ISSN 1004-4140
CN 11-3017/P

足头向Flash扫描对下肢动脉CTA图像质量和辐射剂量的研究

戚荣飞, 姜文龙, 郝芸芸, 杨柳莎, 常英娟, 吴志斌

戚荣飞, 姜文龙, 郝芸芸, 等. 足头向Flash扫描对下肢动脉CTA图像质量和辐射剂量的研究[J]. CT理论与应用研究(中英文), 2025, 34(3): 385-391. DOI: 10.15953/j.ctta.2024.210.
引用本文: 戚荣飞, 姜文龙, 郝芸芸, 等. 足头向Flash扫描对下肢动脉CTA图像质量和辐射剂量的研究[J]. CT理论与应用研究(中英文), 2025, 34(3): 385-391. DOI: 10.15953/j.ctta.2024.210.
QI R F, JIANG W L, HAO Y Y, et al. A Study of Image Quality and Radiation Dose in Lower Extremity Computed Tomography Angiography Using Caudo-cranial Flash Scanning[J]. CT Theory and Applications, 2025, 34(3): 385-391. DOI: 10.15953/j.ctta.2024.210. (in Chinese).
Citation: QI R F, JIANG W L, HAO Y Y, et al. A Study of Image Quality and Radiation Dose in Lower Extremity Computed Tomography Angiography Using Caudo-cranial Flash Scanning[J]. CT Theory and Applications, 2025, 34(3): 385-391. DOI: 10.15953/j.ctta.2024.210. (in Chinese).

足头向Flash扫描对下肢动脉CTA图像质量和辐射剂量的研究

详细信息
    作者简介:

    戚荣飞,男,主管技师,主要从事CT心血管成像及临床应用等方面的研究,E-mail:18710973720@163.com

    通讯作者:

    吴志斌✉,男,副主任技师,主要从事医学影像技术临床应用研究,E-mail:492053424@qq.com

  • 中图分类号: R 144;R 814.4;R 543

A Study of Image Quality and Radiation Dose in Lower Extremity Computed Tomography Angiography Using Caudo-cranial Flash Scanning

  • 摘要:

    目的:单源CT头足方向和双源CT足头方向Flash扫描在下肢动脉CT血管成像中图像质量和辐射剂量的对比研究。方法:对于需行下肢CTA成像检查且怀疑外周闭塞性动脉疾病的患者50名被随机分配到P1组(对照组)或P2组(实验组),P1组采用方案1为单源CT头足方向扫描,P2组采用方案2为双源CT足头方向Flash扫描;客观比较两组血管内CT值、信噪比(SNR)、对比噪声比(CNR),各部位CT值的一致性;主观评估由两名放射科医生对图像质量进行双盲评估;比较容积CT剂量指数(CTDIVOI)和剂量长度乘积(DLP)。结果:P1和P2两组患者主动脉、髂外动脉、腘动脉、胫前动脉处血管内CT值、SNR、CNR均存在统计学差异;股动脉处血管内CT值,SNR、CNR不存在统计学差异;P2组CT值均值高于P1组((534.4±25.2) vs. (480.6±143.4)),且在各部位CT值表现出更好的一致性;主观评价方面P1和P2两组主动脉和膝关节以下动脉图像质量评分存在统计学差异,股腘动脉图像质量评分不存在统计学差异。P2组的辐射剂量明显低于P1组,其中CTDIVOI减少64.0%((0.9±0.3)mGy vs. (2.5±0.3) mGy),DLP减少63.4%((113.5±33.4)mGy·cm vs. (310.1±53.5) mGy·cm)。结论:与单源CT头足向扫描相比,下肢CTA联合双源CT足头向Flash扫描在膝关节以下的小动脉系统中可获得更好的图像质量,具有更高的CT值、SNR、CNR和更好的一致性,并且可降低下肢CTA检查的辐射剂量。

    Abstract:

