ISSN 1004-4140
CN 11-3017/P

可变曝光条件在一站式颅脑CT成像中的应用价值

王雨晓, 王培根, 杨尚文, 施康, 罗云, 周飞, 秦国初, 徐亚运

王雨晓, 王培根, 杨尚文, 等. 可变曝光条件在一站式颅脑CT成像中的应用价值[J]. CT理论与应用研究(中英文), 2025, 34(3): 461-468. DOI: 10.15953/j.ctta.2024.143.
引用本文: 王雨晓, 王培根, 杨尚文, 等. 可变曝光条件在一站式颅脑CT成像中的应用价值[J]. CT理论与应用研究(中英文), 2025, 34(3): 461-468. DOI: 10.15953/j.ctta.2024.143.
WANG Y X, WANG P G, YANG S W, et al. Application Value of Variable Exposure Conditions in One-stop Cerebral Computed Tomography Imaging[J]. CT Theory and Applications, 2025, 34(3): 461-468. DOI: 10.15953/j.ctta.2024.143. (in Chinese).
Citation: WANG Y X, WANG P G, YANG S W, et al. Application Value of Variable Exposure Conditions in One-stop Cerebral Computed Tomography Imaging[J]. CT Theory and Applications, 2025, 34(3): 461-468. DOI: 10.15953/j.ctta.2024.143. (in Chinese).

可变曝光条件在一站式颅脑CT成像中的应用价值

详细信息
    作者简介:

    王雨晓,女,技师,主要从事CT、MRI成像技术方面工作,E-mail:19825015020@163.com

    通讯作者:

    徐亚运✉,女,主管技师,主要从事CT、MR成像技术及图像后处理方面工作,E-mail:270189110@qq.com

  • 中图分类号: R 814.42;R 144.1

Application Value of Variable Exposure Conditions in One-stop Cerebral Computed Tomography Imaging

  • 摘要:

    目的:通过比较固定曝光条件和可变曝光条件在一站式颅脑CT扫描中的影像质量和辐射剂量,探讨可变曝光条件在一站式颅脑CT扫描中的应用价值。方法:前瞻性选取我院2024年3至2024年5月间,因脑血管疾病需行头颅一站式CT扫描的患者100例,随机分为A组和B组,每组各50例。所有患者均从对比剂注射后5 s开始第1期扫描,至65 s结束,共进行18期扫描。A组患者所有扫描期相均使用相同的曝光条件,即管电压100 kV,管电流量100 mAs。B组根据各期相影像数据的诊断目的不同,使用不同的管电流量进行扫描。使用CT后处理工作站,测量平扫期大脑半球灰质、白质及颅外空气的CT值和噪声,计算图像的对比噪声比(CNR);测量CTA图像的颅内动脉、脑实质区的CT值和噪声,计算CNR;测量CTP图像的CBV、CBF、MTT、TTP及Tmax>6 s的脑组织体积等灌注参数,并对各期图像质量进行主观评价。使用Shapiro-Wilk检验客观指标的正态性,两组间客观指标比较采用独立样本t检验进行。采用Wilcoxon符号秩检验比较主观评分结果。结果:B组平扫图像的CNRp和主观评分优于A组。CTA图像噪声小于A组,CNRa及主观评分均高于A组;B组CTP各灌注参数与A组无差异;B组患者的DLP较A组增加约0.65%。结论:与固定曝光条件组相比,可变曝光条件一站式颅脑CT的平扫和CTA图像质量均明显提高,各灌注参数无明显差异,总体辐射剂量无明显增加的情况下,提供比固定曝光条件更好的图像质量。

    Abstract:

