Impact of Reconstruction Algorithm and Filter on Artificial Intelligence Measurement of Coronary Artery Calcification Scores
-
摘要:
目的:分析重建算法与滤过核对人工智能(AI)测量冠状动脉钙化积分的影响,评估AI测量钙化积分的准确度及危险分层的一致性。方法:连续选取2024年1月我院的冠状动脉钙化积分CT图像进行回顾性分析,共纳入30例,男性18例,女性12例。改变重建算法(FBP、迭代iDose4 level 1~5)与滤过核(Cardiac Standard、Cardiac Sharp)重建出12组图像。采用两种方法(AI图像工作站、CT工作站)分别测量12组图像的冠状动脉Agatston积分(AS)、容积积分(VS)以及质量积分(MS)并计算危险分层。对不同重建算法的图像,使用AI测量和CT工作站测量所得AS、VS、MS进行多样本Friedman检验,对两种滤过核的图像,使用AI测量及CT工作站测量所得AS、VS、MS进行配对Wilcox检验。12组图像使用两种测量方法所得AS、VS、MS进行配对Wilcox检验及组内相关系数(ICC)检验。以CT工作站测量所得结果为参考,采用加权Kappa系数,分析危险分层一致性。结果:Cardiac Standard滤过核时,不同重建算法图像AI所得AS与VS存在统计学差异,MS无统计学差异。Cardiac Sharp滤过核时,不同重建算法图像AI所得AS、VS、MS均无统计学差异。不同重建算法图像CT工作站所得AS与VS存在统计学差异。两种滤过核AI所得AS、VS、MS存在统计学差异;两种滤过核CT工作站所得AS、VS均存在统计学差异。滤过核Cardiac Standard下,两种测量方法所得AS、VS、MS均无统计学差异,滤过核Cardiac Sharp下,两种测量方法所得AS、VS均存在统计学差异,一致性均较好。滤过核为Cardiac Stand且使用iDose 1和2的图像组,危险分层一致性最高,Kappa系数为0.967。结论:重建算法与滤过核对AI和CT工作站测量冠状动脉钙化积分影响较大,临床实践中需谨慎选择。
Abstract:Objective: This study aims to analyze the impact of the reconstruction algorithm and filter on the measurement of coronary artery calcification scores using artificial intelligence (AI) and to evaluate the accuracy and consistency of risk stratification by AI-measured calcification scores. Methods: A retrospective analysis was conducted on coronary artery calcification score CT images from January 2024 at our hospital. A total of 30 cases were included, with 18 males and 12 females. Twelve groups of images were reconstructed using different reconstruction algorithms (FBP, iterative iDose4 level 1~5) and filtering kernels (Cardiac Standard and Cardiac Sharp). Two methods including an AI image workstation and a CT workstation were used to measure the coronary artery Agatston score (AS), volume score (VS), and mass score (MS) for each group of images, and to calculate risk stratification. The AS, VS, and MS obtained from different reconstruction algorithms were subjected to multiple-sample Friedman tests using measurements from both AI and CT workstations. For images using two different filtering kernels, paired Wilcoxon tests were conducted on the AS, VS, and MS measured by AI and CT workstations. Paired Wilcoxon tests and intraclass correlation coefficients (ICC) were performed on the AS, VS, and MS measured by both methods across the 12 groups of images. The consistency of risk stratification was analyzed using the weighted Kappa coefficient. The results measured by the CT workstation were used as a reference. Results: With the Cardiac Standard filtering kernel, there were statistically significant differences in the Agatston score (AS) and volume score (VS) measured by AI across different reconstruction algorithms, but no significant difference in the mass score (MS). With the Cardiac Sharp filtering kernel, there were no statistically significant differences in AS, VS, and MS measured by AI. Statistically significant differences were observed in AS and VS measured by the CT workstation across different reconstruction algorithms. Statistical differences were present in AS, VS, and MS measured by AI using both filtering kernels and in AS and VS measured by the CT workstation using both filtering kernels. Under the Cardiac Standard filtering kernel, there were no significant differences in AS, VS, and MS between the two measurement methods, while under the Cardiac Sharp filtering kernel, there were significant differences in AS and VS between the two methods, with good consistency (ICC > 0.75). The highest consistency in risk stratification was observed in image groups using the Cardiac Standard filtering kernel and iDose levels 1 and 2, with a Kappa coefficient of 0.967. Conclusion: The choice of reconstruction algorithms and filtering kernels greatly affects the accuracy of coronary artery calcification scores. Both AI and CT workstations rely on these choices, making careful selection critical in clinical practice.