    Objective: We conducted a comparative study of image quality and radiation dose in computed tomography angiography (CTA) of lower extremity arteries with single-source CT cranio-cauda and dual-source CT cranio-cauda Flash scans. Methods: This prospective study enrolled 50 patients with suspected peripheral occlusive arterial disease which required CTA imaging of the lower extremities. Patients were randomly assigned to a control group (P1) or an experimental group (P2). Group P1 was scanned with protocol 1: single-source CT cranio-cauda direction, Group P2 was scanned with protocol 2: dual-source CT cranio-cauda direction Flash. Intravascular CT values, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) were compared as a group. Image quality was assessed by two radiologists. Volume CT dose index (CTDIVOI) and dose length product (DLP) were compared as well. Results: Statistical differences were observed between P1 and P2 groups in intravascular CT values, SNR, and CNR at the aorta, external iliac artery, popliteal artery, and anterior tibial artery. No statistically significant difference was seen in intravascular CT values, SNR, or CNR at the femoral artery. The mean intravascular CT value in the P2 group was higher than that in the P1 group ((534.4±25.2) vs. (480.6±143.4)), and showed better consistency in each part. In the subjective evaluation, significant differences were found in image quality scores for the aorta and inferior knee arteries between P1 and P2 groups, but no significant differences between groups were found in image quality scores for the femoral artery and popliteal artery The radiation dose in the P2 group was significantly lower than that in the P1 group, including a 64.0% reduction in CTDIvol ((0.9±0.3) mGy to (0.5±0.3) mGy) and a 63.4% reduction in DLP ((113.5±33.4) mGy·cm to (310.1±53.5) mGy·cm). Conclusion: Lower extremity CTA combined with dual-source CT caudo-cranial Flash scanning yields better quality images in the small arterial system below the knee with higher CT values, SNR, and CNR, and better consistency than single-source CT cranio-cauda scanning. This method also reduces the radiation dose for lower extremity CTA examinations.

  • 急性小脑梗死约占急性脑梗死的1.5%~20%[1],其临床症状不特异,包括头痛、眩晕、共济失调、构音障碍、恶心、呕吐等,容易漏诊或误诊。磁共振成像(magnetic resonance imaging,MRI),尤其是扩散加权成像(diffusion weighted imaging,DWI)的广泛应用,大大提高了急性小脑梗死的诊断率[2],在此基础上,临床专家开始关注急性双侧小脑梗死的特征及其病因。既往的文献报道中[3-4],研究者更多关注的是双侧小脑上动脉(superior cerebellar artery,SCA)供血区的急性梗死,并在此基础上分析急性双侧小脑梗死的发病原因。而在临床工作中,我们发现双侧小脑后下动脉供血区(posterior inferior cerebellar artery,PICA)急性脑梗死并不少见。

    本研究对此类病变的MRI特征进行了回顾性分析,并与同期双侧SCA供血区急性梗死的MRI特征进行对比,探讨其发病原因,以期提高急性双侧小脑梗死的临床救治水平。

    收集首都医科大学附属北京友谊医院2019年1月至2022年1月间,经临床和影像学确诊的双侧小脑PICA供血区急性梗死患者共38例,其中男性32例,女性6例,年龄21~89岁(中位年龄62岁);同期经临床和影像学确诊的双侧小脑SCA供血区急性梗死患者40例,其中男性32例,女性8例,年龄38~100岁(中位年龄69岁)。

    本研究未纳入同时累及双侧小脑PICA+SCA供血区急性梗死患者。

    (1)78例患者均于发病72 h内接受MRI常规扫描,扫描设备包括GE Signa EXCITE HD 1.5 MR扫描仪、SIMENS Magnetom Prisma 3.0 T MR扫描仪、PHILIPS Ingenia 3.0 T MR扫描仪,序列包括横轴面T1 WI、T2 WI、FLAIR、DWI及矢状面T1 WI。25例患者同时进行了磁敏感加权成像(susceptibility weighted imaging,SWI)。

    (2)15例患者接受头颅磁共振血管成像(magnetic resonance angiography,MRA)检查,37例患者接受头颈CT血管成像(CT angiography,CTA)检查,其中2例患者接受了MRA及CTA检查。

