11.
[21] 张莹芳, 陈平, 潘晋孝. 基于全变分与交替保边扩散平滑的稀疏角度CT重建算法[J]. 中国体视学与图像分析, 2022, 27(2): 113−121. [22] 周俊捷, 吴相伶, 李文杰, 等. 基于分块字典学习理论的地震数据去噪[J]. CT理论与应用研究, 2022, 31(5): 557−566. DOI: 10.15953/j.1004-4140.2022.31.05.03. ZHOU J J, WU X L, LI W J, et al. Denoising of seismic data based on block dictionary learning theory[J]. CT Theory and Applications, 2022, 31(5): 557−566.10.15953/j.1004-4140.2022.31.05.03. (in Chinese).
[23] 赵岩, 贺振华, 黄德济. 基于保边去噪的高精度相干体分析应用研究[J]. 长江大学学报(自然科学版), 2009, 6(4): 169−171. ZHAO Y, HE Z H, HUANG D J. High-accuracy coherence analysis based on edge-preserving smoothing[J]. Journal of Yangtze University (Natural Science Edition), 2009, 6(4): 169−171. (in Chinese).
[24] 范桃园, 杨长春. 自适应三维地震保边界去噪方法及应用[J]. 石油地球物理勘探, 2009, 44(5): 558−563. DOI: 10.3321/j.issn:1000-7210.2009.05.007. FAN T Q, YANG C C. 3D adaptive seismic edge-preserving smoothing and its application[J]. Oil Geophysical Prospecting, 2009, 44(5): 558−563. DOI: 10.3321/j.issn:1000-7210.2009.05.007. (in Chinese).