-
Keywords:
- artificial intelligence /
- reconstruction algorithm /
- calcium score /
- filter
-
房间隔缺损(atrial septal defect,ASD)是临床最常见的成人先天性心脏病(congenital heart disease,CHD),占所有CHD的6%~10%[1]。ASD患者因体-肺分流的存在,右心室(right ventricle,RV)前负荷过载,引起右心结构重塑、功能减退,肺血管阻力(pulmonary vascular resistance,PVR)、肺动脉压力(pulmonary artery pressure,PAP)进行性升高,若进展至肺动脉高压(pulmonary arterial hypertension,PAH)、右心衰竭将大大减小临床干预缺损闭合的适用性[2-3],患者远期生存率明显降低[4]。因此,对ASD患者的PAH进行长期监测与评估管理具有重要意义。
目前超声心动图检查作为临床常用检查手段,仍有受声窗限制、对操作者依赖等不可避免的缺陷。心脏双源CT(dual source CT,DSCT)检查具有良好的时间分辨率和图像质量,使用放射线剂量减低,较心脏超声可重复性高,测量更精准[5],如合并其他先天畸形能提供更丰富的信息,其用于术前评价心脏相关疾病的价值越来越受到临床重视。既往研究显示CT二维心血管测量能有效反应PAP。由于ASD具有特殊的血流动力学和疾病发展过程[6],其发生PAH与多种因素相关,包括缺损大小、类型,患者年龄、遗传及免疫等[7],CT测量指标是否同样适用有待验证。
本研究旨在通过DSCT测量成人ASD患者治疗前的心血管相关参数,分析其与右心导管检查(right cardiac catheterization,RHC)指标相关性,探讨其在成人ASD合并PAH中的诊断价值。
1. 资料与方法
1.1 研究对象
本文选取自2019年1月至2022年3月在徐州医科大学附属医院确诊的75例ASD患者,其中男性21例,女性54例;年龄18~69(42.72±14.71)岁。根据肺动脉高压诊断金标准[8],即患者在海平面、静息状态下,经RHC测定患者的肺动脉平均压(mean pulmonary arterial pressure,mPAP)是否≥25 mmHg,将所有纳入对象分为PAH组40例、无PAH组35例。
纳入标准:①临床首次确诊或从未进行过临床治疗,包括药物和手术治疗的ASD成年患者;②所有患者均进行 RHC检查并于前一周内行DSCT先天性心脏病检查。
排除标准:①双向分流 ASD患者或已发展为艾森曼格综合征、合并其他心脏大血管畸形、严重心脏瓣膜病、其他可能导致左心衰竭/肺循环充血性疾病、严重心律失常及心肌病/心肌炎等;②合并糖尿病、结缔组织病、呼吸系统疾病、胸廓畸形、胸膜病变等可能影响肺血管的疾病;③有胸部手术史;④CT图像质量不佳无法满足测量标准。
1.2 临床基线资料收集
通过查阅住院电子病历收集纳入对象的临床基线资料,包括年龄、性别、身高、体重等。
1.3 RHC方法
在患者平卧位、局部麻醉状态下,术者选择右侧股静脉穿刺成功后,采用6F MPA2导管在透视状态下进行操作,测量并收集血流动力学指标包括肺动脉收缩压(pulmonary artery systolic pressure,PASP)、肺动脉舒张压(pulmonary artery diastolic pressure,PADP)、mPAP、PVR。
1.4 DSCT先天性心脏病检查方法
所有患者采用Siemens Somatom Force型双源CT机,按照标准位置连接心电导连线,取仰卧位,双臂上举,经右肘前静脉注射非离子型碘佛醇(I Oversol,350 mgI/mL江苏恒瑞)。根据体质量,对比剂注射流率3.0~5.0 mL/s。
采用对比剂跟踪技术触发,感兴趣区置于升主动脉处,当感兴趣区CT值达到100 HU时,延迟6 s扫描,于25%~40% R-R间期进行数据采集。扫描范围从胸廓入口至膈下2 cm,扫描野包括整个心脏及胸部大血管。扫描参数:管电压80~120 kV,管电流380~420 mA,层厚1 mm,准直1.25 mm。
1.5 DSCT心血管参数测量
将原始图像导入后处理工作站进行心血管参数测量,所有测量数值取3次测量结果的平均值,血管测量参数包括升主动脉直径(ascending aortic diameter,AAD)、主肺动脉直径(main pulmonary artery diameter,MPAD)、左肺动脉干直径(left pulmonary artery diameter,LPAD)、右肺动脉干直径(right pulmonary artery diameter,RPAD)、右下肺动脉干直径(right lower pulmonary artery diameter,RLPAD)。
