Impact of Reconstruction Algorithm and Filter on Artificial Intelligence Measurement of Coronary Artery Calcification Scores
-
摘要:
目的:分析重建算法与滤过核对人工智能(AI)测量冠状动脉钙化积分的影响,评估AI测量钙化积分的准确度及危险分层的一致性。方法:连续选取2024年1月我院的冠状动脉钙化积分CT图像进行回顾性分析,共纳入30例,男性18例,女性12例。改变重建算法(FBP、迭代iDose4 level 1~5)与滤过核(Cardiac Standard、Cardiac Sharp)重建出12组图像。采用两种方法(AI图像工作站、CT工作站)分别测量12组图像的冠状动脉Agatston积分(AS)、容积积分(VS)以及质量积分(MS)并计算危险分层。对不同重建算法的图像,使用AI测量和CT工作站测量所得AS、VS、MS进行多样本Friedman检验,对两种滤过核的图像,使用AI测量及CT工作站测量所得AS、VS、MS进行配对Wilcox检验。12组图像使用两种测量方法所得AS、VS、MS进行配对Wilcox检验及组内相关系数(ICC)检验。以CT工作站测量所得结果为参考,采用加权Kappa系数,分析危险分层一致性。结果:Cardiac Standard滤过核时,不同重建算法图像AI所得AS与VS存在统计学差异,MS无统计学差异。Cardiac Sharp滤过核时,不同重建算法图像AI所得AS、VS、MS均无统计学差异。不同重建算法图像CT工作站所得AS与VS存在统计学差异。两种滤过核AI所得AS、VS、MS存在统计学差异;两种滤过核CT工作站所得AS、VS均存在统计学差异。滤过核Cardiac Standard下,两种测量方法所得AS、VS、MS均无统计学差异,滤过核Cardiac Sharp下,两种测量方法所得AS、VS均存在统计学差异,一致性均较好。滤过核为Cardiac Stand且使用iDose 1和2的图像组,危险分层一致性最高,Kappa系数为0.967。结论:重建算法与滤过核对AI和CT工作站测量冠状动脉钙化积分影响较大,临床实践中需谨慎选择。
Abstract:Objective: This study aims to analyze the impact of the reconstruction algorithm and filter on the measurement of coronary artery calcification scores using artificial intelligence (AI) and to evaluate the accuracy and consistency of risk stratification by AI-measured calcification scores. Methods: A retrospective analysis was conducted on coronary artery calcification score CT images from January 2024 at our hospital. A total of 30 cases were included, with 18 males and 12 females. Twelve groups of images were reconstructed using different reconstruction algorithms (FBP, iterative iDose4 level 1~5) and filtering kernels (Cardiac Standard and Cardiac Sharp). Two methods including an AI image workstation and a CT workstation were used to measure the coronary artery Agatston score (AS), volume score (VS), and mass score (MS) for each group of images, and to calculate risk stratification. The AS, VS, and MS obtained from different reconstruction algorithms were subjected to multiple-sample Friedman tests using measurements from both AI and CT workstations. For images using two different filtering kernels, paired Wilcoxon tests were conducted on the AS, VS, and MS measured by AI and CT workstations. Paired Wilcoxon tests and intraclass correlation coefficients (ICC) were performed on the AS, VS, and MS measured by both methods across the 12 groups of images. The consistency of risk stratification was analyzed using the weighted Kappa coefficient. The results measured by the CT workstation were used as a reference. Results: With the Cardiac Standard filtering kernel, there were statistically significant differences in the Agatston score (AS) and volume score (VS) measured by AI across different reconstruction algorithms, but no significant difference in the mass score (MS). With the Cardiac Sharp filtering kernel, there were no statistically significant differences in AS, VS, and MS measured by AI. Statistically significant differences were observed in AS and VS measured by the CT workstation across different reconstruction algorithms. Statistical differences were present in AS, VS, and MS measured by AI using both filtering kernels and in AS and VS measured by the CT workstation using both filtering kernels. Under the Cardiac Standard filtering kernel, there were no significant differences in AS, VS, and MS between the two measurement methods, while under the Cardiac Sharp filtering kernel, there were significant differences in AS and VS between the two methods, with good consistency (ICC > 0.75). The highest consistency in risk stratification was observed in image groups using the Cardiac Standard filtering kernel and iDose levels 1 and 2, with a Kappa coefficient of 0.967. Conclusion: The choice of reconstruction algorithms and filtering kernels greatly affects the accuracy of coronary artery calcification scores. Both AI and CT workstations rely on these choices, making careful selection critical in clinical practice.