    Objective: To compare the imaging quality and radiation dose under fixed and variable exposure conditions and to determine the value of variable exposure conditions in a one-stop cranial computed tomography (CT). Methods: One hundred patients who required one-stop head CT scanning because of cerebrovascular disease at our hospital between March and May 2024 were prospectively selected and randomly divided into groups A and B, with 50 patients in each group. All patients underwent the first phase of scanning at 5~65s after contrast injection, and a total of 18 scanning phases were performed. In group A, all patients underwent the same exposure conditions for all scan phases, with a tube voltage of 100 kV and tube current of 100 mAs. In group B, the patients were scanned with different tube currents according to the different diagnostic purposes of each phase of the image data. The CT values and noise of the gray matter, white matter, and extra-cranial air in the cerebral hemisphere during normal scans were measured using CT post-processing workstation, and the contrast noise ratio (CNR) of the images was calculated. The CT values and noise in the intracranial artery and parenchyma were measured using computed tomography angiography (CTA) images, and the CNR was calculated. Perfusion parameters such as cerebral blood volume (CBV), cerebral blood flow (CBF), mean transit time (MTT), and time to peak (TTP) in the computer-to-plate-performed image were measured, and a five-point scale was used to subjectively evaluate the image quality at each stage. The Shapiro–Wilk test was performed to test the normality of objective indicators, and an independent sample t-test was used to compare objective indicators between the two groups. The Wilcoxon signed-rank test was used to compare subjective scores. Results: The CNRp and subjective scores of the plain scan images in group B were better than those in group A. The CTA image noise in group B was lower than that in group A, and the CNRa and subjective score in group B was higher than that in group A. However, the perfusion parameters of CTP in group B did not differ significantly from those in group A. The dose length product (DLP) in group B was increased by approximately 0.65% compared with that in group A. Conclusion: Compared with the fixed exposure condition group, the image quality of the one-stop cranial CT under variable exposure conditions was significantly improved. No significant differences were observed in any perfusion parameter, and the overall radiation dose was not significantly increased, providing better image quality than that under fixed exposure conditions.

  • 图  1   两种扫描协议示意图

    注:(a)A组扫描使用固定曝光条件,管电流量100 mAs;(b)B组根据不同扫描期相使用可变曝光条件,平扫期(第1期)管电流量240 mAs,CTA期(第4~7期)管电流量150 mAs,其余期相管电流量75 mAs。

    Figure  1.   Schematic diagram of the two scanning protocols

    图  2   A组平扫和CTA图像

    注:(a)(b)为A组1例患者,各期管电流量均使用100 mAs进行扫描,平扫图像灰白质对比尚可,噪声稍大,右侧尾状核头低密度区显示欠清晰,诊断信心不足(白箭)。CTA图像上分支血管边缘欠光整,显示欠清晰(白箭)。

    Figure  2.   Non-contrast and CTA images of one patient in group A

    图  3   B组平扫和CTA图像

    注:(a)(b)为B组1例患者,平扫期使用240 mAs进行扫描,图像细腻,灰白质对比良好。CTA期使用150 mAs进行扫描,血管边缘光整,分支血管显示清晰。

    Figure  3.   Non-contrast and CTA images of one patient in group B

    表  1   两组患者一般资料及辐射剂量比较

    Table  1   General information and radiation dose comparison of the two patient groups

    项目 组别 统计检验
    A组 B组 统计值 P
    例数 50 50
    性别 28 27 0.400a 0.841
    22 23
    评价年龄/岁 62.8±13.5 60.3±12.1 0.997 0.321
    身高/m 1.66±0.07 1.65±0.06 0.899 0.371
    体质量/kg 68.5±9.1 69.8±8.9 0.773 0.441
    扫描长度/cm 140.40±2.83 140.80±3.96 − 0.581 0.562
    CTDIvol /mGy 152.20±0.15 153.09±0.412 −14.232 <0.001
    DLP/(mGy·cm) 2136.74±39.82 2156.52±57.05 −2.010 0.047
    注:CTDI为CT剂量指数;DLP为剂量长度乘积,a为$\chi^2 $值,其他为t值。
    下载: 导出CSV

    表  2   两组患者平扫图像质量比较

    Table  2   Comparison of plain scan image quality between the two patient groups

    项目 组别 统计检验
    A组 B组 统计值 P
    灰质CT值 36.41±1.51 36.15±1.26 0.896 0.370
    白质CT值 27.14±1.69 26.85±1.54 0.831 0.408
    图像噪声SDp 4.75±0.78 1.92±0.22 8.537 0.000
    背景噪声SD1 3.19±0.55 1.70±0.28 16.826 0.000
    CNRp 10.33±2.11 20.72±3.53 −8.473 0.000
    评分 3(3,3) 5(4,5) −8.681a 0.000
    注:a为Z值,其余统计值均为t值。
    下载: 导出CSV