测量方法:在CT轴位图像上选取肺动脉最大层面,由升主动脉中心点发出垂直于主肺动脉长轴所得的主肺动脉径长即为MPAD(图1(a)和图2(a)),同一层面的升主动脉最短径即为AAD(图1(a)和图2(a));在CT轴位图像上选取右肺动脉干最大层面,做升主动脉中心点和升主动脉缘与右肺动脉右侧缘相切点之间的连线,其延长线所得右肺动脉干管径即为RPAD取值(图1(b)和图2(b));在CT轴位图像上选取左肺动脉干最大层面,做左上肺静脉中心点和左上肺静脉与左肺动脉左侧缘相切点之间的连线,其延长线所得左肺动脉干管径即为LPAD(图1(c)和图2(c));在右肺中下叶支气管分叉层面,测量右下肺动脉的短径,记为RLPAD(图1(d)和图2(d))。计算主肺动脉直径与升主动脉直径的比值(rPA)。
心脏测量参数包括右心室短轴最大内径(RVD)、左心室短轴最大内径(LVD)和脊柱室间隔夹角、ASD直径。测量方法:在CT轴位图像上测量RV、LV游离壁心腔面与室间隔的最大垂直距离,即RVD、LVD(图1(e)和图2(e));在同一层面取胸骨中点与胸椎棘突的连线,测量此线与室间隔中心线向前所成夹角的度数,即脊柱室间隔夹角(图1(f)和图2(f))。计算右心室腔短轴最大内径与左心室腔短轴最大内径的比值,即RVD/LVD。选取CT轴位像上房间隔缺损最大层面测量ASD直径。
1.6 统计学分析
使用SPSS 26.0统计软件进行数据分析。计量资料以均数±标准差
$(\bar x\pm s)$ 表示,计数资料以例数(构成比)表示;两组间RHC指标、CT心血管参数差异比较采用独立样本t检验。使用ROC曲线评价DSCT对成人ASD合并PAH的诊断效能,计算和比较ROC曲线下面积(AUC),确定其截断值、敏感度、特异度;使用Pearson等级相关系数分析mPAP与CT心血管参数之间的相关性。P<0.05为差异具有统计学意义。
2. 结果
2.1 临床基线资料与RHC指标结果
本研究共纳入75例成人ASD患者,分为PAH组40例和无PAH组35例。两组间年龄、性别、体表面积(body surface area,BSA)比较差异均无统计学意义(表1);PAH组患者NYHA心功能分级比无PAH组患者差,差异有统计学意义;PAH组RHC指标PASP、PADP、mPAP、PVR较无PAH组升高,差异有统计学意义(表1)。
表 1 两组间临床基线资料及RHC指标比较Table 1. Comparison of clinical baseline data and right heart catheterization indexes between the two groups项目 组别 P 无PAH组(n=35) PAH组(n=40) 年龄/岁 40.49±16.99 44.68±12.28 0.22 男性/(n,%) 11.00(31.43) 10.00(25.00) 0.54 BSA/m2 1.65±0.11 1.67±0.14 0.59 NYHA分级 <0.05 Ⅰ~Ⅱ级(n,%) 35.00(100.00) 31.00(77.50) Ⅲ~Ⅳ级(n,%) 0.00(0.00) 9.00(22.50) PASP/mmHg 38.03±12.78 50.85±20.76 <0.05 PADP/mmHg 16.12±6.80 20.98±8.80 <0.05 mPAP/mmHg 17.97±2.75 34.00±11.08 <0.05 PVR(Wood) 1.38±0.67 5.70(3.24~15.12) <0.05 2.2 DSCT心血管参数结果
与无PAH组比较,PAH组MPAD、RPAD、LPAD、RLPAD、RVD、脊柱室间隔夹角、rPA、RVD/LVD、ASD直径均升高,存在显著性差异(表2);两组间AAD、LVD差异无统计学意义(表2)。
表 2 两组间CT心血管参数测量值比较Table 2. Comparison of CT cardiovascular parameters between the two groups心血管参数 组别 P 无PAH组(n=35) PAH组(n=40) AAD 28.91±4.74 28.41±4.81 0.652 MPAD/mm 31.14±6.27 36.34±8.52 <0.05 RPAD/mm 23.66±5.28 27.91±6.23 <0.05 LPAD/mm 23.05±5.24 27.30±5.84 <0.05 RLPAD/mm 14.24±2.78 16.49±3.75 <0.05 RVD/mm 43.22±9.72 48.43±8.75 <0.05 LVD/mm 35.97±5.77 34.87±7.89 0.499 脊柱室间隔夹角/° 51.93±12.83 61.87±11.68 <0.05 rPA 1.08±0.18 1.31±0.38 <0.05 RVD/LVD 1.21±0.24 1.43±0.29 <0.05 ASD直径/mm 17.28±4.43 24.95±5.32 <0.05 2.3 以RHC指标mPAP为PAH金标准,分析DSCT心血管参数对PAH的诊断效能
DSCT测量所得MPAD、RPAD、LPAD、RLPAD、脊柱室间隔夹角、rPA、RVD/LVD、ASD直径对PAH具有诊断价值(AUC均>0.5,P均<0.05),其中RPAD、LPAD、脊柱室间隔夹角、rPA、RVD/LVD、ASD直径对PAH具有中等强度的诊断效能(AUC>0.7)(表3)。