    MRA成像序列:三维磁共振血管成像(3D time-of-flight magnetic resonance angiography,3D TOF-MRA),扫描范围:枕骨大孔至胼胝体顶。

    CTA采用GE revolution CT或佳能Aquilion TM Vision CT扫描仪,双筒高压注射器(STELLANT,MEDRAD Inc.,USA),非离子对比剂选用碘普罗胺(370 mgI/mL,GE Inc.,USA)。扫描范围自主动脉弓至颅底。扫描方法:经肘正中静脉以5 mL/s的流率注入A筒60 mL对比剂,之后B筒追加30 mL生理盐水。选取主动脉根部为监测层面进行预扫描,当升主动脉CT值达150 HU时自动触发,3 s后启动正式扫描。扫描结束后将采集到的头颈CTA图像传至后处理工作站进行多平面重建及三维重建。

    由两名神经影像医师双盲阅片,意见不一致时共同协商确定。进行以下分析:

    (1)根据Amarenco's解剖图谱[5],对梗死累及部位进行确认。对双侧PICA供血区急性梗死病变按PICA外侧支(lateral branch of PICA,lPICA)供血区受累、PICA内侧支(medial branch of PICA,mPICA)供血区受累、分水岭区受累、全PICA供血区受累进行分类。

    (2)按梗死大小对单支动脉供血区病灶进行分类[2],单个病灶大于1.5 cm定义为区域性梗死,单个病灶均小于1.5 cm定义为小梗死,将所有病例分为双侧区域性梗死、双侧小梗死、一侧区域性梗死+对侧小梗死。

    (3)分别记录每个患者是否伴发其他后循环供血区、前循环供血区的急性梗死。

    (4)基于头颈CTA或MRA,观察双侧PICA供血区梗死患者椎-基底动脉血管改变。

    采用SPSS 23.0进行统计描述与分析。比较双侧PICA供血区及双侧SCA供血区影像特征,采用绝对值及百分比表示计数资料,两组间比较采用χ${}^2 $检验。P<0.05为差异有统计学意义。

    按梗死大小、后循环其他部位及前循环受累情况分类,总结双侧PICA供血区、双侧SCA供血区急性梗死MRI特征(表1)。

    表  1  双侧PICA供血区、双侧SCA供血区急性梗死MRI特征
    Table  1.  MRI characteristics of bilateral PICA and SCA territory acute infarction
    MRI特征组别(例数(%))χ2P
    双侧PICA梗死
    (38例)
    双侧SCA梗死
    (40例)
    双侧区域性梗死     6(15.8)5(12.5)0.1740.677
    一侧区域性梗死+对侧梗死15(39.5)6(15.0)5.9330.015
    双侧小梗死       17(44.7)29(72.5)6.2080.013
    累及后循环其它部位   8(21.0)32(80.0)27.103<0.001
    累及前循环       2(5.2)2(5.0)0.0030.958
    下载: 导出CSV 
    | 显示表格

    38例双侧PICA供血区急性梗死中,17例为一侧全供血区受累伴对侧PICA供血区受累,15例为双侧mPICA供血区受累,4例为双侧分水岭区受累,2例为一侧分水岭区伴对侧PICA供血区受累。

    38例双侧PICA供血区急性梗死患者,20例患者接受头颈CTA检查,6例患者接受头颅MRA检查,其中2例患者接受CTA及MRA检查。40例双侧SCA供血区急性梗死患者,17例患者接受头颈CTA检查,10例患者接受头颅MRA检查。

    24例行血管检查诊断为双侧PICA供血区急性梗死患者,其中13例(54.2%)表现为单侧椎动脉V4段或PICA局限性重度狭窄/闭塞,8例(33.3%)表现为椎-基底动脉多节段或弥漫管腔狭窄、闭塞,3例(12.5%)椎-基底动脉未见管腔异常。27例行血管检查诊断为双侧SCA供血区急性梗死患者,其中8例(29.6%)表现为椎-基底动脉单一节段局限性重度狭窄,14例(51.9%)表现为椎-基底动脉多节段或弥漫管腔狭窄、闭塞,5例(18.5%)椎-基底动脉未见管腔异常。双侧PICA梗死中椎基底动脉单一节段局限性重度狭窄/闭塞的比例高于双侧SCA梗死,而椎基底动脉多处或弥漫管腔狭窄、闭塞的比例低于双侧SCA梗死,但二者均无统计学差异(表2)。

