Models Developed Based on Baseline Gastric Cancer and Metastatic Lymph Node CT Radiomics and Clinical Features for Predicting Early Postoperative Lymph Node Recurrence
-
摘要:
目的:基于原发肿瘤及转移性淋巴结的基线CT影像组学及临床特征构建胃癌根治术后淋巴结早期复发的预测模型,并对比其预测效能。方法:回顾性收集来自中心1和中心2的确诊为胃癌伴淋巴结转移并接受根治术的连续性200例患者的基线CT及临床资料,将医疗中心1的病例按7∶3随机分配到训练组(n=110)和内部验证组(n=48),将医疗中心2纳入的病例分配到外部验证组(n=42)。对原发肿瘤、转移性淋巴结,分别在CT图像上勾画感兴趣区,并提取其相应特征。采用独立样本t检验或U检验,筛选出具有统计学意义的影像组学特征及临床病理特征,通过Lasso回归分析获取建模的核心特征,分别构建影像学模型、临床特征模型以及影像组学-临床特征联合模型。采用受试者工作特征曲线下面积(AUC)、敏感性、特异性、DeLong检验及校准曲线评价模型的预测效能。结果:筛选出原发肿瘤影像组学特征14个,转移性淋巴结影像组学特征12个、临床特征3个。临床特征包括转移性淋巴结数目、淋巴结形态及肿瘤标志物。基于原发肿瘤建立的影像组学模型AUC、敏感性、特异性在训练组分别为0.844、0.868和0.706,在内部验证组分别为0.802、0.879和0.600,在外部验证组分别为0.791、0.714和0.786。基于转移淋巴结建立的影像组学模型AUC、敏感性、特异性在训练组分别为0.898、0.753和0.941,在内部验证组分别为0.842、0.879和0.667,在外部验证组分别为0.825、0.828和0.769。在训练组、内部验证组及外部验证组的DeLong检验显示,原发肿瘤影像组学-临床特征联合模型AUC分别为0.970、0.961和0.976,转移淋巴结影像组学−临床特征联合模型AUC分别为0.943、0.957和0.977;在训练组、内部验证组及外部验证组在原发肿瘤影像组学模型、转移性淋巴结影像组学模型、临床模型以及原发肿瘤、转移性淋巴结影像组学分别与临床的联合模型的AUC之间,差异均具有统计学意义。结论:基线转移性淋巴结CT影像组学模型在预测胃癌根治术后淋巴结早期复发方面的效能优于原发肿瘤模型。
Abstract:Objective: To develop models based on baseline clinical and computed tomography (CT) radiomic features of primary tumors and metastatic lymph nodes to predict early lymph node recurrence after radical gastrectomy in patients with gastric cancer. Methods: The preoperative computed tomography (CT) and clinical data of 200 consecutive patients diagnosed with gastric cancer and lymph node metastasis who underwent radical surgery at Medical Centers 1 and 2 were collected retrospectively. Cases from Medical Center 1 were randomly assigned to a training group (n=110) and an internal validation group (n=48) in a 7:3 ratio. Cases from Medical Center 2 were assigned to an external validation group (n=42). The regions of interest of the primary tumors and metastatic lymph nodes were marked on the CT images, and their corresponding features were extracted. Using an independent sample t-test or U-test, statistically significant radiomics and clinical features were selected. LASSO regression analysis was used to obtain the core features of the primary tumors and metastatic lymph nodes. Subsequently, a clinical model, radiomic models of the primary tumors and metastatic lymph nodes, and radiomic models for the primary tumors and metastatic lymph nodes individually combined with clinical features were constructed. The predictive performance of the models was evaluated and compared using the area under the receiver operating characteristic (ROC) curve, sensitivity, specificity, DeLong’s test, and calibration curve. Results: Fourteen radiomic features of the primary tumor, 12 radiomic features of metastatic lymph nodes, and three clinical features were selected to construct individual prediction models. The clinical features included the number of metastatic lymph nodes, lymph node morphology, and tumor markers. The AUC, sensitivity, and specificity of the radiomics model established based on the primary tumor were 0.844, 0.868, and 0.706 in the training group; 0.802, 0.879, and 0.600 in the internal validation group; and 0.791, 0.714, and 0.786 in the external validation group, respectively. The AUC, sensitivity, and specificity of the radiomics model based on metastatic lymph nodes were 0.898, 0.753, and 0.941 in the training group, 0.842, 0.879, and 0.667 in the internal validation group, and 0.825, 0.828, and 0.769 in the external validation group, respectively. In the training, internal validation, and external validation groups, the DeLong test showed that the AUC values of the combined model integrating primary tumor radiomic features and clinical features were 0.970, 0.961, and 0.976, respectively. The AUC values of the combined model integrating metastatic lymph node radiomic features and clinical features were 0.943, 0.957, and 0.977, respectively. In the training, internal validation, and external validation groups, there were significant differences in the AUC between the primary tumor radiomics model, metastatic lymph node radiomics model, clinical model, and the combined models by integrating the primary tumor radiomics features or the metastatic lymph node radiomics features with clinical features. Conclusion: The preoperative metastatic lymph node CT radiomics model was more effective than the primary tumor radiomics model in predicting early lymph node recurrence after radical gastrectomy for gastric cancer.