表 3 CT心血管参数预测PAH的ROC曲线分析Table 3. ROC curve analysis of CT cardiovascular parameters predicting PAH心血管参数 AUC值(95%CI) P 截断值 敏感度/% 特异度/% 约登指数 MPAD/mm 0.68(0.55~0.80) <0.05 35.00 0.58 0.74 0.32 RPAD/mm 0.71(0.59~0.83) <0.05 21.95 0.88 0.51 0.39 LPAD/mm 0.72(0.60~0.83) <0.05 23.50 0.80 0.60 0.40 RLPAD/mm 0.68(0.56~0.81) <0.05 16.95 0.45 0.91 0.36 脊柱室间隔夹角/° 0.72(0.61~0.84) <0.05 63.35 0.53 0.86 0.38 rPA 0.70(0.58~0.82) <0.05 1.20 0.63 0.83 0.45 RVD/LVD 0.71(0.59~0.82) <0.05 1.22 0.83 0.51 0.34 ASD直径/mm 0.85(0.77~0.93) <0.05 22.32 0.68 0.89 0.56 2.4 相关性分析
MPAD、RPAD、LPAD、RLPAD、脊柱室间隔夹角、rPA、RVD/LVD、ASD直径与mPAP均呈正相关,其中MPAD、rPA、ASD直径与mPAP呈中度正相关(表4)。MPAD、rPA、RVD/LVD与PVR呈中度正相关,ASD直径与PVR呈高度正相关(表5)。DSCT测量的心脏参数脊柱室间隔夹角、RVD和RVD/LVD三者间互为正相关,LVD与RVD呈正相关,LVD与脊柱室间隔夹角呈负相关,LVD与RVD/LVD无显著相关性(表6)。
表 4 mPAP与CT心血管测量参数相关性分析Table 4. Correlation analysis of mPAP and CT cardiovascular measurement parameters心血管参数 r P MPAD/mm 0.51 <0.05 RPAD/mm 0.45 <0.05 LPAD/mm 0.44 <0.05 RLPAD/mm 0.47 <0.05 脊柱室间隔夹角/° 0.36 <0.05 rPA 0.61 <0.05 RVD/LVD 0.47 <0.05 ASD直径/mm 0.62 <0.05 表 5 PVR与CT心血管测量参数相关性分析Table 5. Correlation analysis of PVR and CT cardiovascular measurement parameters心血管参数 r P MPAD/mm 0.56 <0.05 RPAD/mm 0.48 <0.05 LPAD/mm 0.47 <0.05 RLPAD/mm 0.44 <0.05 脊柱室间隔夹角/° 0.39 <0.05 rPA 0.63 <0.05 RVD/LVD 0.52 <0.05 ASD直径/mm 0.81 <0.05 表 6 CT心脏参数测量值相关性分析Table 6. Correlation analysis of CT cardiac parameter measurements相关系数 RVD LVD RVD/LVD 脊柱室间隔夹角 RVD 1.00 LVD 0.49** 1.00 RVD/LVD 0.45** -0.06 1.00 脊柱室间隔夹角 0.52** -0.47** 0.50** 1.00 注:**-在0.01级别(双尾),相关性显著。 3. 讨论
ASD患者肺血管流量和压力持续性增加,肺血管内皮细胞受损、代谢功能紊乱,右心后负荷增加并加剧前负荷,产生恶性循环,心肺血管形态重塑、功能障碍,PVR、PAP进行性升高,当超过右心、肺血管代偿能力时出现不可逆性PAH、右心衰竭,治疗预后极差。Engelfriet等[4]对欧洲心脏病多中心数据库关于成人心脏间隔缺损患者的研究中提到即使关闭心脏间隔缺损,PAH仍可发生或继续进展。因此,维持ASD患者终身血流动力学稳定是重要的治疗目标[9-10]。RHC是目前评价PAH的金标准,但属于有创性操作,有发生严重并发症可能性,患者依从性较差,且对PAH的病因及心脏形态等信息提供有限[11]。DSCT作为一种无创、有效、成像速度快、可重复性高的检查手段,已成为先天性心脏病诊疗中不可或缺的部分。
RVD/LVD作为比值参数,影像观察直观,并一定程度消除扫描时处于不同心动周期时相所造成的个体差异,是评估PAH简便、可靠的方式。张伟等[12]用CTPA评估急性肺栓塞患者发生PAH的研究中发现,随着PAP升高,RVD明显增大(轻度PAH组(38.46±5.43)mm,中重度PAH组(44.95±6.86)mm)而LVD呈减小趋势,相应RVD/LVD显著增加。梁妍等[13]用磁共振测得在分流型先心病患者中PAH组(38.55±6.63)mm,RVD较无PAH组(32.36±4.82)mm增大,双心室内径比值随PAP升高而不断扩大(PAH组(1.55±0.55)mm,无PAH组(1.13±0.26)mm)。
本研究显示PAH组RVD/LVD较无PAH组明显增大,RVD/LVD与mPAP、PVR均呈正相关,对mPAP截断值为1.22,敏感度为82.50%。本研究还发现两组患者RVD普遍增大,LVD与RVD呈正相关,但LVD与RVD/LVD无显著相关,两组间LVD亦无显著性差异。考虑ASD患者早期心脏形态改变集中于右心,包括RV壁代偿性增厚、心腔内径扩大等,本研究纳入PAH组中重度PAH患者占比较少,左心系统尚未发生严重形变,如扩大样本量进一步研究可能会有不同结果。