-
Keywords:
- artificial intelligence /
- reconstruction algorithm /
- calcium score /
- filter
-
项型纤维瘤(nuchal-type fibroma,NTF)是一种少见的良性纤维增殖性肿瘤性病变,1988年Enzinger和Weiss首先对该病进行了描述[1]。NTF多发生于肩胛间区、脊柱旁皮下软组织;各年龄均可发病,多见于男性;多表现为皮下软组织肿块,病灶质韧;进行性缓慢增大,病程可持续数年;发病原因不明。本病发病率低,病灶表浅故临床忽视CT及MRI检查,早期研究多以个案报道为主,影像医师工作中因认识不足容易造成误诊。
本文回顾性分析经病理确诊的NTF 8例,研究其CT和MRI影像资料,希望加深对本病的认识。
1. 资料与方法
1.1 一般资料
收集本院2015年8月到2022年1月行外科切除并病理确诊8例NTF的临床资料,均为男性患者,年龄15~22岁,平均(19.13±2.36)岁,中位年龄20岁,病程10天至10年;症状与体征相似,可触及骶尾部中央或偏臀部侧皮下结节或肿块,质地韧实,病灶无痛感,并进行性缓慢增大,病灶大小范围2~6 cm。术前2例患者已进行CT扫描,其余6例患者已行MRI扫描。
1.2 检查方法
CT扫描检查使用GE LightSpeed 64排螺旋CT扫描机,对其中2例患者均行骶尾部扫描。扫描参数:层距5 mm,层厚5 mm,重建层厚1.25 mm,管电流345 mA,管电压120 kV。
MR平扫及增强检查使用GE Signa Infinity Echospeed Plus 1.5 T超导型磁共振扫描仪。对其余6例患者行骶尾部扫描。扫描序列包括:轴位T2 WI(TR 2400 ms,TE 65 ms),常规使用化学位移饱和法脂肪抑制;轴位TlWI(TR 450 ms,TE 11 ms);DWI扩散敏感系数b值为0和800 s/mm2;增强扫描对比剂使用钆喷替酸葡甲胺(Gd-DTPA)注射液,剂量为0.1 mmol/kg,对比剂注射后扫描冠状位、矢状位和轴位T1WI图像;各序列视野380 mm×380 mm,矩阵200×320,层距7.2 mm,层厚6 mm。
1.3 图像分析
由两位主治以上医师分别对图像进行独立分析及记录工作,若意见不一致,经商量讨论后决定。分析病灶的位置、数量、大小、边界、形态、生长方式(膨胀性/浸润性)、周围结构关系(是否累及邻近肌肉及骨质)、密度或信号、对比增强后表现等。
以周围正常肌肉作为对照,病灶信号或密度按照低、略低、等信号、略高、高分为5个等级。T1WI对比增强将MR信号分为:无、轻度、中度和显著强化。
1.4 病理及免疫组化
8例患者病灶均经手术切除,标本常规石蜡切片行HE染色并病理学检查,其中2例行免疫组织化学检查。
2. 结果
2.1 影像表现
8例NTF中3例病灶位于骶尾部中央皮下,5例位于骶尾部偏臀侧皮下(右侧3例,左侧2例),均为单一病灶,病灶最大径范围从2~6 cm不等。所有病灶呈不规则形,边界不清,无明显包膜,病灶沿周围皮下脂肪浸润性生长,其中6例包绕尾骨,无邻近骨质及肌肉破坏,所有病灶局部皮肤增厚。
CT平扫2例表现。1例呈等密度,CT值为42~48 HU,密度均匀,局部皮肤呈结节状突起;略低密度1例,CT值约30~40 HU,密度略欠均匀,内见夹杂岛状脂肪样密度,局部皮肤呈宽基底样膨隆(图1);2例病灶内未见坏死、钙化、出血(表1)。
表 1 2例NTF的CT表现Table 1. CT findings of two NTFs编号 年龄/岁 部位 大小/cm 边缘 形态 皮肤改变 邻近结
构关系坏死、囊变、
出血、变性脂肪
密度病灶密度
/HU1 17 骶尾部
偏左臀3.9 模糊 不规则 宽基底膨隆 包绕尾骨 无 有 30~40 2 19 骶尾部
中央3.2 模糊 不规则 结节状突起 包绕尾骨 无 无 42~48 MR平扫6例表现。T1WI均呈略欠均匀高信号,内见条纹状等信号,T1WI及T2WI脂肪抑制序列均呈均匀等信号,DWI(b值为 0和800 s/mm2)呈均匀等信号,其中2例同时行MR Ⅲ期增强检查,均呈渐进性不均匀轻度强化(图2)。2例位于骶尾部中央,局部皮肤呈结节状突起;4例位于骶尾部偏臀侧,局部皮肤呈宽基底样膨隆;6例均无坏死、囊变、出血(表2)。