-
Keywords:
- prediction model /
- gastric cancer /
- metastatic lymph node /
- lymph node recurrence /
- risk factors
-
克罗恩病(Crohn’s disease,CD)是一种消化道的慢性非特异性炎症病变,可累及整个消化道,病情易反复发作,严重影响患者的生活质量[1]。我国近年来发病率明显上升,克罗恩病可见于任何年龄段,发病高峰为15~25岁,男女发病率没有明显差异。近年来,CT小肠造影(CT enterography,CTE)已逐渐成为CD患者首选的影像学检查方法,其具有成像速度快、精确度高、安全无创及检查范围和深度均更广的优点,有助于CD患者活动期和缓解期的鉴别诊断[2]。也有研究指出,CTE征象对评估 CD 内镜下炎症活动度有积极作用。CD患者反复发作的病情常需要多次检查,CTE带来的辐射剂量问题不容忽视[3]。虚拟平扫(virtual non-contrast,VNC)的原理是利用高低不同电压下各种组织对X线吸收的差异,区分出原子序数较大的物质,进行碘物质分离,并虚拟的移除碘元素获得近似真实平扫(true non-contrast,TNC)的虚拟平扫[4]。
本研究旨在探讨双能量CT虚拟平扫代替真实平扫在降低CTE辐射剂量的应用价值。
1. 资料与方法
1.1 临床资料
选取2024年6月至2024年12月在南京医科大学第一附属医院用联影uCT860行双能量小肠造影检查的患者53例,其中男25例,女28例,年龄20~65岁。均已签署患者知情同意书。
纳入标准:①年满18岁的成年人;②经各项临床检查证实为克罗恩病患者;③肠道准备充分,图像满足诊断;排除标准:①未成年患者;②肾功能不全患者;③肠道准备不充分,图像无法满足诊断。本研究经南京医科大学第一附属医院伦理会通过,伦理号为2023-SR-782。
1.2 检查方法
检查前准备:检查前一日患者需流质或半流质饮食,应用缓泻药,检查当日保持空腹,并于检查前50 min分5次间断口服约2000 mL 2.5%等渗甘露醇。
使用联影uCT860 CT对患者行小肠造影扫描,扫面范围上自隔顶下至耻骨联合下缘,检查序列包括平扫,动脉期及静脉期增强能谱扫描。平扫参数:管电压120 kV,螺距0.99,准直器宽度80 mm,扫描层厚5 mm,重建层厚1 mm。增强扫描须经肘静脉注射碘造影剂,流速4.0 mL/s用量1.5 mL/kg体重,并以相同流速注射生理盐水45 mL,动脉期以隔顶水平腹主动脉为阈值检测触发点,阈值为100 HU,触发后延迟10 s扫描,动脉期扫描结束后35 s扫描静脉期。双能量增强扫描参数:管电压140/80 kV,螺距0.24,准直器宽度80 mm,扫描层厚5 mm,重建层厚1 mm。扫描完成后将数据发送到联影(uWS-CT)工作站进行后处理。
1.3 图像重建与分析
将动静脉期图像调入(uWS-CT)后处理工作站,使用双能量后处理软件高级分析功能分别将小肠造影的动脉期、静脉期能谱图像重建为动脉期虚拟平扫VNCa和静脉期虚拟平扫VNCv并保存。使用联影后处理工作站阅片软件,调入层厚层间距为1 mm的TNC、VNCa、VNCv图像,分别于肠壁病变处及同层面正常肠壁处手动勾画并测量感兴趣区ROI(region of interest,ROI)的CT值(面积分别约为8 mm2和2 mm2,图1)及噪声SD(standard deviation,SD)。于第三腰椎平面腹主动脉、下腔静脉、竖脊肌以及肝脏处手动勾画并测量感兴趣区ROI(region of interest,ROI)的CT值及噪声。通过复制粘贴ROI的方式确保感兴趣区的大小,位置一致。分别测量TNC、VNCa、VNCv组图像的ROI,每组测量3遍,取平均值。测量病变肠壁ROI时应注意避开肠腔和脂肪组织。以竖脊肌SD为背景噪声计算各组图像的信噪比SNR(signal to noise ratio,SNR)和对比噪声比CNR(contrast to noise ratio,CNR),SNR的计算公式:
$$ \mathrm{SNR=CT}_{ \mathrm{组织}} \mathrm{/SD}_{ \mathrm{组织}} \mathrm{\text{,}} $$ (1) CNR的计算公式:
$$ \mathrm{CNR=(CT}_{ \mathrm{组织}} \mathrm{-CT}_{ \mathrm{竖脊肌}} \mathrm{)/SD}_{ \mathrm{竖脊肌}} \mathrm{。} $$ (2) 由两名高年资医师采用双盲法独立对各组图像的图像质量,病灶的显示进行比对和评分,图像质量采用5分评分法[5](5分:图像层次清晰,解剖结构好,无明显噪声和伪影,满足诊断要求;4分:图像层次较清晰,解剖结构较好,无运动呼吸伪影,达到诊断要求;3分:图像层次欠清晰解剖结构一般,噪声和伪影小,达到诊断要求;2分:图像层次较模糊,解剖结构较差,噪声和伪影小,未满足诊断要求;1分:图像层次模糊,解剖结构差,噪声和伪影大,未达到诊断要求)。辐射剂量评估指标:CT剂量容积指数(CTvolumedose index,CTDIvol)、放射剂量长度乘积(doselength product,DLP)和有效辐射剂量(effectivedose,ED),其中ED=DLP×0. 015。
1.4 统计学分析
应用SPSS 23.0软件进行统计学分析,对TNC、VNCa、VNCv组图像客观指标、主观评分等数据进行正态性及方差齐性检验,并采用单因素方差检验图像的客观评价指标,以P < 0. 05为差异有统计学意义。两名阅片者对图像质量的一致性评价采用Kappa检验,Kappa值<0.4为一致性差,0.4~0.6为一致性中等,0.6~0.8为一致性好,>0.8为一致性优。如果两名医师评估结果一致性好,采用医师甲的评估结果为后续统计学分析,否则以两名医师评估的平均值作为最终结果纳入后续统计学分析。采用秩和检验图像的主观评价指标,P < 0.05为差异有统计学意义。
2. 结果
2.1 图像质量的主观评价
两名医师图像质量主观评价一致性较好(Kappa值分别为0.732、0.688和0.774),TNC、VNCa及VNCv的图像质量主观评分分别为4(4,5)、4(4,5)、4(4,5)。且差异不具有统计学意义(P > 0.05)(表1和图2)。
表 1 TNC、VNCa及VNCv的图像质量主观评分Table 1. Subjective image quality scores for TNC, VNCa and VNCv组别 TNC VNCa VNCv P 医师甲 4(4,5) 4(4,5) 4(4,5) > 0.05 医师乙 4(4,5) 4(4,5) 4(4,5) > 0 05 Kappa值 0. 732 0. 688 0. 774 2.2 图像质量的客观评价
TNC、VNCa及VNCv之间,病变肠壁、正常肠壁、下腔静脉、竖脊肌、肝脏的CT值差异不具有统计学意义,腹主动脉的CT值差异具有统计学意义(表2)。TNC、VNCa及VNCv之间,病变肠壁、正常肠壁、腹主动脉、下腔静脉、肝脏的SNR值差异具有统计学意义且VNCa及VNCv的SNR值均高于TNC,竖脊肌的SNR值差异不具有统计学意义(表3)。TNC、VNCa及VNCv之间,病变肠壁、正常肠壁、下腔静脉、肝脏的CNR值差异不具有统计学意义,腹主动脉的CNR值差异具有统计学意义(表4)。
表 2 TNC、VNCa及VNCv图像CT值(HU)的结果比较Table 2. Comparison of CT values (HU) of TNC, VNCa and VNCv组别 统计检验 TNC VNCa VNCv F P 病变肠壁 38. 55±1.94 39. 22±3.63 38. 88±3.01 0.103 0.902 正常肠壁 25. 89±1.69 26. 01±3.93 25. 98±3.39 0.004 0.996 腹主动脉 47. 02±7.21 78. 11±8.97 52. 77±8.29 36.73 < 0.001 下腔静脉 41. 44±6.29 43. 11±8.93 49. 44±9.41 2.314 0.121 竖脊肌 54. 67±5.89 53. 55±6.48 58. 67±9.16 1.217 0.315 肝脏 51. 89±7.68 62. 22±10.55 61. 