刘敏等[14]研究发现脊柱室间隔夹角在慢性血栓栓塞性PAH组为(63±11)°,较无PAH组(40±7)° 明显增大,与超声测得右室横径呈正相关,与右心功能参数呈负相关,提出右心功能超负荷状态是决定该角度变化的直接因素。与上述研究相似,本研究中ASD-PAH组中脊柱室间隔夹角显著高于无PAH组,与mPAP、PVR均呈正相关,该角对mPAP的截断值为63.35°,特异度为85.70%。目前在脊柱室间隔夹角评价PAH方面的研究较少,但ASD患者RV包括室间隔发生代偿性肥厚等形态改变,出现心脏在水平面上顺时针偏转的现象,且脊柱与室间隔在整个心动周期中位置相对固定,因此该角可以作为反应PAH病情进展较理想的指标。
Kayawake等[15]对COPD相关PAH研究显示CT测量MPAD、RPAD、LPAD等结构指标与mPAP有较好的相关性;Corson等[16]研究发现通过CT测量MPAD>29 mm对诊断PAH的敏感性为89%,提示MPAD对PAH有较高的诊断能力;另有研究指出通过CTPA测量MPAD检测重度PAH患者的敏感度和准确度更高[17]。本研究显示成人ASD PAH组MPAD较无PAH组明显升高,与mPAP、PVR均呈中度正相关;与上述研究相比,本研究中两组患者MPAD增大,诊断mPAP的界值为35.00 mm,与本研究中RVD增大类似,可能因为ASD患者先天的体-肺分流伴长期代偿,分流程度与肺血管舒张期充盈压力、顺应性改变以及ASD大小有关。本研究结果显示ASD直径在PAH组中较无PAH组明显更大,与PVR呈高度正相关,与mPAP呈中度正相关,对mPAP具有中等强度诊断效能。此外,本研究入选人群年龄、PAH程度可能会影响上述结果。
Wu等[18]研究显示 rPA ≥ 1对诊断COPD合并PAH具有较高的特异性和准确率。Caro-Domínguez等[19]对儿童PAH的研究显示PAH和无PAH患者rPA分别为1.05和0.87,rPA可作为PAH患者死亡的预测因子。Truong等[20]研究指出rPA与RHC测量的mPAP有很强的相关性(95%CI:0.55~0.78)。
与上述研究结果相似,本研究显示rPA与mPAP、PVR均呈中度正相关,rPA≥1.20时诊断PAH敏感度为62.50%,特异度为82.90%。与无PAH组相比,PAH组RPAD、LPAD、RLPAD明显升高,与mPAP、PVR均呈正相关,RPAD、LPAD对mPAP具有中等强度诊断效能,敏感度均较高(87.50%、80.00%),提示DSCT检查发现rPA、RPAD、LPAD异常,可以作为ASD发生PAH的诊疗依据,并对PAH进行长期监测。
本研究亦有一定局限性。这是一项样本量有限的单中心回顾性研究,研究对象单一,结论适用性可能存在一定局限,需要更大规模的研究验证。本研究使用的DSCT参数均为结构性参数,近年来有研究应用心电门控CTA测量心功能,包括心室容积、心肌质量等能提供心脏功能受损程度的变化[21],可更好地预测PAH[22]。此外,CT扫描野内包含冠状动脉、心外膜脂肪、肺组织等组织,其异常改变是否与ASD患者PAH相关及对患者预后意义也有待深入研究。
综上,DSCT检查具有快速、可靠、无创、可重复性观察等优点,除了诊断ASD的先天畸形,其测量的心血管结构性参数与评价PAH“金标准”RHC检查指标有较好的相关性,单独或与其他检查技术结合使用,可以用于ASD患者的PAP术前评估,为PAH的无创监测与长期随访提供重要依据。
-
表 1 不同重建算法与滤过核经AI与CT工作站测量所得AS、VS、MS
Table 1 AI and CT workstations measured AS, VS, and MS using various reconstruction algorithms and filter cores
滤过核 重建
算法AS VS MS AI CT AI CT AI CT Cardiac Standard FBP 55.980
(2.370,145.637)58.965
(4.612,167.548)51.600
(3.710,95.170)49.130
(5.870,102.890)8.130
(0.470,19.480)7.850
(0.780,20.500)iDose 1 55.155
(2.240,146.460)57.265
(4.172,166.855)51.290
(5.250,96.090)49.440
(5.870,103.820)7.950
(0.590,19.610)7.920
(0.780,20.650)iDose 2 54.795
(2.240,146.100)57.580
(4.172,166.160)50.680
(5.250,95.790)49.440
(5.560,104.440)7.910
(0.580,19.630)7.940
(0.750,20.750)iDose 3 54.690
(2.215,145.435)56.905
(4.172,165.385)51.290
(4.940,96.100)49.130
(5.560,104.440)7.900
(0.530,19.690)7.930
