Suppression Method for Cone-Beam CT Artifact Based on FDK Compensation and Dual-Source Weighting
-
摘要:
FDK算法具有结构简单、计算速度快、重建质量高等优点,至今仍是锥束CT解析重建的主流算法。然而,若重建点锥角过大,会出现密度下降的锥束伪影。为此学界提出了许多抑制伪影的方法,包括投影加权、束线重排与引入补偿项等,其中引入补偿项的方法计算效率高,并在锥角为十余度的情形取得了良好的伪影抑制效果,在诸多算法中具有一定的优势。然而,对于更大的锥角情形,由于数据不完备的固有缺陷,该算法的重建的效果并不十分理想,因此需要对重建算法与扫描几何作进一步优化,以适应实际的工业或临床需求。本文基于FDK重建的两个补偿项,将锥束CT几何拓展至z向分布的双光源情形,通过减小重建点平均锥角的方法进一步抑制锥束伪影,并提出一种双光源重建的锥角加权方法,将双光源的重建结果进行融合,得到最终重建图像。仿真实验结果表明,与单光源情形相比,本文的算法可以更加有效地提高重建图像的质量,从而有望在更大锥角的CBCT重建系统中得到应用。
Abstract:The Feldkamp-Davis-Kress (FDK) algorithm has the advantages of a simple structure, fast calculation speed, and high reconstruction quality, and it remains the mainstream algorithm for cone-beam computed tomography (CBCT) analytical reconstruction. However, if the cone angle for the reconstructed point is too large, the reconstruction exhibits artifacts characterized by an axial density drop. Numerous methods for suppressing this artifact have been proposed, including projection weighting, cone-beam rebinning, and introducing compensation terms. The compensation method has high computational efficiency and achieves good artifact suppression when the cone angle is not more than 16°. However, for cases with larger cone angles, the effectiveness of this algorithm is diminished. Thus, further optimization of the reconstruction algorithms and scanning geometry is required to accommodate industrial and clinical demands. Based on the two compensation terms for FDK reconstruction, this study extends cone-beam CT geometrically to the case of dual source in the z-direction distribution, further suppressing cone-beam artifacts by reducing the average cone angle of the reconstructed points. A cone-angle weighting method is proposed for dual-source reconstruction, to fuse the reconstructed results of the two sources and obtain the final reconstructed image. The simulation results show that the proposed algorithm can improve the quality of the reconstructed image more effectively than single-source case.
-
Keywords:
- FDK /
- cone-beam artifact /
- dual-source weighting
-
-
表 1 本文中的双光源CT系统参数
Table 1 Parameters of the dual-source CT system in this study
参数 值 旋转半径$ R $ 100 mm 源探距离$ D $ 200 mm 面阵探测器高度$ {H}_{D} $ 130 mm 双光源间距$ H $ 20 mm 探测器单元数$ {N}_{D}^{2} $ 256×256 重建体素数$ {N}_{V}^{3} $ 128×128×128 重建立方体区域边长$ W $ 60 mm 全扫描角度采样数$ {N}_{\theta } $ 400 -
[1] FELDKAMP L A, DAVIS L C, KRESS J W. Practical cone-beam algorithm[J/OL]. Journal of the Optical Society of America. A, Optics, image science, and vision, 1984, 1(6): 612. DOI: 10.1364/JOSAA.1.000612.
[2] TUY H K. An inversion formula for cone-beam reconstruction[J/OL]. SIAM Journal on Applied Mathematics, 1983, 43(3): 546-552. DOI: 10.1137/0143035.
[3] SMITH B D. Image reconstruction from cone-beam projections: Necessary and sufficient conditions and reconstruction methods[J/OL]. IEEE Transactions on Medical Imaging, 1985, 4(1): 14-25. DOI: 10.1109/TMI.1985.4307689.
[4] GRASS M, KöHLER T, PROKSA R. Angular weighted hybrid cone-beam CT reconstruction for circular trajectories[J/OL]. Physics in Medicine & Biology, 2001, 46(6): 1595-1610. DOI: 10.1088/0031-9155/46/6/301.