55±15.51 2.196 0.133 表 3 TNC、VNCa及VNCv SNR的结果比较Table 3. Comparison of SNR results for TNC, VNCa and VNCv组别 统计检验 SNRTNC SNRVNCa SNRVNCv F P 病变肠壁 2.36±0.36 3.23±0.58 3.14±0.76 5.923 0.008 正常肠壁 1.58±0.24 2.13±0.35 2.01±0.49 5.895 0.009 腹主动脉 2.91±0.69 6.58±1.93 4.26±1.13 16.940 < 0.001 下腔静脉 2.56±0.59 3.55±0.89 3.92±0.84 7.241 0.003 竖脊肌 3.36±0.67 4.49±1.31 4.26±2.11 2.636 0.092 肝脏 3.21±0.75 5.31±1.82 5.08±2.06 4.396 0.024 表 4 TNC、VNCa及VNCv图像CNR的结果比较Table 4. Comparison of CNR results of TNC, VNCa and VNCv image组别 统计检验 CNRTNC CNRVNCa CNRVNCv F P 病变肠壁 1.01±0.43 1.26±0.94 1.78±1.45 1.348 0.279 正常肠壁 1.77±0.51 2.37±1.16 2.83±1.71 1.655 0.212 腹主动脉 0.46±0.54 2.09±1.15 0.66±1.45 16.905 0.001 下腔静脉 0.81±0.41 0.94±1.32 0.99±1.77 0.051 0.951 肝脏 0.15±0.49 0.81±0.99 0.16±1.11 2.637 0.092 2.3 TNC常规扫描以及VNCv CTE扫描的剂量比较
常规扫描CTE的DLP、CTDIvol及ED分别是(
2104.38 ±242.41)mGy·cm、(36.78±3.43)mGy、(31.72±2.02)mSv。VNCv代替TNC扫描的DLP、CTDIvol及ED分别是(1498.56 ±168.51)mGy·cm、(25.74±1.78)mGy、(22.04±1.63)mSv。相较于常规CTE扫描,VNCv取代TNC扫描的辐射剂量大约降低了30%。3. 讨论
克罗恩病可累及胃肠道的任何部位,但主要见于回肠末段和邻近结肠。其病变呈节段性分布,且为透壁性炎症,可形成纵行溃疡、鹅卵石样外观等典型表现[5]。这种特点使得肠道的正常结构和功能受到严重影响,导致腹痛、腹泻、腹部包块等症状的出现。除了常见的胃肠道症状外,患者还可能出现发热、营养不良、贫血等全身表现,进一步增加了疾病的复杂性和对患者生活质量的影响。由于其症状缺乏特异性,与其他肠道疾病如溃疡性结肠炎等有一定相似性,因此诊断较为困难[6]。内窥镜检查固有的侵入性使得其应用在部分患者中受到限制,影像学检查方法现已被越来越广泛用于评估克罗恩患者的病情。克罗恩病患者以年轻人居多,且由于病情的反复发作常需要多次检查。因而有效降低辐射剂量成到业界广泛的关注和研究的热点[7]。双能量小肠造影虚拟平扫可通过高低电压的切换识别组织中的碘,并基于多物质分解算法分离实现碘的去除,VNC图像将除碘化组织外的所有组织均以其原始HU值表示。碘化像素由于其无造影剂增强的HU值尽可能类似的虚拟HU值识别和替换,从而生成类似于真实平扫的图像, 以其减少一期平扫图像来降低辐射剂量[8]。
目前虚拟平扫技术已应用于多个人体部位包括肝脏、肾脏、胸部、心脏等[9-12]。我们的研究拟利用双能量CT技术对小肠造影的动静脉期图像进行虚拟平扫重建,并与常规平扫图像进行对比研究。CD主要的病变累及部位在回盲部,因此我们对病变肠壁、正常肠壁的常规平扫和动静脉期虚拟平扫的CT值进行了对比研究,结果显示三者之间的差异不具有统计学意义,且静脉期的VNC结果更接近真实平扫。另外,我们还对腹主动脉、下腔静脉、竖脊肌、肝脏的CT值进行了对比分析,结果显示除腹主动脉的差异在三者之间具有统计学意义外,其余各组织的对比分析均无统计学差异。其主要原因是动脉期碘主要分布于血管之中,而其他组织的摄取率较低。对比研究病变肠壁、正常肠壁、腹主动脉、下腔静脉、竖脊肌、肝脏的CT值除腹主动脉CT值差距较大外,其余各处CT值相差均小于11 HU,提示以VNC替代TNC具有可行性。魏博等[13]在结直肠癌的研究中报道,结直肠病灶、臀大肌的CT值、CNR值在TNC、VNCa 、VNCv之间均无明显差异,而VNC的SNR均高于TNC。SNR和CNR也是评估影像质量的重要指标,SNR值越高说明图像的质量越好。本研究也发现腹主动脉在VNCa中的CT值、SNR均高于TNC和VNCv,而下腔静脉在VNCv中的SNR均高于TNC和VNCa。这主要是由于血管内对比剂较高,致使高低能量切换无法很好的去除碘物质[14]。SNR的提高是由于虚拟平扫重建技术中采用了滤波降噪,使得图像的噪声得到降低。双能量融合图像采用的线性融合后处理方式使得重建后的图像有效利用了高低千伏数据,既得到了高千伏数据中的低噪声,又得到了低千伏的高对比[15]。病变肠壁、正常肠壁、下腔静脉、肝脏的CNR在TNC、VNCa 、VNCv之间均无明显差异,主要原因在于其各组织的CT值在TNC、VNCa 、VNCv之间差异无统计学意义。王境伟等[16]利用光谱CT在甲状腺乳头状癌的研究中显示TNC的CNR明显高于VNC,原因主要是光谱CT改进了重组算法。