(0.740,20.790)iDose 4 55.255
(1.752,145.233)56.805
(3.115,162.760)51.600
(4.020,95.790)48.820
(5.870,104.750)7.850
(0.430,19.700)8.150
(0.740,20.860)iDose 5 53.505
(2.060,144.300)55.520
(3.063,165.905)50.360
(3.090,95.170)49.130
(5.870,104.750)7.830
(0.440,19.610)8.040
(0.730,20.840)Cardiac Sharp FBP 78.075
(7.080,161.800)114.540
(26.492,244.128)62.720
(6.180,117.420)81.570
(21.320,137.500)14.560
(1.040,29.060)− iDose 1 77.555
(7.700,163.412)108.410
(20.648,241.865)63.960
(6.800,116.490)80.960
(21.010,136.570)14.520
(1.180,29.000)− iDose 2 77.405
(8.575,164.093)105.470
(17.505,241.113)65.500
(9.270,119.270)80.340
(20.700,135.960)14.450
(1.400,28.870)− iDose 3 78.435
(8.907,162.142)97.850
(14.985,238.157)67.050
(11.120,118.960)80.650
(19.470,135.960)14.220
(1.600,28.480)− iDose 4 78.485
(7.415,159.663)95.530
(12.150,237.360)67.050
(10.820,118.650)80.030
(18.850,135.960)14.350
(1.610,28.070)− iDose 5 75.185
(6.877,157.430)92.440
(11.045,234.725)64.890
(10.820,117.730)78.170
(17.920,134.410)13.630
(1.560,27.290)− 注:“−”表示工作站无测量结果;Cardiac Standard为心脏标准滤过核;Cardiac Sharp为心脏锐利滤过核;FBP为滤波反投影;iDose 1~iDose 5为迭代等级1~5。 表 2 重建算法与滤过核对钙化积分及危险分层影响的一致性分析
Table 2 Consistency analysis of calcification score and risk stratification between reconstruction algorithm and filtration check
滤过核 重建算法 AS VS MS Z ICC Kappa Z ICC Z ICC Cardiac Standard FBP 1.043 0.831
(0.676,0.916)0.927 1.729 0.986
(0.969,0.994)1.058 0.997
(0.992,0.999)iDose 1 1.775 0.829
(0.671,0.915)0.967 1.490 0.987
(0.971,0.994)1.682 0.997
(0.993,0.999)iDose 2 1.775 0.827
(0.668,0.914)0.967 1.430 0.987
(0.971,0.994)1.749 0.997
(0.993,0.999)iDose 3 1.116 0.824
(0.663,0.912)0.948 1.200 0.988
(0.973,0.995)1.571 0.997
(0.993,0.999)iDose 4 1.116 0.832
(0.677,0.916)0.931 1.338 0.988
(0.973,0.995)1.582 0.997
(0.993,0.999)iDose 5 1.205 0.822
(0.660,0.911)0.922 1.190 0.989
(0.975,0.995)1.273 0.997
(0.994,0.999)Cardiac Sharp FBP 13.083 0.768
(0.567,0.882)0.464 3.565 0.933
(0.853,0.970)− − iDose 1 18.083 0.793
(0.609,0.896)0.539 3.484 0.941
(0.871,0.974)− − iDose 2 16.583 0.807
(0.633,0.903)0.539 3.323 0.939
(0.866,0.973)− − iDose 3 17.376 0.830
(0.673,0.915)0.567 3.057 0.941
(0.870,0.973)− − iDose 4 15.422 0.840
(0.690,0.920)0.597 3.143 0.942
(0.873,0.974)− − iDose 5 17.739 0.853
(0.713,0.927)0.627 3.081 0.941
