Application of Dual-layer Detector Spectral Computed Tomography Virtual Non-contrast Scanning in Enhanced Chest Computed Tomography for Children
-
摘要:
目的:讨论双层探测器光谱CT(DLCT)虚拟平扫(VNC)技术在儿童胸部CT增强检查中应用的可行性。方法:回顾性分析我院在双层探测器光谱CT上扫描的51例儿童增强胸部CT影像数据及临床资料。对每例原始图像采取相同方案进行处理:分别利用静脉期光谱基数据(SBI)进行投影空间光谱重建得到VNC图像,并和常规真实平扫(TNC)图像从图像质量和辐射剂量两方面进行比较:选用两位高年资影像诊断医生分别在两组影像上测量肺动脉干、胸主动脉干、竖脊肌、肺部组织、胸壁下皮下脂肪的CT值和SD值,计算相应影像的信噪比(SNR)和对比度噪声比(CNR),分别记录平扫期、动脉期、静脉期的辐射剂量;对两组图像运用5分法进行主观评分,采用Kappa检验分析两位医师对两种图像主观评价的一致性,采用Mann-Whitney U检验比较两种图像的图像质量的主观评分;运用配对样本t检验对组间图像质量和辐射剂量进行客观统计学分析。结果:图像质量客观评价中各结构的SNR、CNR及主观评分组两组之间无明显统计学差异,TNC组和VNC组的主观图像评分中位数均为4分;VNC组有效剂量长度乘积(DLP)(298.14±119.40)mGy·cm和有效辐射剂量(ED)(4.27±1.34)mSv均显著低于TNC组的DLP(437.31±178.28)mGy·cm和ED(6.26±2.00)mSv,VNC组两期扫描相比TNC组3期扫描DLP降低了31.82%,ED降低了31.79%。结论:将光谱CT虚拟平扫VNC图像用于儿童胸部增强扫描中以替代常规平扫期TNC图像,有较好的图像质量用于诊断,并能够显著降低辐射剂量。
Abstract:Objective: This study aimed to explore the feasibility of applying dual-layer detector spectral computed tomography (DLCT) virtual non-contrast (VNC) technology in pediatric enhanced chest CT examinations. Methods: Retrospective analysis was conducted on the enhanced chest CT imaging data and clinical information of 51 children who underwent DLCT scanning at Wuhan Union Hospital. The same processing protocol was applied to each original image. VNC images were obtained using projection space spectral reconstruction from the venous phase spectral base images (SBI) and compared with true non-contrast (TNC) images regarding image quality and radiation dose. Two radiologists measured the CT and SD values of the pulmonary artery trunk, aorta trunk, erector spinae, lung tissue, and subcutaneous fat of the chest wall on image sets, calculating the signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR). Non-contrast, arterial, and venous phase radiation doses were recorded. Subjective image quality scores were assigned using a 5-point Likert scale, and inter-observer consistency was assessed with the Kappa test. The Mann–Whitney U test compared subjective scores, while the paired t-test was used for objective image quality and radiation dose analyses. Results: Objective evaluation of image quality showed no significant statistical differences between the SNR, CNR, and subjective scores of both groups. The median subjective image scores for TNC and VNC were 4 points. The DLP and ED values of the VNC group (298.14±119.40) mGy·cm, (4.27±1.34) mSv were significantly lower than those of the TNC group (437.31±178.28) mGy·cm, (6.26±2.00) mSv. The DLP and ED of the VNC group reduced by 31.82% and 31.79%, respectively, compared to the TNC group. Conclusion: Spectral CT virtual non-contrast (VNC) images as a substitute for conventional non-contrast (TNC) images in pediatric enhanced chest scans offers satisfactory diagnostic image quality and can significantly reduce radiation dose.