表 2 6例NTF的MRI表现Table 2. MRI findings of six NTFs编号 年龄/岁 部位 大小/cm 边缘 形态 皮肤改变 邻近结
构关系坏死、囊变、
出血、变性脂肪
密度强化方式 3 15 骶尾部中央 3.3 模糊 不规则 结节状突起 包绕尾骨 无 有 渐进轻度
强化4 18 骶尾部偏右臀 6.0 模糊 不规则 宽基底膨隆 包绕尾骨 无 有 渐进轻度
强化5 20 骶尾部偏右臀 4.2 模糊 不规则 宽基底膨隆 包绕尾骨 无 有 6 21 骶尾部偏右臀 2.0 模糊 不规则 宽基底膨隆 无包绕侵犯 无 有 7 22 骶尾部偏左臀 3.5 模糊 不规则 宽基底膨隆 包绕尾骨 无 有 8 21 骶尾部中央 3.7 模糊 不规则 结节状突起 无包绕侵犯 无 有 影像诊断。8例病灶中,4例诊断为纤维增殖性病变,1例诊断为良性间叶源性肿瘤,2例误诊为炎症,1例误诊为皮脂腺瘤。
2.2 病理表现
大体上8例送检组织带皮瓣,为边界不清、坚韧的黄白色肿块,无包膜。镜下显示密集的、随机排列的胶原纤维和一些分散的纤维母细胞,与脂肪细胞混合,部分区域显示出模糊的小叶结构;3例可见胶原纤维包围皮肤附属器,2例内可见包围神经纤维束;细胞核小而均匀,未见异型性细胞。2例免疫组化显示CD34阳性。
3. 讨论
3.1 概述
NTF是一种少见的、良性、非侵袭性、无包膜的纤维性肿瘤,在2020年WHO软组织和骨肿瘤分类中属于成纤维细胞/肌纤维细胞肿瘤[2]。颈项区是常见的发病部位,其他相对多见的发病部位有背部(特别是肩胛间区)、肩部、面部、骶尾部,另有个案报道前臂、膝关节、踝关节也可发生。
由于以往该病主要见于颈部后方,因此提出了“项型纤维瘤”这一术语,实际上颈项区的NTF与颈项外NTF在组织学上难以区分,并非颈项部特有病变。查询本院近20年经病理确诊NTF 33例的发病部位,其中颈项部7例,颈项部外(包括枕部、肩部、背部、骶尾部、臀部、大腿)26例,颈项部外病变或更为多见。由于病变发病部位常较表浅,临床医生多不进行本病CT或MRI检查,故本研究仅选取有影像资料的8例进行探讨。各年龄均可发病,但以中青年多见,多见于男性[3],男女比例约为4︰1。本文所收集病例均为青年男性,与文献相符。
3.2 病因及临床表现
NTF的发病机制尚不清楚,但已有研究发现与Gardner综合征(占18.7%)、糖尿病(占5.6%)、硬肿症、慢性钝性创伤[4](占5.6%)相关,大部分病例无相关病史[5],本研究患者的临床及实验室检查也无相关证据支持这些诊断。
临床表现多为孤立性、质地韧实、生长缓慢的无痛性皮下肿块,病程可达数10年[6],本组病例最长病程达10年。当出现症状时,病变部位疼痛是常见的主诉。偶见多发病灶的报道,其中50%病例合并Gardner综合征且均为男性[5]。大部分病例病灶直径约2~8 cm,与本研究相符,但也有报道可达20 cm[6]。
手术切除是必要且根治性的治疗方法,但由于病变与周围结构分界不清,有时较难完全切除,导致潜在的复发性;另外触发病变发展的因素持续存在,如重复性创伤等,也可导致复发。本研究收集病例至目前未见肿瘤复发。目前尚未见NTF远处转移的报道。
3.3 病理特点
活体组织检查发现大体病变与正常结构混杂,边界欠清晰,质地坚韧,呈黄色和/或白色,分别对应脂肪和纤维组织区域。组织学检查发现不同发病部位的病变表现大致相同,可见细胞稀少,散在纤维母细胞,无细胞异型性,由粗大不规则排列的胶原纤维组成,内见弹性纤维、脂肪组织和肌束;病变中央可见胶原纤维相交而具有模糊的小叶结构[7]。
病变发生于真皮或皮下,可浸润、包埋皮下脂肪组织、骨骼肌、深筋膜、骨膜,大多数NTF内见岛状的脂肪组织,周围神经纤维也可被包绕,有时表现为类似创伤性神经瘤的外观[8]。免疫组化显示CD34阳性,SMA、S100阴性,部分病例CD99阳性[5]。
3.4 CT和MRI表现
NTF少见且常发病部位表浅,故影像资料不多,相关国内外文献大多数为个案报道。通过总结有关文献和本院8例NTF的CT、MRI征象,本文归纳出以下影像学表现。
(1)本病以颈背部、骶尾部发病率较高,多为单一病灶,生长较表浅,可表现为局灶性皮肤增厚和/或皮下肿块。
(2)边界不清,无包膜,形态多不规则,与浸润性生长特点有关,部分病例可呈片状、絮状模糊影,与炎性病变相似,本研究2例因病程较短且呈渗出样病变影像表现而误诊为炎症,故尚需结合红、肿、热、痛等炎性症状进行鉴别。
