ISSN 1004-4140
CN 11-3017/P

鄂南含煤地层岩石物理建模下的叠前多维相控薄砂岩预测

韩璇颖, 杨勤林, 刘钊, 裴思嘉

韩璇颖, 杨勤林, 刘钊, 等. 鄂南含煤地层岩石物理建模下的叠前多维相控薄砂岩预测[J]. CT理论与应用研究(中英文), xxxx, x(x): 1-10. DOI: 10.15953/j.ctta.2024.262.
引用本文: 韩璇颖, 杨勤林, 刘钊, 等. 鄂南含煤地层岩石物理建模下的叠前多维相控薄砂岩预测[J]. CT理论与应用研究(中英文), xxxx, x(x): 1-10. DOI: 10.15953/j.ctta.2024.262.
HAN X Y, YANG Q L, LIU Z, et al. Pre-stack Multidimensional Facies-controlled Thin Sandstone Prediction under Rock Physics Modeling of Coal-Bearing Strata in the Southern Ordos Basin[J]. CT Theory and Applications, xxxx, x(x): 1-10. DOI: 10.15953/j.ctta.2024.262. (in Chinese).
Citation: HAN X Y, YANG Q L, LIU Z, et al. Pre-stack Multidimensional Facies-controlled Thin Sandstone Prediction under Rock Physics Modeling of Coal-Bearing Strata in the Southern Ordos Basin[J]. CT Theory and Applications, xxxx, x(x): 1-10. DOI: 10.15953/j.ctta.2024.262. (in Chinese).

鄂南含煤地层岩石物理建模下的叠前多维相控薄砂岩预测

详细信息
    作者简介:

    韩璇颖,女,中石化石油物探技术研究院有限公司工程师,主要研究方向为地震反演与储层预测,E-mail:hanxy.swty@sinopec.com

Pre-stack Multidimensional Facies-controlled Thin Sandstone Prediction under Rock Physics Modeling of Coal-Bearing Strata in the Southern Ordos Basin

  • 摘要:

    鄂尔多斯盆地南部地区下石盒子组分流河道砂单层厚度薄,在有限的地震分辨率下,下伏山西-太原煤层反射的旁瓣与薄砂体的反射耦合在一起,难以对储层响应特征进行准确分析;此外,在进行岩石物理分析时,该地区还存在测井曲线质量差、横波资料不足等问题,导致储层定量预测存在一定困难。针对上述问题,本文在在Xu-White岩石物理模型的基础上,采用多参数拟合的曲线校正和分步融合的方法,建立一套砂、泥、煤三相岩石物理建模技术,有效改善测井曲线质量,并提高横波速度预测的精度,为后续反演提供合理的测井信息。此外,针对上述储层预测问题,本文提出一种适合研究区的多维相控叠前地质统计学反演方法:首先根据已有的地质认识和测井信息,分析与河道砂相关的地震属性,提取符合沉积变化规律的二维岩相概率密度作为石盒子组储层的平面约束;然后利用煤层反演体,结合贝叶斯判别原理,提取三维煤相概率密度作为下伏煤层的空间约束,最后同时综合二维和三维约束共同开展叠前地质统计学反演。上述方法的预测结果综合考虑下伏煤层和砂岩储层的耦合特征,有效降低薄储层预测的多解性,在实际应用效果较好,钻井吻合度得到明显提高。

    Abstract:

    In the southern region of the Ordos Basin, the thin, single-layer distributary channel sands in the Lower Shihezi Formation cause coupling between the sidelobes of the underlying Shanxi-Taiyuan coal seam reflections and the reflections of thin sand bodies within a limited seismic resolution, making it difficult to accurately analyze the reservoir response characteristics. Additionally, challenges in petrophysical analysis arise owing to the poor quality of the logging curves and insufficient shear wave data in this area block, which impede quantitative reservoir prediction. To address these issues, this study proposes a set of sand, mud, and coal three-phase petrophysical modeling techniques based on the Xu–White petrophysical model, employing a multiparameter fitting curve correction and stepwise fusion method. This approach effectively improves the quality of logging curves and enhances the accuracy of shear wave velocity prediction, thereby providing reasonable logging information for subsequent inversions. Furthermore, to address the reservoir prediction problems mentioned above, this study introduces a multidimensional facies-controlled pre-stack geostatistical inversion method suitable for the study area. First, based on the existing geological understanding and well log information, seismic attributes related to channel sands were analyzed, and a two-dimensional lithofacies probability density conforming to sedimentary variation patterns was extracted as a planar constraint for the Shihezi Formation reservoir. Then, using the coal seam inversion volume combined with Bayesian discrimination principles, a three-dimensional coal facies probability density was extracted as a spatial constraint for the underlying coal seam. Finally, both two- and three-dimensional constraints were comprehensively integrated to conduct a pre-stack geostatistical inversion. The prediction results obtained using this method comprehensively considered the coupling characteristics of the underlying coal seams and sandstone reservoirs, effectively reducing the uncertainty in predicting thin reservoirs and demonstrating good practical application with significantly improved drilling concordance.