    表  3   两组患者CTA图像质量比较

    Table  3   Comparison of CTA image quality between the two patient groups

    项目 组别 统计检验
    A组 B组 统计值 P
    颅内动脉CT值 391.64±64.57 409.61±72.56 1.113 0.269
    动脉噪声SDa 7.00±0.73 5.37±0.65 −6.963 0.000
    脑实质CT值 36.53±1.61 36.32±1.66 −0.546 0.586
    图像噪声SD2 9.13±1.44 6.42±0.46 −7.414 0.000
    CNRa 39.53±8.23 58.63±12.93 8.021 0.000
    评分 4(3,4) 5(5,5) 5.745a 0.000
    注:a为Z值,其余统计值均为t值。
    下载: 导出CSV

    表  4   两组患者CTP结果和图像质量比较

    Table  4   Comparison of CTP results and image quality between the two patient groups

    项目 组别 统计检验
    A组 B组 统计值 P
    尾状核头 CBV 3.54±0.96 3.63±1.16 − 0.010 0.992
    CBF 99.22±40.91 107.25±53.37 0.283 0.777
    MTT 3.94±1.53 3.79±1.58 − 0.430 0.668
    TTP 19.13±2.79 18.31±2.41 −1.391 0.168
    颞叶白质 CBV 1.98±0.72 2.00±0.79 − 0.152 0.880
    CBF 45.03±18.42 42.76±23.26 −1.131 0.258
    MTT 5.55±2.30 5.59±2.07 0.470 0.639
    TTP 20.58±2.81 20.39±2.55 − 0.316 0.753
    评分 4(4,5) 4(4,5) −1.076a 0.282
    Tmax>6 s的脑组织体积/mL 74.19±126.79 34.56±78.94 1.876 0.064
    注:a为Z值,其余统计值均为t值。
    下载: 导出CSV
  • [1] 彭斌, 刘鸣, 崔丽英, 等. 中国急性缺血性脑卒中诊治指南2018[J]. 中华神经科杂志, 2018, 51(9): 666-682. DOI: 10.3760/cma.j.issn.1006-7876.2018.09.004.

    PENG B, LIU M, Cui L Y, et al. interpretation of the Chinese guidelines for diagnosis and treatment of acute ischemic stroke 2018[J]. Chinese Journal of Neurology, 2018, 51(9): 666-682. DOI:10.3760/cma.j.issn.1006-7876.2018.09.004. (in Chinese).

    [2] 中华医学会影像技术分会. 急性脑卒中多层螺旋CT检查技术专家共识[J]. 中华放射学杂志, 2020, 54(9): 839-845. DOI: 10.3760/cma.j.cn112149-20191226-01008.

    Chinese Society of Imaging Technology Chinese Medical Association. Expert consensus on multi-slice spiral CT examination for acute stroke[J]. 2020, 54(9): 839-845. DOI:10.3760/cma.j.cn112149-20191226-01008. (in Chinese).

    [3] 于蒙蒙, 任昕晨, 邓雯雯, 等. 全脑CT灌注联合头颈部CTA“一站式”检查在前循环急性缺血性脑卒中的诊断价值[J]. 中国CT和MRI杂志, 2023, 21(7): 8-11. DOI: 10.3969/j.issn.1672-5131.2023.07.003.

    YU M M, REN X C, DENG W W, et al. The value of whole brain CT perfusion imaging combined with head and neck CTA one-stop examination in the diagnosis of anterior circulation acute ischemic stroke[J] Chinese Journal of CT and MRI, 2023, 21(7): 8-11. DOI:10.3969/j.issn.1672-5131.2023.07.003. (in Chinese).

    [4]

    BIVARD A, PARSONS M. Tissue is more important than time: Insights into acute ischemic stroke from modern brain imaging[J]. Current Opinion in Neurology, 2018, 31(1): 23-27. DOI: 10.1097/WCO.0000000000000520.