(3)病灶纤维成分丰富,CT上病灶密度与骨骼肌相似,呈皮下脂肪内相对高密度肿块。MRI上病灶信号也与骨骼肌相似,T1WI呈低或等信号、T2WI呈低信号,病灶内细胞数量相对稀少而组织间成分较多,故DWI及ADC呈等信号,本研究所有病灶均符合此征象。另外由于MRI具有优越的软组织分辨率故较CT更为适合本病诊断。Prem等[9]指出病灶较大时,由于脂肪组织被包埋,可见条纹状高T1、高T2信号夹杂在低信号区内,本研究7例显示病灶内存在脂肪成分,呈散在斑点状、条纹状脂肪样密度或信号,考虑是由于病变常发生于皮下脂肪层且呈良性浸润性生长所致,为该病的特征性影像表现。据报道本病还可发生少见的粘液样变性,T2WI可呈高信号[6],本研究未观察到此征象。由于NTF可浸润包埋邻近组织,故病灶内还可夹杂肌肉、骨骼等信号[10]。
(4)增强扫描多呈轻-中度延迟强化或无强化,结合病理结果考虑是由于病灶内缺乏丰富的血管增生且纤维成分丰富所致;强化方式多样,可呈均匀或不均匀强化,与病灶内细胞和胶原纤维比例相关,也与包埋的组织成分相关[3,9]。
(5)病理揭示本病为良性纤维增殖性病变,故无出血、钙化、囊变、坏死,无邻近软组织及骨质破坏,本研究观察到6例病灶包绕尾骨,但均未见明确骨质侵蚀。
3.5 鉴别诊断
NTF需与下列疾病鉴别。
(1)恶性实性肿瘤性病变(恶性纤维组织细胞瘤、纤维肉瘤、脂肪肉瘤)血管密度较NTF高导致强化相对NTF明显,且生长较快伴有侵袭性,可有坏死、出血、囊变,易于鉴别[11-12]。
(2)皮下蜂窝组织炎也表现为皮下片絮状模糊影,但多伴有热、痛、红、肿的炎性表现,NTF一般不具有此类症状。
(3)Gardner纤维瘤与项型纤维瘤的发病部位有重叠,且组织学形态相似,但Gardner纤维瘤男女发病相当,多见于婴幼儿童及青少年,更容易多发病变,也可发生于深部软组织。有文献认为婴幼儿童的类NTF病变应考虑为Gardner纤维瘤[13]。
(4)韧带样纤维瘤多见于女性,可发生于腹部外、腹壁或腹内,沿肌筋膜生长而与肌肉长轴一致,膨胀性浸润性生长,组织学为良性肿瘤但具有强侵袭性,常破坏间室屏障,此特点与NTF不同,肿瘤内部纤维母细胞、粘多糖等成分相对丰富,T2 WI压脂序列信号可较NTF高,增强扫描呈渐进性延迟强化,由于毛细血管网丰富,强化程度可较NTF显著[14]。
(5)腱鞘纤维瘤多见于四肢远端腱鞘旁,发病部位可资鉴别。
(6)弹力纤维瘤多见于中老年女性,随年龄增加发病率升高,有别于NTF,病变常发生于肩胛下区前锯肌、背阔肌、菱形肌的深部与肋骨之间,发病部位不同于NTF,另外弹力纤维瘤多为双侧发病[15]。
综上所述,发生于男性颈背部或骶尾部皮下无痛性肿块,病程较长,影像上病变边界不清,密度或信号不均,无出血、囊变、坏死,应考虑到NTF的可能。较大的NTF内由于包埋有脂肪成分,而表现出特征性的影像表现,这是与其他类型纤维瘤的鉴别点;较小的NTF由于缺乏特征性表现,还需结合活检样本的组织学分析。手术切除肿瘤可以治愈,但需要定期随访复查,以确定潜在的病变复发。
-
表 1 不同重建算法与滤过核经AI与CT工作站测量所得AS、VS、MS
Table 1 AI and CT workstations measured AS, VS, and MS using various reconstruction algorithms and filter cores
滤过核 重建
算法AS VS MS AI CT AI CT AI CT Cardiac Standard FBP 55.980
(2.370,145.637)58.965
(4.612,167.548)51.600
(3.710,95.170)49.130
(5.870,102.890)8.130
(0.470,19.480)7.850
(0.780,20.500)iDose 1 55.155
(2.240,146.460)57.265
(4.172,166.855)51.290
(5.250,96.090)49.440
(5.870,103.820)7.950
(0.590,19.610)7.920
(0.780,20.650)iDose 2 54.795
(2.240,146.100)57.580