  • 图  1   砂、泥、煤三相岩石物理建模技术路线图

    Figure  1.   Flowchart of three-phase rock physical modeling technology of sand, mud, and coal

    图  2   多维相控叠前地质统计学反演流程图

    Figure  2.   Flowchart of multidimensional phase-controlled pre-stack geostatistical inversion

    图  3   实测纵波速度(a)和密度(b)的分布

    Figure  3.   Distribution of measured longitudinal wave velocity (a) and density (b)

    图  4   标准井的测井曲线交会

    Figure  4.   Intersection plot of logging curves for standard wells

    图  5   扩径井的测井曲线交会

    Figure  5.   Intersection of logging curves for expanded diameter wells

    图  6   多曲线拟合密度校正对比

    Figure  6.   Comparison of density correction for multicurve fitting

    图  7   建模曲线与原始曲线对比

    注:黑线为原始,红线为建模

    Figure  7.   Comparison between modeling curve and original curve

    图  8   建模曲线交会图

    Figure  8.   Intersection plot of modeling curves

    图  9   下石盒子组砂岩平面概率密度

    Figure  9.   Probability density of sandstone plane in the Lower Shihezi Formation

    图  10   煤相空间概率密度体

    Figure  10.   Probability density volume of coal phase space

    图  11   速度比预测剖面

    Figure  11.   Speed ratio prediction profile

    图  12   盒1段砂体预测平面

    Figure  12.   Prediction plan of sand body in the first Shihezi Formation

  • [1] 张杨. 利用Xu-White模型估算地震波速度[J]. 成都理工大学学报: 自然科学版, 2005, 32(2): 188-195.

    ZHANG Y. Xu White’s model for seismic wave velocity prediction[J]. Journal of Chengdu University of Technology: Science and Technology Edition, 2005, 32(2): 188-195. (in Chinese).

    [2] 洪忠, 张猛刚, 朱筱敏. 基于岩石物理的致密碎屑岩气藏岩性及流体概率预测[J]. 石油物探, 2015, 54(6): 735-744. DOI: 10.3969/j.issn.1000-1441.2015.06.012.

    HONG Z, ZHANG M G, ZHU X M. Prediction of lithology and fluid probabilities of tight clastic gas reservoirs based on rock physics[J]. Geophysical Prospecting for Petroleum, 2015, 54(6): 735-744. DOI: 10.3969/j.issn.1000-1441.2015.06.012. (in Chinese).

    [3] 边婧. 地震岩石物理分析在致密砂岩储层预测中的应用[J]. 东北石油大学学报, 2015, 39(5): 63-70. DOI: 10.3969/j.issn.2095-4107.2015.05.007.

    BIAN J. Application of rock physics to the prediction of tight sandstone reservoirs[J]. Journal of Northeast Petroleum University, 2015, 39(5): 63-70. DOI: 10.3969/j.issn.2095-4107.2015.05.007. (in Chinese).

    [4] 窦龑, 高刚 梁琳 等. 基于Xu-White 模型的横波速度预测[J]. 新疆石油地质, 2016, 37(1): 83-87.

    DOU Y, GAO G, LIANG LET AL. Prediction of S-Wave velocity based on Xu-White model[J]. Xinjiang Petroleum Geology, 2016, 37(1): 83-87. (in Chinese).

    [5] 王金伟, 张尔华, 谢春临. 虚拟孔隙度优化的Xu-White模型法预测横波速度[J]. 断块油气田, 2011, 18(4): 445-448.

    WANG J W, ZHANG E H, XIE C L. Prediction of shear wave velocity with optimized Xu-White model based on virtual porosity[J]. Fault-Block Oil & Gas Field, 2011, 18(4): 445-448. (in Chinese).