-
Keywords:
- spectral CT /
- VNC /
- low dose /
- children /
- enhanced CT
-
-
表 1 TNC和VNC两组图像的客观测量指标比较(n=51,
$\bar x\pm s $ )Table 1 Comparison of Objective Measurement Metrics between TNC and VNC Image Groups (n=51,
$\bar x\pm s $ )观测指标 区域 组别 统计检验 TNC VNC t p CT值 竖脊肌 50.31 ± 6.82 51.47 ± 6.84 -1.052 0.298 肺动脉干 38.98 ± 21.89 40.24 ± 11.58 -0.364 0.717 主动脉干 40.07 ± 20.86 44.63 ± 13.09 -1.453 0.152 胸部皮下脂肪 -103.81 ± 20.88 -95.26 ± 24.15 -3.846 0.000 空白处 -995.24 ± 14.21 -995.38 ± 15.37 0.152 0.880 肺组织 -803.13 ± 80.74 -796.22 ± 80.22 -0.676 0.502 SD值 竖脊肌 13.58 ± 4.78 13.66 ± 7.11 -0.082 0.935 肺动脉干 9.91 ± 3.13 11.31 ± 3.63 -4.091 0.000 主动脉干 11.67 ± 3.88 12.17 ± 4.082 -1.153 0.254 胸部皮下脂肪 14.38 ± 8.04 17.62 ± 24.54 -0.949 0.347 空白处 15.91 ± 21.27 15.83 ± 15.69 0.050 0.960 肺组织 47.03 ± 41.05 50.09 ± 40.91 -0.389 0.699 SNR 竖脊肌 4.16±1.50 4.44±1.84 -1.088 0.282 肺动脉干 4.28±2.29 3.92±1.74 1.034 0.306 主动脉干 3.68±1.71 3.99±1.68 -1.043 0.302 胸部皮下脂肪 -9.22±4.69 -8.41±5.45 -1.448 0.154 空白处 -106.43±54.42 -89.25±35.07 -2.922 0.005 肺组织 -31.03±21.68 -28.74±21.29 -0.682 0.499 CNR 竖脊肌 - - - - 肺动脉干 0.98±1.34 1.03±1.62 0.234 0.816 主动脉干 0.92±1.43 0.72±1.65 -0.712 0.479 胸部皮下脂肪 13.43±6.15 12.82±8.03 -0.725 0.472 空白处 - - - - 肺组织 72.48±29.82 72.10±39.17 0.088 0.930 注:TNC 为真实平扫图像;VNC 为虚拟平扫图像;SD 为背景噪声;SNR 为信噪比;CNR 为对比度噪声比。 表 2 主观评价一致性kappa分析表
Table 2 Kappa analysis for subjective evaluation consistency
组别 评分标准 评分 统计检验 医师A 医师B k P TNC组 3 1 1 4 37 36 0.859 0.00 5 13 14 VNC组 3 1 1 4 35 33 0.829 0.00 5 15 17 表 3 两组图像评分差异
Table 3 Differences in image scores between the two groups
TNC组(n=51) VNC组(n=51) Z P 图像质量评分 4(4,5) 4(4,5) -0.460 0.645 表 4 虚拟平扫组和常规平扫组剂量的差异(n=51,
$\bar x\pm s $ )Table 4 Differences in dose between the two groups (n=51,
$\bar x\pm s $ )项目 组别 统计检验 TNC组 VNC组 t p DLP/(mGy·cm) 437.31±178.28 298.14±119.40 15.95 0.00 ED/mSv 6.26±2.00 4.27±1.34 19.85 0.00 -
[1] 王广启, 郑义, 吴友双, 等. CARE Dose 4D联合CARE kV技术降低胸部CT扫描辐射剂量的可行性研究[J]. 湖北科技学院学报(医学版), 2023, 37(6): 510−513. DOI: 10.16751/j.cnki.2095-4646.2023.06.0510. WANG G Q, ZHENG Y, WU Y S, et al. The feasibility research of care dose 4D combined with care kV to reduce CT radiation dose in chest CT scanning[J]. Journal of Hubei University of Science and Technology (Medical Sciences), 2023, 37(6): 510−513. DOI: 10.16751/j.cnki.2095-4646.2023.06.0510. (in Chinese).
[2] 曹俊涛, 陈琪琪, 胡铭, 等. 基于低剂量胸部CT原始数据迭代重建增强等级评价不同类型肺小结节的初步分析[J]. CT理论与应用研究, 2021, 30(6): 735−742. DOI: 10.15953/j.1004-4140.2021.30.06.09. CAO J T, CHEN Q Q, HU M, et al. A preliminary analysis of using the sinogram-affirmed iterative reconstruction strength levels based on the original data of low-dose chest ct to evaluate different types of small pulmonary nodules[J]. CT Theory and Applications, 2021, 30(6): 735-742. DOI: 10.15953/j.1004-4140.2021.30.06.09. (in Chinese).
[3] MAHGEREFTEH S, BLACHAR A, FRAIFELD S, et al. Dual-energy derived virtual nonenhanced computed tomography imaging: Current status and applications[J]. Semin Ultrasound CT MR, 2010, 31(4): 321−327. DOI: 10.1053/j.sult.2010.06.001.