(4.172,166.160)50.680
(5.250,95.790)49.440
(5.560,104.440)7.910
(0.580,19.630)7.940
(0.750,20.750)iDose 3 54.690
(2.215,145.435)56.905
(4.172,165.385)51.290
(4.940,96.100)49.130
(5.560,104.440)7.900
(0.530,19.690)7.930
(0.740,20.790)iDose 4 55.255
(1.752,145.233)56.805
(3.115,162.760)51.600
(4.020,95.790)48.820
(5.870,104.750)7.850
(0.430,19.700)8.150
(0.740,20.860)iDose 5 53.505
(2.060,144.300)55.520
(3.063,165.905)50.360
(3.090,95.170)49.130
(5.870,104.750)7.830
(0.440,19.610)8.040
(0.730,20.840)Cardiac Sharp FBP 78.075
(7.080,161.800)114.540
(26.492,244.128)62.720
(6.180,117.420)81.570
(21.320,137.500)14.560
(1.040,29.060)− iDose 1 77.555
(7.700,163.412)108.410
(20.648,241.865)63.960
(6.800,116.490)80.960
(21.010,136.570)14.520
(1.180,29.000)− iDose 2 77.405
(8.575,164.093)105.470
(17.505,241.113)65.500
(9.270,119.270)80.340
(20.700,135.960)14.450
(1.400,28.870)− iDose 3 78.435
(8.907,162.142)97.850
(14.985,238.157)67.050
(11.120,118.960)80.650
(19.470,135.960)14.220
(1.600,28.480)− iDose 4 78.485
(7.415,159.663)95.530
(12.150,237.360)67.050
(10.820,118.650)80.030
(18.850,135.960)14.350
(1.610,28.070)− iDose 5 75.185
(6.877,157.430)92.440
(11.045,234.725)64.890
(10.820,117.730)78.170
(17.920,134.410)13.630
(1.560,27.290)− 注:“−”表示工作站无测量结果;Cardiac Standard为心脏标准滤过核;Cardiac Sharp为心脏锐利滤过核;FBP为滤波反投影;iDose 1~iDose 5为迭代等级1~5。 表 2 重建算法与滤过核对钙化积分及危险分层影响的一致性分析
Table 2 Consistency analysis of calcification score and risk stratification between reconstruction algorithm and filtration check
滤过核 重建算法 AS VS MS Z ICC Kappa Z ICC Z ICC Cardiac Standard FBP 1.043 0.831
(0.676,0.916)0.927 1.729 0.986
(0.969,0.994)1.058 0.997
(0.992,0.999)iDose 1 1.775 0.829
(0.671,0.915)0.967 1.490 0.987
(0.971,0.994)1.682 0.997
(0.993,0.999)iDose 2 1.775 0.827
(0.668,0.914)0.967 1.430 0.987
(0.971,0.994)1.749 0.997
(0.993,0.999)iDose 3 1.116 0.824