(0.866,0.973)− − 注:“−”表示工作站无测量结果;Cardiac Standard为心脏标准滤过核;Cardiac Sharp为心脏锐利滤过核;FBP为滤波反投影;iDose 1~iDose 5为迭代等级1~5;ICC,为组内相关系数;括号内数值为95%置信空间;Kappa,为加权Kappa系数。 表 3 不同重建算法与滤过核下经AI与CT工作站所得风险分层
Table 3 Risk stratification using AI and CT workstations under different reconstruction algorithms and filter cores
滤过核 重建算法 极低风险 低风险 中风险 高风险 AI CT AI CT AI CT AI CT Cardiac Standard FBP 5 2 14 17 7 7 4 4 iDose 1 5 4 14 15 7 7 4 4 iDose 2 5 4 14 15 7 7 4 4 iDose 3 5 4 14 15 7 7 4 4 iDose 4 5 5 14 14 7 7 4 4 iDose 5 6 5 13 14 7 7 4 4 Cardiac Sharp FBP 6 0 12 12 8 14 4 4 iDose 1 5 0 13 12 8 14 4 4 iDose 2 5 0 13 12 8 14 4 4 iDose 3 5 0 13 15 8 11 4 4 iDose 4 5 0 13 16 8 10 4 4 iDose 5 5 0 13 17 8 9 4 4 注:Cardiac Standard心脏标准滤过核;Cardiac Sharp心脏锐利滤过核;FBP滤波反投影;iDose 1~iDose 5迭代等级1~5;AI:经AI测量所得风险分层;CT:经CT工作站测量所得风险分层。 -
[1] 庹敏, 侯梦婷, 鲍娟. 人工智能在医疗领域的应用现状和思考[J]. 中国现代医生, 2022, 60(22): 72-75. DOI: 10.3969/j.issn.1673-9701.2022.22.zwkjzlml-yyws202222017. TUO M, HOU M T, BAO J. Application status and thinking of artificial intelligence in medical field[J]. China Modern Doctor, 2022, 60(22): 72-75. DOI: 10.3969/j.issn.1673-9701.2022.22.zwkjzlml-yyws202222017. (in Chinese).
[2] KANG H W, AHN W J, JEONG J H, et al. Evaluation of fully automated commercial software for Agatston calcium scoring on non-ECG-gated low-dose chest CT with different slice thickness[J]. European Radiology, 2023, 33(3): 1973-1981. DOI: 10.1007/s00330-022-09143-1.
[3] WANG W, WANG H, CHEN Q, et al. Coronary artery calcium score quantification using a deep-learning algorithm[J]. Clinical Radiology, 2020, 75(3): 237. e11- 237. e16. DOI: 10.1016/j.crad.2019.10.012.
[4] Van VELZEN S G M, LESSMANN N, VELTHUIS B K, et al. Deep learning for automatic calcium scoring in CT: Validation using multiple cardiac CT and chest CT protocols[J]. Radiology, 2020, 295(1): 66-79. DOI: 10.1148/radiol.2020191621.
[5] 陈丽虹, 郭银霞, 李雅楠, 等. 人工智能冠状动脉钙化积分自动测量方法的临床有效性评估[J]. 实用放射学杂志, 2023, 39(1): 45-48, 69. DOI: 10.3969/j.issn.1002-1671.2023.01.012. CHEN L H, GUO Y X, LI Y N, et al. Clinical effectiveness evaluation of artificial intelligence automatic measurement method for coronary artery calcium score[J]. Journal of Practical Radiology, 2023, 39(1): 45-48, 69. DOI: 10.3969/j.issn.1002-1671.2023.01.012. (in Chinese).