    表  2  双侧PICA供血区、双侧SCA供血区急性梗死椎-基底动脉CTA/MRA表现特征
    Table  2.  CTA/MRA features of acute infarcted vertebrobasilar artery in bilateral PICA territory and bilateral SCA territory
    椎-基底动脉CTA/MRA表现特征组别(例数(%))χ2P
    双侧PICA梗死
    (24例)
    双侧SCA梗死
    (27例)
    单一节段局限性重度狭窄/闭塞13(54.2)8(29.6)3.1580.076
    多处或弥漫管腔狭窄、闭塞  8(33.3)14(51.9)1.7760.183
    未见管腔异常        3(12.5)5(18.5)0.3480.555
    下载: 导出CSV 
    | 显示表格

    13例椎动脉V4段或PICA局限性病变患者,MRI表现为一侧区域性梗死伴对侧小梗死(图1)或双侧区域性梗死(图2);8例椎-基底动脉多处或弥漫病变患者,MRI表现为双侧小梗死(图3);3例椎-基底动脉未见管腔异常患者,MRI表现为双侧小梗死。

    图  1  双侧PICA供血区急性梗死:一侧全供血区受累伴对侧PICA供血区受累
    男性,34岁,突发眩晕、行走不稳就诊。头颅MRI检查(a)T1 WI、(b)T2 WI、(c)DWI、(d)ADC,可见左侧全PICA供血区急性区域性梗死病灶及右侧mPICA供血区急性小梗死病灶;(e)CTA显示右侧PICA起源于基底动脉(白色弧形箭头),左侧PICA起始部闭塞(白色箭头);(f)SWI可见左侧PICA起始部低信号血栓形成(黑色箭头)。本例双侧小脑梗死由左侧PICA原位血栓形成引起,由于存在解剖变异,右侧mPICA供血区可能部分由左侧PICA供血,因此引起双侧小脑PICA供血区梗死。
    Figure  1.  Acute infarction in bilateral PICA territory: Unilateral total infarct of PICA combined with the contralateral infarct of mPICA
    图  2  双侧PICA供血区急性梗死:双侧mPICA供血区受累
    男性,66岁,突发头晕就诊。头颅MRI检查(a)T1 WI、(b)T2 WI、(c)DWI,可见双侧mPICA供血区急性区域性梗死病灶,(d)头颅CTA右侧椎动脉V4段及双侧PICA均未见显示;该患者四年前头颅CTA(e)和(f)可见左侧PICA未发育,右侧PICA供应双侧小脑半球并可见局限性重度狭窄(白色箭头),本次右侧椎动脉及PICA闭塞引起双侧小脑半球急性梗死。
    Figure  2.  Acute infarction in bilateral PICA territory: Bilateral mPICA involved
    图  3  双侧PICA供血区急性小梗死灶伴后循环其它供血区梗死
    男性,62岁,意识障碍。头颅MRI检查DWI示双侧PICA供血区(a)和(b)及左侧SCA供血区、桥脑(c)多发小梗死灶,TOF-MRA双侧椎动脉颅内段、基底动脉均未显示,提示可能为椎-基底动脉弥漫病变所致动脉-动脉栓塞。
    Figure  3.  Acute small infarcts in bilateral PICA combined with other areas of the posterior circulation

    在急性小脑梗死中,双侧小脑梗死约占20%~30%,与单侧小脑梗死比较,其临床症状更重、预后更差[6]。在发病机制上,既往研究认为,单侧小脑梗死多见于PICA供血区,多为原位动脉粥样硬化引起;而双侧小脑梗死多见于SCA供血区,且常合并小脑以外的急性梗死病灶,病因多为上一级动脉粥样硬化引起动脉-动脉栓塞或心源性栓塞。