(0.663,0.912)0.948 1.200 0.988
(0.973,0.995)1.571 0.997
(0.993,0.999)iDose 4 1.116 0.832
(0.677,0.916)0.931 1.338 0.988
(0.973,0.995)1.582 0.997
(0.993,0.999)iDose 5 1.205 0.822
(0.660,0.911)0.922 1.190 0.989
(0.975,0.995)1.273 0.997
(0.994,0.999)Cardiac Sharp FBP 13.083 0.768
(0.567,0.882)0.464 3.565 0.933
(0.853,0.970)− − iDose 1 18.083 0.793
(0.609,0.896)0.539 3.484 0.941
(0.871,0.974)− − iDose 2 16.583 0.807
(0.633,0.903)0.539 3.323 0.939
(0.866,0.973)− − iDose 3 17.376 0.830
(0.673,0.915)0.567 3.057 0.941
(0.870,0.973)− − iDose 4 15.422 0.840
(0.690,0.920)0.597 3.143 0.942
(0.873,0.974)− − iDose 5 17.739 0.853
(0.713,0.927)0.627 3.081 0.941
(0.866,0.973)− − 注:“−”表示工作站无测量结果;Cardiac Standard为心脏标准滤过核;Cardiac Sharp为心脏锐利滤过核;FBP为滤波反投影;iDose 1~iDose 5为迭代等级1~5;ICC,为组内相关系数;括号内数值为95%置信空间;Kappa,为加权Kappa系数。 表 3 不同重建算法与滤过核下经AI与CT工作站所得风险分层
Table 3 Risk stratification using AI and CT workstations under different reconstruction algorithms and filter cores
滤过核 重建算法 极低风险 低风险 中风险 高风险 AI CT AI CT AI CT AI CT Cardiac Standard FBP 5 2 14 17 7 7 4 4 iDose 1 5 4 14 15 7 7 4 4 iDose 2 5 4 14 15 7 7 4 4 iDose 3 5 4 14 15 7 7 4 4 iDose 4 5 5 14 14 7 7 4 4 iDose 5 6 5 13 14 7 7 4 4 Cardiac Sharp FBP 6 0 12 12 8 14 4 4 iDose 1 5 0 13 12 8 14 4 4 iDose 2 5 0 13 12 8 14 4 4 iDose 3 5 0 13 15 8 11 4 4 iDose 4 5 0 13 16 8 10 4 4 iDose 5 5 0 13 17 8 9 4 4 注:Cardiac Standard心脏标准滤过核;Cardiac Sharp心脏锐利滤过核;FBP滤波反投影;iDose 1~iDose 5迭代等级1~5;AI:经AI测量所得风险分层;CT:经CT工作站测量所得风险分层。 -
[1] 庹敏, 侯梦婷, 鲍娟. 人工智能在医疗领域的应用现状和思考[J]. 中国现代医生, 2022, 60(22): 72-75. DOI: 10.3969/j.issn.1673-9701.2022.22.zwkjzlml-yyws202222017. TUO M, HOU M T, BAO J. Application status and thinking of artificial intelligence in medical field[J]. China Modern Doctor, 2022, 60(22): 72-75. DOI: 10.3969/j.issn.1673-9701.2022.22.zwkjzlml-yyws202222017. (in Chinese).