[5] MORI S, ENDO M, KOMATSU S, et al. A combination-weighted Feldkamp-based reconstruction algorithm for cone-beam CT[J/OL]. Physics in Medicine & Biology, 2006, 51(16): 3953-3965. DOI: 10.1088/0031-9155/51/16/005.
[6] LIU Y, LIU H, WANG Y, et al. Half-scan cone-beam CT fluoroscopy with multiple X-ray sources[J/OL]. Medical physics (Lancaster), 2001, 28(7): 1466-1471. DOI: 10.1118/1.1381549.
[7] 杨宏成, 高欣, 张涛. 基于FDK反投影权重的锥束DSA重建算法[J/OL]. 江苏大学学报(自然科学版), 2013, 34(2): 190-195. DOI: 10.3969/j.issn.1671-7775.2013.02.012. [8] TURBELL H. Cone-Beam Reconstruction Using Filtered Backprojection[D]. ProQuest Dissertations & Theses, 2001.
[9] GRASS M, KöHLER T, PROKSA R. 3D cone-beam CT reconstruction for circular trajectories[J/OL]. Physics in Medicine & Biology, 2000, 45(2): 329-347. DOI: 10.1088/0031-9155/45/2/306.
[10] 王琛. 圆轨道锥束滤波反投影重建算法研究[D]. 中国工程物理研究院, 2020. DOI: 10.27498/d.cnki.gzgwy.2020.000073. [11] LI L, XING Y, CHEN Z, et al. A curve-filtered FDK (C-FDK) reconstruction algorithm for circular cone-beam CT[J]. Journal of X-Ray Science and Technology, 2011, 19(3): 355-371. DOI: 10.3233/XST-2011-0299.
[12] 穆子扬, 卢荣胜, 何攀, 等. 基于滤波路径变换的板状物X射线三维重建算法[J]. 光学学报, 2024, 44(9): 312-325. [13] HU H. An improved cone-beam reconstruction algorithm for the circular orbit[J/OL]. Scanning, 1996, 18(8): 572-581. DOI: 10.1002/sca.4950180807.
[14] ZHU L, STARMAN J, FAHRIG R. An efficient estimation method for reducing the axial intensity drop in circular cone-beam CT[J/OL]. International Journal of Biomedical Imaging, 2008, 2008(1): 242841-242841. DOI: 10.1155/2008/242841.
[15] ZAMBELLI J, NETT B E, LENG S, et al. Novel c-arm based cone-beam CT using a source trajectory of two concentric arcs[C/OL]//Proceedings of SPIE: volume 6510. 2007: 65101Q-65101Q-10. DOI: 10.1117/12.713813.
[16] ZAMYATIN A A, KATSEVICH A, CHIANG B S. Exact image reconstruction for a circle and line trajectory with a gantry tilt[J/OL]. Physics in Medicine & Biology, 2008, 53(23): N423-N435. DOI: 10.1088/0031-9155/53/23/N02.
[17] SCHOMBERG H, VAN DE HAAR P, BAATEN W. Cone-beam CT using a c-arm system as front end and a spherical spiral as source trajectory[C/OL]//Proceedings of SPIE: volume 7258. 2009: 72580F-72580F-12. DOI: 10.1117/12.811545.
[18] 张涛. 新型静态CT成像理论与重建算法研究[M]. 北京: 清华大学出版社, 2023. [19] Grangeat P. Mathematical framework of cone beam 3D reconstruction via the first derivative of the Radon transform[J]. Lecture Notes in Mathematics -Springer-verlag-, 1990, 1497. DOI: 10.1007/bfb0084509.
[20] YANG H Q, LI M H, KOIZUMI K, et al. FBP-type cone-beam reconstruction algorithm with radon space interpolation capabilities for axially truncated data from a circular Orbit[J]. Medical Imaging Technology, 2006, 24(3): 201-208.
[21] PARKER D L. Optimal short scan convolution reconstruction for fanbeam CT[J/OL]. Medical physics (Lancaster), 1982, 9(2): 254-257. DOI: 10.1118/1.595078.