    需要注意的是,既往研究中,虽然双侧SCA供血区受累更多见,但双侧PICA供血区的受累仅略低于双侧SCA供血区[3-4],但在发病原因的探讨中并未对不同供血区受累进行独立分析,有一定的局限性。

    在本组病例中,同时间段急性双侧小脑梗死中,双侧PICA供血区受累与双侧SCA供血区受累病例数量接近,而不同供血区受累的双侧小脑梗死影像特征并不相同。急性双侧PICA供血区梗死中,区域性梗死的发生率明显高于双侧SCA供血区梗死,而合并小脑以外病灶的发生率明显低于双侧SCA供血区梗死。不同的影像特征提示:与急性双侧SCA供血区梗死相比,急性双侧PICA供血区梗死有着不同的发病机制。

    如前所述,双侧SCA供血区梗死病因多为动脉-动脉栓塞或心源性栓塞,因此小梗死灶的发生率更高,且更容易合并小脑以外的梗死灶;而双侧PICA供血区梗死中区域性梗死更为常见,头颈CTA/MRA分析结果表明双侧PICA供血区梗死患者多数由单侧椎动脉V4段或PICA局限性病变引起,提示其病因多为原位动脉粥样硬化引起、更容易发生区域性梗死[7]

    原位动脉粥样硬化引起双侧PICA供血区梗死的原因主要与PICA变异相关。小脑供血动脉中,PICA变异最为常见,包括几种类型[8-12]:①单侧优势型 PICA,优势侧动脉供应双侧小脑内侧区域;②双侧 PICA共干或分别起源于一侧椎动脉;③双侧 PICA起源于基底动脉;④双侧 PICA缺如,相应区域由小脑前下动脉供血。其中,单侧优势型PICA更为常见。本组中双侧PICA供血区梗死主要表现为一侧全供血区受累伴对侧mPICA供血区受累或双侧mPICA供血区受累,且区域性梗死常见,我们认为主要原因是优势侧PICA或起源椎动脉发生局限性动脉粥样硬化造成管腔狭窄或原位血栓形成,从而引起相应供血区梗死。

    本组中双侧PICA供血区梗死还可表现为双侧小梗死、合并后循环其它部位梗死或前循环梗死,我们分析除了解剖变异因素,双侧PICA供血区梗死还可能有:①一侧大面积 PICA供血区梗死引起占位效应,压迫对侧mPICA分支血管引起相应供血区梗死;②血流动力学变化引起 PICA远端供血区低灌注引起梗死,此时多表现为分水岭梗死;③动脉-动脉栓塞或心源性栓塞,此时,往往合并后循环其它供血区梗死或前循环梗死。

    本研究为回顾性分析,存在局限性:①样本量较小,且仅有65% 的患者接受了头颈CTA或头颅MRA检查,造成不同类型双侧小脑梗死椎-基底动脉变化特征未发现统计学差异,对责任动脉的改变评价不够充分;②临床随访资料不完善,未能对不同类型双侧小脑梗死临床预后进行对比分析。后期研究将采取前瞻性实验设计加大样本量与长期随访,对双侧小脑梗死的发病机理及预后进行更加深入研究。

    综上所述,双侧小脑梗死病因复杂,累及不同供血动脉,其发病机制、影像特征有所不同,应区别分析。累及双侧PICA供血区不伴有小脑以外梗死灶时,应首先考虑原位动脉粥样硬化所致,血管成像(CTA、MRA或DSA)有助于显示椎动脉V4段或PICA的局限病变。由于PICA变异较大,血管成像可能无法准确判断有无异常,此时,磁共振磁敏感加权成像(SWI)有助于原位血栓的显示[13]。当梗死累及双侧PICA供血区同时合并后循环其它供血区梗死或前循环梗死时,应考虑动脉-动脉栓塞或心源性栓塞,此时应重点关注上一级动脉有无异常以及有无心源性栓子。针对不同病因进行个体化诊疗,将有助于改善病人预后、减少复发。

  • 图  1   女,78 岁,不同扫描方案的下肢 CTA 影像

    Figure  1.   Female, 78 years old, lower extremity CTA images using different scanning