[4] 穆荣华, 李鑫, 黄光仪, 等. 双层探测器光谱CT胸部虚拟平扫与常规CT平扫影像质量比较分析[J]. 国际医学放射学杂志, 2023, 46(4): 383−389. DOI: 10.19300/j.2023.L20039. MU R H, LI X, HUANG G Y, et al. Image quality of dual-layer spectral chest CT: Virtual non-contrast in comparison to true non-contrast images[J]. International Journal of Medical Radiology, 2023, 46(4): 383−389. DOI: 10.19300/j.2023.L20039. (in Chinese).
[5] 中华医学会影像技术分会, 中华医学会放射学分会. CT检查技术专家共识[J]. 中华放射学杂志, 2016, 50(12): 916-928. DOI: 10.3760/cma.j.issn.1005-1201.2016.12.004 Chinese Medical Association Chinese Society of Imaging Technology, Chinese Medical Association Chinese Society of Radiology. Expert consensus on CT technology[J]. Chinese Journal of Radiology, 2016, 50(12): 916-928. DOI:10.3760/cma.j.issn.1005-1201.2016.12.004. (in Chinese).
[6] BEHRENDT F F, SCHMIDT B, PLUMHANS C, et al. Image fusion in dual energy computed tomography: Effect on contrast enhancement, signal-to-noise ratio and image quality in computed tomography angiography[J]. Invest Radiology, 2009, 44(1): 1−6. DOI: 10.1097/RLI.0b013e31818c3d4b.
[7] 中华医学会放射学分会质量管理与安全管理学组. CT辐射剂量诊断参考水平专家共识[J]. 中华放射学杂志, 2017, 51(11): 817-822. DOI: 10.3760/cma.j.issn.1005?1201.2017.11.001 Chinese Medical Association Radiology Society Quality Management and Security Management Group. Experts consensus on diagnostic reference level of CT radiation dose[J]. Chinese Journal of Radiology, 2017, 51(11): 817-822. DOI:10.3760/cma.j.issn.1005?1201.2017.11.001.(in Chinese).
[8] GB/T16137-2021. X射线诊断中受检者器官剂量的估算方法[S]. 北京: 国家市场监督管理总局;国家标准化管理委员会. 2021. [9] HICKETHIER T, WENNING J, BRATKE G, et al. Evaluation of soft-plaque stenoses in coronary artery stents using conventional and monoenergetic images: First in-vitro experience and comparison of two different dual-energy techniques[J]. Quantitative Imaging in Medicine and Surgery, 2020, 10(3): 612−623. DOI: 10.21037/qims.2020.02.11.
[10] 中华放射学杂志双层探测器光谱CT临床应用协作组. 双层探测器光谱CT临床应用中国专家共识(第一版)[J]. 中华放射学杂志, 2020, 54(7): 635−643. DOI: 10.3760/cma.j.cn112149-20200513-00679. Chinese Journal of Radiology Cooperative Group of Clinical Application of Dual-layer Spectral Detector CT. China expert consensus on clinical application of dual-layer spectral detector CT[J]. Chinese Journal of Radiology, 2020, 54(7): 635−643. DOI: 10.3760/cma.j.cn112149-20200513-00679. (in Chinese).
[11] HERING D A, KROGER K, BAUER R W, et al. Comparison of virtual non-contrast dual-energy CT and a true non-contrast CT for contouring in radiotherapy of 3D printed lung tumour models in motion: A phantom study[J]. The British Journal of Radiology, 2020, 93(1116): 20200152. DOI: 10.1259/bjr.20200152.
[12] PARK A, LEE Y H, SEO H S. Could both intrinsic and extrinsic iodine be successfully suppressed on virtual non-contrast CT images for detecting thyroid calcification?[J]. Japanese Journal of Radiology, 2021, 39(6): 580−588. DOI: 10.1007/s11604-021-01095-8.
[13] BERNSEN M, VEENDRICK P B, MARTENS J M, et al. Initial experience with dual-layer detector spectral CT for diagnosis of blood or contrast after endovascular treatment for ischemic stroke[J]. Neuroradiology, 2022, 64(1): 69−76. DOI: 10.1007/s00234-021-02736-5.
[14] RIEDERER I, FINGERLE A A, ZIMMER C, et al. Potential of dual-layer spectral CT for the differentiation between hemorrhage and iodinated contrast medium in the brain after endovascular treatment of ischemic stroke patients[J]. Clinical Imaging, 2021, 79: 158−164. DOI: 10.1016/j.clinimag.2021.04.020.