    [6] 杨志芳, 曹宏, 姚逢昌, 等. 复杂孔隙结构储层地震岩石物理分析及应用[J]. 中国石油勘探, 2014, 19(3): 50-56. DOI: 10.3969/j.issn.1672-7703.2014.03.006.

    YANG Z F, CAO H, YAO F C, ET AL. Seismic rock physical analysis of complex porous reservoir and its application[J]. China Petroleum Exploration, 2014, 19(3): 50-56. DOI: 10.3969/j.issn.1672-7703.2014.03.006. (in Chinese).

    [7] 杨勤林, 李洋, 曹少蕾, 等. 松辽盆地苏家屯区块致密砂岩岩石物理分析和含气性预测[J]. 天然气地球科学, 2020, 31(4): 578-585.

    YANG Q L, LI Y, CAO S L, ET AL. Rock physics analysis and gas-bearing prediction of tight clastic reservoir in Sujiatun Block, Songliao Basin[J]. Natural Gas Geoscience, 2020, 31(4): 578-585. (in Chinese).

    [8] 陈强, 彭盛强, 赵光亮, 等. 地震岩石物理建模技术在迪北阿合组致密砂岩气中的应用[J]. 物探化探计算技术, 2024, 46(3): 315-323. DOI: 10.3969/j.issn.1001-1749.2024.03.08.

    CHEN Q, PENG S Q, ZHAO G L, ET AL. Application of seismic rock physical modeling technology in tight sandstone gas of Dibei Ahe Formation[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2024, 46(3): 315-323. DOI: 10.3969/j.issn.1001-1749.2024.03.08. (in Chinese).

    [9]

    HAAS A, DUBRULE O. Geostatistical inversion: A sequential method of stochastic reservoir modelling constrained by seismic data[J]. First Break, 1994, 12(11): 561-569.

    [10] 姜文龙, 杨锴. 岩石物理参数高分辨率地质统计学反演[J]. 石油物探, 2012, 51(6): 638-648. DOI: 10.3969/j.issn.1000-1441.2012.06.014.

    JIANG W L, YANG K. High-resolution geostatistical petrophysical parameter inversion[J]. Geophysical Prospecting for Petroleum, 2012, 51(6): 638-648. DOI: 10.3969/j.issn.1000-1441.2012.06.014. (in Chinese).

    [11] 刘占族, 张雷, 霍丽娜, 等. 地质统计学反演在煤层气薄储层识别中的应用[J]. 石油地球物理勘探, 2012, 47(S1): 30-34.

    LIU Z, ZHANG L, HUO L N, ET AL. Identification of thin coalbed methane reservoirs using geostatistical inversion[J]. Oil Geophysical Prospecting, 2012, 47(S1): 30-34. (in Chinese).

    [12] 赵晨, 张广智, 张佳佳, 等. 基于Metropolis优化的叠前全局迭代地质统计学反演方法[J]. 地球物理学报, 2020, 63(8): 3116-3130. DOI: 10.6038/cjg2020M0674.

    ZHAO C, ZHANG G Z, ZHANG J J, ET AL. Prestack global iteration geostatistical inversion method based on Metropolis sampling algorithm[J]. Chinese Journal of Geophysics, 2020, 63(8): 3116-3130. DOI: 10.6038/cjg2020M0674. (in Chinese).

    [13] 闵小刚, 康安, 周守信. 基于相控地质统计学反演的薄储层岩性、物性预测[J]. 海洋地质前沿, 2015, 31(3): 27-32.

    MIN X G, KANG A, ZHOU S X. Lithological and physical properties prediction of thin reservoirs based on faciescontrolled geo-statistical inversion[J]. Marine Geology Frontiers, 2015, 31(3): 27-32. (in Chinese).

    [14] 段新意, 李尧, 郭军, 等. 相控地质统计学反演方法及其在油田开发中的应用[J]. 断块油气田, 2021, 28(5): 683-690.

    DUAN X Y, LI Y, GUO J, ET AL. The facies-control geostatistical inversion method and its application in development stage of oilfield[J]. Fault-Block Oil and Gas Field, 2021, 28(5): 683-690. (in Chinese).

    [15] 林利明, 郑颖, 史浩, 等. 基于相控地质统计学叠前反演的致密砂岩薄储层含气性预测——以鄂尔多斯盆地临兴中区为例[J]. 天然气工业, 2023, 43(2): 56-66. DOI: 10.3787/j.issn.1000-0976.2023.02.006.