    [5] 蔡培, 徐凯, 牛磊, 等. 双低技术在iCT全脑灌注成像中的应用研究[J]. 医学影像学杂志, 2019, 29(10): 1656-1660. DOI: CNKI:SUN:XYXZ.0.2019-10-009.

    CAI P, XU K, NIU L, et al. Case study about the application of the double low techniques on the whole brain iCT perfusion imaging[J]. Journal of Medical Imaging, 2019, 29(10): 1656-1660. DOI:CNKI:SUN:XYXZ.0.2019-10-009. (in Chinese).

    [6] 李文, 张志伟, 左子钰, 等. 双层探测器光谱CT虚拟单能量CTA技术对脑血管成像的价值[J]. CT理论与应用研究(中英文), 2024, 33(6): 669-675. DOI: 10.15953/j.ctta.2024.074.

    LI W, ZHANG Z W, ZUO Z Y, et al. The value of virtual monoenergetic computed tomography angiography with dual-layer detector spectral computed tomography for imaging cerebral vessels[J]. CT Theory and Applications, 2024, 33(6): 669-675. DOI: 10.15953/j.ctta.2024.074. (in Chinese).

    [7]

    OZDOBA C, SLOTBOOM J, SCHROTH G, et al. Dose reduction in standard head CT: First results from a new scanner using iterative reconstruction and a new detector type in comparison with two previous generations of multi-slice CT[J]. Clinical Neuroradiology, 2014, 24(1): 23-28. DOI: 10.1007/s00062-013-0263-5.

    [8] 杨尚文, 邵明冉, 杨献峰, 等. 三低"技术联合全模型迭代重建算法在头颈部CT血管成像中的可行性研究[J]. 中华放射医学与防护杂志, 2017, 37(1): 62-67. DOI: 10.3760/cma.j.issn.0254-5098.2017.01.012.

    YANG S W, SHAO M R, YANG X F, et al. A feasibility study on " Tri-Low" technology in combination with iterative model reconstruction (IMR) algorithm in CT angiography (CTA) of the head-and-neck vessels[J]. Chinese Journal of Radiological Medicine and Protection, 2017, 37(1): 62-67. DOI: 10.3760/cma.j.issn.0254-5098.2017.01.012. (in Chinese).

    [9]

    LI Z L, LI H, ZHANG K, et al. Improvement of image quality and radiation dose of CT perfusion of the brain by means of low-tube voltage (70kV)[J]. European Radiology, 2014, 24(8): 1906-1913. DOI: 10.1007/s00330-014-3247-1.

    [10]

    FURIE K L, JAYARAMAN M V. 2018 guidelines for the early management of patients with acute ischemic stroke[J]. Stroke, 2018, 49(3): 509-510. DOI: 10.1161/STROKEAHA.118.020176.

    [11] 黄晓颖, 暴云锋, 李霞敏, 等. 人工智能在基于颅脑 CT灌注数据血管后处理的应用[J]. 中华放射学杂志, 2021, 55(8): 817-822. DOI: 10.3760/cma.j.cn112149-20200914-01087.

    HUANG X Y, BAO Y F, LI X M, et al. Application of artificial intelligence in vascular reconstruction based on cerebral CT perfusion data[J]. Chinese Journal of Radiology, 2021, 55(8): 817-822. DOI: 10.3760/cma.j.cn112149-20200914-01087. (in Chinese).

    [12]

    WARNER J J, HARRINGTON R A, SACCO R L, et al. Guidelines for the early management of patients with acute ischemic stroke: 2019 update to the 2018 guidelines for the early management of acute ischemic stroke[J]. Stroke, 2019, 50(12): 3331-3332. DOI: 10.1161/STR.0000000000000211. (in Chinese).

    [13] 刘青, 李伟粟, 王娇娇, 等. 全脑CT灌注成像在侧枝循环评估中的辐射剂量和临床应用价值[J]. 中华放射医学与防护杂志, 2024, 44(1): 47-52. DOI: 10.3760/cma.j.cn112271-20230609-00187.