    图  2   两组扫描方案各部位CT值

    Figure  2.   Sums of CT values for each part of two groups

    表  1   主观评分评价标准

    Table  1   Subjective evaluation criteria

    评分 评分标准
    差(1分)  各部分动脉均显示不佳,CT值在200 HU以下,提供的影像学信息十分有限导致无法诊断
    较差(2分) 部分小动脉显示不佳,CT值在250 HU以下,提供的影像学信息有限导致不能全面诊断
    较好(3分) 各部分动脉显示较清晰,CT值在250-300 HU以上,可提供较为充分的影像学诊断信息
    良好(4分) 各部分动脉显示清晰,CT值在300 HU以上,可提供充足的影像学诊断信息
    极好(5分) 各部分动脉显示清晰,CT值在350 HU以上,为影像学诊断提供了最佳信息
    下载: 导出CSV

    表  2   两组人群一般资料对比

    Table  2   Comparison of general information between two groups

    项目 组别 统计检验
    P1 P2 t/F P
    年龄/岁        62.2±14.8 62.9±13.8 0.2 0.879
    性别/(男/女)      16/5 25/4 0.3 0.591
    体重指数BMI/(kg/m2 3.4±1.1 23.2±1.2 0.7 0.471
    下载: 导出CSV

    表  3   两组影像不同部位的主观评价

    Table  3   Subjective evaluation of different features in two sets of images

    部位 组别 统计检验 Kappa值
    P1 P2 t P
    主/髂外动脉   4.7±0.5 4.4±0.5 2.4 0.019 0.841
    股/腘动脉    4.8±0.4 4.6±0.5 1.6 0.123 0.915
    膝关节以下动脉 3.3±0.6 4.5±0.5 7.7 <0.001 0.878
    下载: 导出CSV

    表  4   两组影像不同部位的客观评价

    Table  4   Objective evaluation of different features in two sets of images

    部位评价参数 组别统计检验
    P1P2tP
    主动脉 CT值622.5±65.8505.2±179.63.20.003
    SNR77.1±20.046.3±17.25.8<0.001
    CNR69.9±18.841.0±17.15.7<0.001
    髂外动脉CT值588.4±82.9508.5±164.22.30.029
    SNR71.3±21.747.4±17.84.3<0.001
    CNR64.5±19.441.9±17.74.3<0.001
    股动脉 CT值535.9±83.7553.6±117.90.60.540
    SNR58.5±22.456.1±16.40.40.662
    CNR52.5±20.750.6±16.00.40.718
    腘动脉 CT值349.0±63.2554.4±123.27.7<0.001
    SNR50.6±13.765.8±26.22.70.011
    CNR41.3±10.458.0±24.43.30.002
    胫前动脉CT值307.0±65.8550.1±94.410.7<0.001
    SNR41.9±18.363.8±28.93.10.004
    CNR33.4±15.656.4±26.93.50.001
    下载: 导出CSV

    表  5   两组扫描方案辐射剂量对比

    Table  5   Comparison of radiation dosage between two scanning programs

    辐射剂量 组别 统计检验
    P1 P2 t P
    CTDIVOI 72.5±0.3 0.9±0.3 18.1 <0.001
    DLP 310.1±53.5 113.5±33.4 14.9 <0.001
    下载: 导出CSV
  • [1]

    MCDERMOTT M M. The magnitude of the problem of peripheral arterial disease: Epidemiology and clinical significance[J]. Cleveland Clinic Journal of Medicine, 2006, 73(S4): S2-S7.

    [2]

    MARGOLIS J, BARRON J J, GROCHULSKI W D. Health care resources and costs for treating peripheral artery disease in a managed care population: Results from analysis of administrative claims data[J]. Journal of Managed Care Pharmacy, 2005, 11(9): 727-734. DOI: 10.18553/jmcp.2005.11.9.727.

    [3]

    HEIJENBROK-KAL M H, KOCK M C, HUNINK M G. Lower extremity arterial disease: Multidetector CT angiography meta-analysis[J]. Radiology, 2007, 245(2): 433-439. DOI: 10.1148/radiol.2451061280. (in Chinese).