[15] BORHANI A A, KULZER M, IRANPOUR N, et al. Comparison of true unenhanced and virtual unenhanced (VUE) attenuation values in abdominopelvic single-source rapid kilovoltage-switching spectral CT[J]. Abdominal Radiology (NY), 2017, 42(3): 710−717. DOI: 10.1007/s00261-016-0991-5.
[16] CHEN B, MARIN D, RICHARD S, et al. Precision of iodine quantification in hepatic CT: Effects of iterative reconstruction with various imaging parameters[J]. American Journal of Roentgenology, 2013, 200(5): W475−W482. DOI: 10.2214/AJR.12.9658.
[17] LI B, POMERLEAU M, GUPTA A, et al. Accuracy of dual-energy CT virtual unenhanced and material-specific images: A phantom study[J]. American Journal of Roentgenology, 2020, 215(5): 1146−1154. DOI: 10.2214/AJR.19.22372.
[18] LACROIX M, MULE S, HERIN E, et al. Virtual unenhanced imaging of the liver derived from 160-mm rapid-switching dual-energy CT (rsDECT): Comparison of the accuracy of attenuation values and solid liver lesion conspicuity with native unenhanced images[J]. European Journal of Radiology, 2020, 133: 109387. DOI: 10.1016/j.ejrad.2020.109387.
[19] 付蓝琦, 潘馨梦, 刘思佳, 等. 双层探测器光谱CT虚拟平扫替代常规平扫评估甲状腺结节的可行性分析[J]. 放射学实践, 2022, 37(3): 302−306. DOI: 10.13609/j.cnki.1000-0313.2022.03.004. FU L Q, PAN X M, LIU S J, et al. Feasibility analysis of double-layer spectral detector CT virtual non-contrast images instead of true non- contrast images in evaluating thyroid nodules[J]. Radiologic Practice, 2022, 37(3): 302−306. DOI: 10.13609/j.cnki.1000-0313.2022.03.004. (in Chinese).
[20] MATHEWS J D, FORSYTHE A V, BRADY Z, et al. Cancer risk in 680, 000 people exposed to computed tomography scans in childhood or adolescence: Data linkage study of 11 million Australians[J]. British Medical Journal, 2013, 346: f2360. DOI: 10.1136/bmj.f2360.
[21] PEARCE M S, SALOTTI J A, LITTLE M P, et al. Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: A retrospective cohort study[J]. Lancet, 2012, 380(9840): 499−505. DOI: 10.1016/S0140-6736(12)60815-0.
[22] 赵永霞, 左紫薇, 索红娜, 等. 肾动脉CT血管成像中采用常规扫描和能谱成像扫描方案对图像质量和辐射剂量的影响[J]. 中华放射学杂志, 2017, 51(4): 304−307. DOI: 10.3760/cma.j.issn.1005?1201.2017.04.014. ZHAO Y X, ZUO Z W, SUO H N, et al. Comparison of spectral imaging and conventional CT in CT angiography of the kidney: Image quality and radiation dose[J]. Chinese Journal of Radiology, 2017, 51(4): 304−307. DOI: 10.3760/cma.j.issn.1005?1201.2017.04.014. (in Chinese).
-
期刊类型引用(6)
1. 李杜,谢永健,崔文民,谢晓丹,肖智. 多层螺旋CT血管成像与数字减影血管造影诊断腹盆部创伤患者活动性出血的一致性分析. 现代医用影像学. 2025(01): 44-48 . 百度学术
2. 丁晖,林梦雯,李辉,潘晓萍. CT对腹盆部外伤诊断准确率的影响. 中国医疗器械信息. 2024(14): 121-123 . 百度学术
3. 李立. 经导管动脉栓塞治疗外伤致胃十二指肠动脉损伤出血患者2例. 中华急诊医学杂志. 2023(09): 1253-1255 . 百度学术
4. 欧阳林,陈自谦,郭武华,胡寅进,赖清泉,林祺,郁毅刚,周建军. 腹盆部创伤急诊CT常见选择认知问题的讨论. 实用医技杂志. 2022(02): 122-125 . 百度学术
5. 严朝钦,赖智民,黄宇芬. 胸部CT诊断胸腹部创伤的价值. 深圳中西医结合杂志. 2021(09): 86-88 . 百度学术
6. 李应敬,任建庄,段旭华,张文广,陈鹏飞,许琳惠,邝东林,李方正. 增强MSCT对动脉出血诊断及介入治疗价值. 河南医学研究. 2021(26): 4936-4940 . 百度学术
其他类型引用(0)