    LIU Q, LI W L, WANG J J, et al. Radiation dose and clinical value of whole-brain CT perfusion imaging in the assessment of collateral circulation[J]. Chinese Journal of Radiological Medicine and Protection, 2024, 44(1): 47-52. DOI: 10.3760/cma.j.cn112271-20230609-00187. (in Chinese).

    [14]

    FANG X K, NI Q Q, SCHOEPF U J, et al. Image quality, radiation dose and diagnostic accuracy of 70kVp whole brain volumetric CT perfusion imaging: A preliminary study[J]. European Radiology, 2016, 26(11): 4184-4193. DOI: 10.1007/s00330-016-4225-6.

    [15] 逯瑶, 李玲, 曹若瑶, 等. 四维CT血管造影-CT灌注成像评价烟雾病及烟雾综合征侧支循环及其与脑血流动力学关系的研究[J]. 中华放射学杂志, 2023, 57(3): 252-258. DOI: 10.3760/cma.j.cn112149-20220401-00296.

    LU Y, LI L, CAO R Y, et al. Correlation between collateral circulation and cerebral hemodynamics in moyamoya disease and moyamoya syndrome based on 4-dimensional CT angiography-CT perfusion[J]. Chinese Journal of Radiology, 2023, 57(3): 252-258. DOI: 10.3760/cma.j.cn112149-20220401-00296. (in Chinese).

    [16]

    CHUNG C Y, HU R, PETERSON R B, et al. Automated processing of head CT perfusion imaging for ischemic stroke triage: A practical guide to quality assurance and interpretation[J]. American Journal of Roentgenology, 2021, 217(6): 1401-1416. DOI: 10.2214/AJR.21.26139.

    [17] 雷丽敏, 周宇涵, 郭晓旭, 等. 基于深度学习重建算法的低剂量CT脑灌注扫描可行性初步研究[J]. 中华放射医学与防护杂志, 2024, 44(7): 613-621. DOI: 10.3760/cma.j.cnl12271-20231020-00128.

    LEI L M, ZHOU Y H, GUO X X, et al. Feasibility of low-dose CT brain perfusion scanning based on deep learning reconstruction algorithm: A preliminary study[J]. Chinese Journal of Radiological Medicine and Protection, 2024, 44(7): 613-621. DOI: 10.3760/cma.j.cnl12271-20231020-00128. (in Chinese).

    [18] 向勇生, 徐卫国, 史鹰勤, 等. 双低剂量联合增加扫描时间间隔对头颅320排CT灌注的灌注参数和放射剂量影响分析[J]. 中国医学计算机成像杂志, 2019, 25(3): 311-315. DOI: 10.19627/j.cnki.cn31-1700/th.2019.03.022.

    XIANG Y S, XU W G, SHI Y Q, et al. Effects of low dose combined with increasing scan time interval on perfusion parameters and radiation dose in head 320-row CT perfusion[J]. Chinese Journal of Medical Computer Imaging, 2019, 25(3): 311-315. DOI: 10.19627/j.cnki.cn31-1700/th.2019.03.022. (in Chinese).

    [19] 王雁南, 周俊林, 那飞扬, 等. 基于低辐射剂量全脑CT灌注评估急性缺血性脑卒中侧支循环的研究[J]. 中国医学物理学杂志, 2023, 40(8): 950-956. DOI: 10.3969/j.issn.1005-202X.2023.08.005.

    WANG Y N, ZHOU J L, NA F Y, et al. Collateral circulation assessment in acute ischemic stroke based on low dose whole brain CT perfusion[J]. Chinese Journal of Medical Physics, 2023, 40(8): 950-956. DOI: 10.3969/j.issn.1005-202X.2023.08.005. (in Chinese).

图(3)  /  表(4)
计量
  • 文章访问数:  52
  • HTML全文浏览量:  11
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-21
  • 修回日期:  2024-12-09
  • 录用日期:  2024-12-17
  • 网络出版日期:  2025-01-20

目录

    /

    返回文章
    返回
    x 关闭 永久关闭