[2] KANG H W, AHN W J, JEONG J H, et al. Evaluation of fully automated commercial software for Agatston calcium scoring on non-ECG-gated low-dose chest CT with different slice thickness[J]. European Radiology, 2023, 33(3): 1973-1981. DOI: 10.1007/s00330-022-09143-1.
[3] WANG W, WANG H, CHEN Q, et al. Coronary artery calcium score quantification using a deep-learning algorithm[J]. Clinical Radiology, 2020, 75(3): 237. e11- 237. e16. DOI: 10.1016/j.crad.2019.10.012.
[4] Van VELZEN S G M, LESSMANN N, VELTHUIS B K, et al. Deep learning for automatic calcium scoring in CT: Validation using multiple cardiac CT and chest CT protocols[J]. Radiology, 2020, 295(1): 66-79. DOI: 10.1148/radiol.2020191621.
[5] 陈丽虹, 郭银霞, 李雅楠, 等. 人工智能冠状动脉钙化积分自动测量方法的临床有效性评估[J]. 实用放射学杂志, 2023, 39(1): 45-48, 69. DOI: 10.3969/j.issn.1002-1671.2023.01.012. CHEN L H, GUO Y X, LI Y N, et al. Clinical effectiveness evaluation of artificial intelligence automatic measurement method for coronary artery calcium score[J]. Journal of Practical Radiology, 2023, 39(1): 45-48, 69. DOI: 10.3969/j.issn.1002-1671.2023.01.012. (in Chinese).
[6] PARK S H, HAN K. Methodologic guide for evaluating clinical performance and effect of artificial intelligence technology for medical diagnosis and prediction[J]. Radiology, 2018, 286(3): 800-809. DOI: 10.1148/radiol.2017171920.
[7] PUGLIESE G, IACOBINI C, BLASETTI FANTAUZZI C, et al. The dark and bright side of atherosclerotic calcification[J]. Atherosclerosis, 2015, 238(2): 220-230. DOI: 10.1016/j.atherosclerosis.2014.12.011.
[8] 胡春洪, 张龙江, 陈灿. 人工智能在冠状动脉CT成像中的应用及展望[J]. 中华放射学杂志, 2023, 57(5): 453-456. DOI: 10.3760/cma.j.cn112149-20230309-00172. HU C H, ZHANG L J, CHEN C. Artificial intelligence in coronary CT: Current status and perspective[J]. Chinese Journal of Radiology, 2023, 57(5): 453-456. DOI: 10.3760/cma.j.cn112149-20230309-00172. (in Chinese).