    [4] 中华医学会放射学分会, 下肢动脉CTA扫描技术专家共识协作组, 金征宇. 下肢动脉CT血管成像扫 描技术专家共识[J]. 中华放射学杂志, 2019, 53(2): 88-92. DOI: 10.3760/cma.j.issn.1005-1201.2019.02.002.

    Chinese Society of Radiology C M A, Lower Limb Artery CTA Scanning Technology Expert Consensus Collaboration Group, JIN Z Y. Expert consensus of lower extremity CT angiography[J]. Chinese Journal of Radiology, 2019, 53(2): 88-92. DOI: 10.3760/cma.j.issn.1005-1201.2019.02.002. (in Chinese).

    [5]

    RUBIN G D, SCHMIDT A J, LOGAN L J, et al. Multi-detector row CT angiography of lower extremity arterial inflow and runoff: Initial experience[J]. Radiology, 2001, 221(1): 146-158. DOI: 10.1148/radiol.2211001325.

    [6]

    SIRIAPISITH T, WASINRAT J, MUTIRANGURA P, et al. Optimization of the table speed of lower extremity CT angiography protocols in different patient age groups[J]. Journal of Cardiovascular Computed Tomography, 2010, 4(3): 173-183. DOI: 10.1016/j.jcct.2010.03.011.

    [7]

    WINTERSPERGER B, JAKOBS T, HERZOG P, et al. Aorto-iliac multidetector-row CT angiography with low kV settings: Improved vessel enhancement and simultaneous reduction of radiation dose[J]. European Radiology, 2005, 15(2): 334-341. DOI: 10.1007/s00330-004-2575-y.

    [8] 朱蕾, 牛延涛, 张永县, 等. 不同迭代重建算法在眼眶CT中的适用性研究[J]. CT理论与应用研究(中英文), 2024, 33(4): 487-496. DOI: 10.15953/j.ctta.2024.045.

    ZHU L, NIU Y T, ZHANG Y X, et al. Applicability of different iterative reconstruction algorithms in orbital computed tomography[J]. CT Theory and Applications, 2024, 33(4): 487-496. DOI: 10.15953/j.ctta.2024.045. (in Chinese).

    [9]

    LIU B, GAO S, CHANG Z, et al. Lower extremity CT angiography at 80 kVp using iterative model reconstruction[J]. Diagnostic and Interventional Imaging, 2018, 99(9): 561-568. DOI: 10.1016/j.diii.2018.04.006.

    [10]

    OFER A, NITECKI S S, LINN S, et al. Multidetector CT angiography of peripheral vascular disease: A prospective comparison with intraarterial digital subtraction angiography[J]. American Journal of Roentgenology, 2003, 180(3): 719-724. DOI: 10.2214/ajr.180.3.1800719.

    [11]

    QANADLI S D, CHIAPPORI V, KELEKIS A. Multislice computed tomography of peripheral arterial disease: New approach to optimize vascular opacification with 16-row platform[J]. European Radiology, 2004, 14(S2): b806.

    [12]

    WILLMANN J K, MAYER D, BANYAI M, et al. Evaluation of peripheral arterial bypass grafts with multi-detector row CT angiography: Comparison with duplex US and digital subtraction angiography[J]. Radiology, 2003, 229(2): 465-474. DOI: 10.1148/radiol.2292021123.

    [13]

    BRUDER H, PETERSILKA M, MEHLDAU H, et al. Flash imaging in dual source CT (DSCT)[C]//SPIE Medical Imaging, Florida, United States, 2009: 138-148.

    [14]

    MEYER M, HAUBENREISSER H, SCHOEPF U J, et al. Closing in on the K edge: Coronary CT angiography at 100, 80, and 70 kV-initial comparison of a second- versus a third-generation dual-source CT system[J]. Radiology, 2014, 273(2): 373-382. DOI: 10.1148/radiol.14140244.