[6] PARK S H, HAN K. Methodologic guide for evaluating clinical performance and effect of artificial intelligence technology for medical diagnosis and prediction[J]. Radiology, 2018, 286(3): 800-809. DOI: 10.1148/radiol.2017171920.
[7] PUGLIESE G, IACOBINI C, BLASETTI FANTAUZZI C, et al. The dark and bright side of atherosclerotic calcification[J]. Atherosclerosis, 2015, 238(2): 220-230. DOI: 10.1016/j.atherosclerosis.2014.12.011.
[8] 胡春洪, 张龙江, 陈灿. 人工智能在冠状动脉CT成像中的应用及展望[J]. 中华放射学杂志, 2023, 57(5): 453-456. DOI: 10.3760/cma.j.cn112149-20230309-00172. HU C H, ZHANG L J, CHEN C. Artificial intelligence in coronary CT: Current status and perspective[J]. Chinese Journal of Radiology, 2023, 57(5): 453-456. DOI: 10.3760/cma.j.cn112149-20230309-00172. (in Chinese).
[9] WILLEMINK M J, VLIEGENTHART R, TAKX R A P, et al. Coronary artery calcification scoring with state-of-the-art CT scanners from different vendors has substantial effect on risk classification[J]. Radiology, 2014, 273(3): 695-702. DOI: 10.1148/radiol.14140066.
[10] Serhat Kılıçarslan, Kemal Adem, Mete Çelik. An overview of the activation functions used in deep learning algorithms[J]. Journal of New Results in Science, 2021, 10(3): 75-88. DOI: 10.54187/jnrs.1011739.
[11] AYX I, THARMASEELAN H, HERTEL A, et al. Myocardial radiomics texture features associated with increased coronary calcium score-first results of a photon-counting CT[J]. Diagnostics (Basel), 2022, 12(7): 1663. DOI: 10.3390/diagnostics12071663.
[12] SONG Y, HOORI A, WU H, et al. Improved bias and reproducibility of coronary artery calcification features using deconvolution[J]. Journal of Medical Imaging, 2023, 10(1): 014002. DOI: 10.1117/1.JMI.10.1.014002.
[13] 顾海峰, 鲍雪琴, 王清清, 等. 高级建模迭代重建对冠状动脉钙化积分的影响[J]. 放射学实践, 2022, 37(8): 1028-1034. DOI: 10.13609/j.cnki.1000-0313.2022.08.019. GU H F, BAO X Q, WANG Q Q, et al. The impact of advanced modeled iterative reconstruction on coronary artery calcium scoring[J]. Radiologic Practice, 2022, 37(8): 1028-1034. DOI: 10.13609/j.cnki.1000-0313.2022.08.019. (in Chinese).
[14] PATINO M, FUENTES J M, SINGH S, et al. Iterative reconstruction techniques in abdominopelvic CT: Technical concepts and clinical implementation[J]. American Journal of Roentgenology, 2015, 205(1): W19-31. DOI: 10.2214/AJR.14.13402.
[15] LIU Y, GU M, LIU L, et al. CT image features based on the reconstruction algorithm for continuous blood purification combined with nursing intervention in the treatment of severe acute pancreatitis[J]. Contrast Media Mol Imaging, 2022, 2022: 2622316. DOI: 10.1155/2022/2622316.
[16] BRUWIER A, GODART B, GATEL L, et al. Computed tomographic assessment of retrograde urohydropropulsion in male dogs and prediction of stone composition using Hounsfield unit in dogs and cats[J]. Journal of Veterinary Science, 2022, 23(5): e65. DOI: 10.4142/jvs.22109.
[17] 李妍, 金士琪, 多国帅, 等. 迭代重建算法联合不同卷积核应用于冠脉双低扫描支架显示的比较研究[J]. 中国临床医学影像杂志, 2019, 30(2): 109-113. DOI: 10.12117/jccmi.2019.02.009. LI Y, JIN S Q, DUO G S, et al. A comparative study of iterative reconstruction technigue in CT coronary dual-low scan stent imaging with different convolution kernels[J]. Journal of China Clinic Medical Imaging, 2019, 30(2): 109-113. DOI: 10.12117/jccmi.2019.02.009. (in Chinese).
[18] KRIZHEVSKY A, SUTSKEVER I, HINTON G. ImageNet classification with deep convolutional neural networks[J]. Advances in Neural Information Processing Systems, 2012, 25(2). DOI: 10.1145/3065386.
[19] XIE J, XU L, CHEN E. Image Denoising and inpainting with deep neural networks[J]. Advances in Neural Information Processing Systems, 2012, 1.
计量
- 文章访问数: 60
- HTML全文浏览量: 20
- PDF下载量: 16