[9] WILLEMINK M J, VLIEGENTHART R, TAKX R A P, et al. Coronary artery calcification scoring with state-of-the-art CT scanners from different vendors has substantial effect on risk classification[J]. Radiology, 2014, 273(3): 695-702. DOI: 10.1148/radiol.14140066.
[10] Serhat Kılıçarslan, Kemal Adem, Mete Çelik. An overview of the activation functions used in deep learning algorithms[J]. Journal of New Results in Science, 2021, 10(3): 75-88. DOI: 10.54187/jnrs.1011739.
[11] AYX I, THARMASEELAN H, HERTEL A, et al. Myocardial radiomics texture features associated with increased coronary calcium score-first results of a photon-counting CT[J]. Diagnostics (Basel), 2022, 12(7): 1663. DOI: 10.3390/diagnostics12071663.
[12] SONG Y, HOORI A, WU H, et al. Improved bias and reproducibility of coronary artery calcification features using deconvolution[J]. Journal of Medical Imaging, 2023, 10(1): 014002. DOI: 10.1117/1.JMI.10.1.014002.
[13] 顾海峰, 鲍雪琴, 王清清, 等. 高级建模迭代重建对冠状动脉钙化积分的影响[J]. 放射学实践, 2022, 37(8): 1028-1034. DOI: 10.13609/j.cnki.1000-0313.2022.08.019. GU H F, BAO X Q, WANG Q Q, et al. The impact of advanced modeled iterative reconstruction on coronary artery calcium scoring[J]. Radiologic Practice, 2022, 37(8): 1028-1034. DOI: 10.13609/j.cnki.1000-0313.2022.08.019. (in Chinese).
[14] PATINO M, FUENTES J M, SINGH S, et al. Iterative reconstruction techniques in abdominopelvic CT: Technical concepts and clinical implementation[J]. American Journal of Roentgenology, 2015, 205(1): W19-31. DOI: 10.2214/AJR.14.13402.
[15] LIU Y, GU M, LIU L, et al. CT image features based on the reconstruction algorithm for continuous blood purification combined with nursing intervention in the treatment of severe acute pancreatitis[J]. Contrast Media Mol Imaging, 2022, 2022: 2622316. DOI: 10.1155/2022/2622316.
[16] BRUWIER A, GODART B, GATEL L, et al. Computed tomographic assessment of retrograde urohydropropulsion in male dogs and prediction of stone composition using Hounsfield unit in dogs and cats[J]. Journal of Veterinary Science, 2022, 23(5): e65. DOI: 10.4142/jvs.22109.
[17] 李妍, 金士琪, 多国帅, 等. 迭代重建算法联合不同卷积核应用于冠脉双低扫描支架显示的比较研究[J]. 中国临床医学影像杂志, 2019, 30(2): 109-113. DOI: 10.12117/jccmi.2019.02.009. LI Y, JIN S Q, DUO G S, et al. A comparative study of iterative reconstruction technigue in CT coronary dual-low scan stent imaging with different convolution kernels[J]. Journal of China Clinic Medical Imaging, 2019, 30(2): 109-113. DOI: 10.12117/jccmi.2019.02.009. (in Chinese).
[18] KRIZHEVSKY A, SUTSKEVER I, HINTON G. ImageNet classification with deep convolutional neural networks[J]. Advances in Neural Information Processing Systems, 2012, 25(2). DOI: 10.1145/3065386.
[19] XIE J, XU L, CHEN E. Image Denoising and inpainting with deep neural networks[J]. Advances in Neural Information Processing Systems, 2012, 1.
-
期刊类型引用(1)
1. 石家云,刘小峰,梁麟龙,谢齐放. 小儿支原体大叶性肺炎的诊断模型建立. 华夏医学. 2024(02): 150-155 . 百度学术
其他类型引用(0)
计量
- 文章访问数: 60
- HTML全文浏览量: 20
- PDF下载量: 16
- 被引次数: 1