    LIN L M, ZHENG Y, SHI H, ET AL. Gas-bearing prediction of thin tight sandstone reservoirs based on facies-controlled geostatistical pre-stack inversion: A case study of the middle Linxing Block in the Ordos Basin[J]. Natural Gas Industry, 2023, 43(2): 56-66. DOI: 10.3787/j.issn.1000-0976.2023.02.006. (in Chinese).

    [16] 伊振林, 吴胜和, 张保国, 等. 一种新的测井曲线环境校正方法——在平湖油气田中的应用[J]. 天然气工业, 2010, 30(1): 39-41. DOI: 10.3787/j.issn.1000-0976.2010.01.010.

    YI Z L, WU S H, ZHANG B G, ET AL. Anewapproachto environmental correction of logs: Acase study in the Pinghu oil and gas field[J]. Natural Gas Industry, 2010, 30(1): 39-41. DOI: 10.3787/j.issn.1000-0976.2010.01.010. (in Chinese).

    [17] 刘之的, 王剑, 杨秀春, 等. 密度测井扩径影响校正方法在煤层气储层中的适用性分析[J]. 地球物理学进展, 2014, 29(5): 2219-2223. DOI: 10.6038/pg20140534.

    LIU Z D, WANG J, YANG X C, ET AL. Applicability analysis of correction method for expanding diameter influence of density logging in coalbed methane reservoir[J]. Progress in Geophysics, 2014, 29(5): 2219-2223. DOI: 10.6038/pg20140534. (in Chinese).

    [18] 王小玄, 肖程释, 郑翔天. 基于岩石物理分析的煤系地层测井曲线扩径影响校正[J]. 中国煤炭, 2016, 42(2): 22-26. DOI: 10.3969/j.issn.1006-530X.2016.02.006.

    WANG X X, XIAO C S, ZHENG X T. Expanding effect correction of coal measure strata logging curves based upon rock physics analysis[J]. China Coal, 2016, 42(2): 22-26. DOI: 10.3969/j.issn.1006-530X.2016.02.006. (in Chinese).

    [19]

    XU S Y, WHITE R E. A new velocity model for clay-sand mixtures[J]. Geophysical Prospecting, 1995, 43(1): 91-118. DOI: 10.1111/j.1365-2478.1995.tb00126.x.

    [20]

    ROBERT G, KEYS, XU S Y. An approximation for the Xu-White velocity model[J]. Geophysics, 2002, 65(5): 1406-1414.

    [21]

    TORRES-VERDIN C, VICTORIA M, MERLETTI G, ET AL. Trace-based and geostatistical inversion of 3-D seismic data for thin-sand delineation: An application in San Jorge Basin, Argentina[J]. The Leading Edge, 1999, 18(9): 1070-1077. DOI: 10.1190/1.1438434.

    [22]

    CONTRERAS A, TORRES-VERDIN C, KVIEN K, et al. AVA stochastic inversion of pre-stack seismic data and well logs for 3D reservoir modeling[C]//67th EAGE Conference & Exhibition. Madrid: European Association of Geoscientists & Engineers, 2005: cp-1-00310.

    [23] 张广智, 王丹阳, 印兴耀, 等. 基于MCMC的叠前地震反演方法研究[J]. 地球物理学报, 2011, 54(11): 2926-2932. DOI: 10.3969/j.issn.0001-5733.2011.11.022.

    ZHANG G Z, WANG D Y, YIN X Y, ET AL. Study on prestack seismic inversion using Markov Chain Monte Carlo[J]. Chinese Journal of Geophysics, 2011, 54(11): 2926-2932. DOI: 10.3969/j.issn.0001-5733.2011.11.022. (in Chinese).

    [24] 王丹阳. 基于MCMC方法的叠前反演方法研究[D]. 青岛: 中国石油大学(华东), 2012.

    WANG D Y. Pre-stack seismic inversion based on Markov Chain Monte Carlo Method[D]. Qingdao: China University of Petroleum (East China), 2012. (in Chinese).

图(12)
计量
  • 文章访问数:  30
  • HTML全文浏览量:  6
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-19
  • 修回日期:  2024-12-09
  • 录用日期:  2024-12-14
  • 网络出版日期:  2025-02-07

目录

    /

    返回文章
    返回
    x 关闭 永久关闭