    [15]

    BUI T D, GELFAND D, WHIPPLE S, et al. Comparison of CT and catheter arteriography for evaluation of peripheral arterial disease[J]. Vascular and Endovascular Surgery, 2005, 39(6): 481-490. DOI: 10.1177/153857440503900604.

    [16]

    POLLAK A W, NORTON P T, KRAMER C M. Multimodality imaging of lower extremity peripheral arterial disease: Current role and future directions[J]. Circulation Cardiovascular Imaging, 2012, 5(6): 797-807. DOI: 10.1161/CIRCIMAGING.111.970814.

    [17]

    MET R, BIPAT S, LEGEMATE D A, et al. Diagnostic performance of computed tomography angiography in peripheral arterial disease: A systematic review and meta-analysis[J]. Journal of the American Medical Association, 2009, 301(4): 415-424. DOI: 10.1001/jama.301.4.415.

    [18]

    KOCK M C, ADRIAENSEN M E, PATTYNAMA P M, et al. DSA versus multi-detector row CT angiography in peripheral arterial disease: Randomized controlled trial[J]. Radiology, 2005, 237(2): 727-737. DOI: 10.1148/radiol.2372040616.

    [19]

    FLEISCHMANN D. CT angiography: Injection and acquisition technique[J]. Radiologic Clinics of North America, 2010, 48(2): 237-247. DOI: 10.1016/j.rcl.2010.02.002.

    [20]

    LESCHKA S, STOLZMANN P, SCHMID F T, et al. Low kilovoltage cardiac dual-source CT: Attenuation, noise, and radiation dose[J]. European Radiology, 2008, 18(9): 1809-1817. DOI: 10.1007/s00330-008-0966-1.

    [21]

    LAYRITZ C, MUSCHIOL G, FLOHR T, et al. Automated attenuation-based selection of tube voltage and tube current for coronary CT angiography: Reduction of radiation exposure versus a BMI-based strategy with an expert investigator[J]. Journal of Cardiovascular Computed Tomography, 2013, 7(5): 303-310. DOI: 10.1016/j.jcct.2013.08.010.

    [22]

    MOSCARIELLO A, TAKX R A, SCHOEPF U J, et al. Coronary CT angiography: Image quality, diagnostic accuracy, and potential for radiation dose reduction using a novel iterative image reconstruction technique-comparison with traditional filtered back projection[J]. European Radiology, 2011, 21(10): 2130-2138. DOI: 10.1007/s00330-011-2164-9.

    [23]

    OTA H, TAKASE K, RIKIMARU H, et al. Quantitative vascular measurements in arterial occlusive disease[J]. Radiographics: A Review Publication of the Radiological Society of North America, Inc, 2005, 25(5): 1141-1158. DOI: 10.1148/rg.255055014.

    [24]

    de ZORDO T, Von LUTTEROTTI K, DEJACO C, et al. Comparison of image quality and radiation dose of different pulmonary CTA protocols on a 128-slice CT: High-pitch dual source CT, dual energy CT and conventional spiral CT[J]. European Radiology, 2012, 22(2): 279-286. DOI: 10.1007/s00330-011-2251-y.

    [25]

    QI L, MEINEL F G, ZHOU C S, et al. Image quality and radiation dose of lower extremity CT angiography using 70 kVp, high pitch acquisition and sinogram-affirmed iterative reconstruction[J]. PloS One, 2014, 9(6): e99112. DOI: 10.1371/journal.pone.0099112.

    [26]

    QI L, ZHAO Y, ZHOU C S, et al. Image quality and radiation dose of lower extremity CT angiography at 70 kVp on an integrated circuit detector dual-source computed tomography[J]. Acta Radiologica, 2015, 56(6): 659-665. DOI: 10.1177/0284185114535391.

图(2)  /  表(5)
计量
  • 文章访问数:  62
  • HTML全文浏览量:  14
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-25
  • 修回日期:  2024-11-28
  • 录用日期:  2024-11-29
  • 网络出版日期:  2024-12-09
  • 刊出日期:  2025-05-04

目录

/

返回文章
返回
x 关闭 永久关闭