高丽嫦等[17]报道,以VNC代替TNC评价上腹部器官,发现可使辐射剂量下降约30%,但该研究认为在评价实质性器官时需要结合TNC图像。魏博等[13]报道,以VNC代替TNC评价结直肠癌,各组图像主观评分有较好的一致性,可使辐射剂量下降22%。本研究中同时对比研究了动、静脉期的虚拟平扫图像,从主观图像质量评分显示,两位医师认为VCN图像与TNC图像基本相当,且VNCv的一致性更高,3组图像主观评分差异不大,均满足诊断需求,以VNC代替TNC可使辐射剂量下降约30%。
本研究的局限性。①本研究的样本量太小,需要进一步扩大样本进行研究;②由于肠壁太薄,可能未能准确勾画感兴趣区;随着病例的进一步收集和测量方式的完善,我们将在以后的工作中进行补充研究。
4. 结论
综上所述,VNC图像质量总体与TNC图像质量接近,保证了图像质量的情况下减少了扫描次数,可取代TNC应用于克罗恩病小肠造影降低患者辐射剂量。
-
图 3 使用最小绝对收缩和选择算子(Lasso)回归筛选预测胃腺癌术后淋巴结复发的影像组学特征
注:(a)和(b)分别为原发肿瘤及转移性淋巴结影像组学特征的Lasso系数分布收敛图。(c)和(d)采用10倍交叉验证法调整筛选的特征的正则化参数(λ),左右虚线分别表示最小准则和1标准误差(1-SE)准则。
Figure 3. Feature selection using the least absolute shrinkage and selection operator (LASSO) regression to predict lymph node recurrence after gastric cancer surgery
图 5 原发肿瘤影像组学−临床特征联合模型(a)及转移性淋巴结影像组学−临床特征联合模型(b)诺莫图
注:从评分标尺上分别找到患者index1(转移淋巴结数目)、index2(淋巴结形态)、index3(肿瘤标志物)及radiomics特征对应的分数,将其相加得到评分,再根据总评分在概率预测标尺上找到患者出现淋巴结复发的预测概率。
Figure 5. Nomogram for the combined model of primary tumor radiomics and clinical features (a). The combined model of metastatic lymph node radiomics and clinical features (b)
图 6 原发肿瘤影像组学−临床特征联合模型及转移性淋巴结影像组学−临床特征联合模型DeLong检验
注:原发肿瘤影像组学−临床特征联合模型在训练组(a)、内部验证组(b)及外部验证组(c)的预测效能;转移性淋巴结影像组学−临床特征联合模型在训练组(d)、内部验证组(e)及外部验证组(f)的预测效能。
Figure 6. DeLong test for the combined model of primary tumor radiomics and clinical features and the combined model of metastatic lymph node radiomics and clinical features
表 1 胃癌术后淋巴结复发与未复发组的临床资料
Table 1 Clinical data of groups with lymph node recurrence and non-recurrence after gastric cancer surgery
变量 未复发组(n=137) 复发组(n=63) 性别(男vs.女) 99 vs. 38 50 vs. 13 年龄 ≤63 62 30 >63 75 33 解剖分布 贲门 47 24 胃体 33 18 胃窦 26 11 贲门-胃体 29 7 胃窦-胃体 2 3 T分期 T1 6 1 T2 15 6 T3 46 14 T4 70 42 N分期 N1 72 24 N2 50 24 N3 15 15 肿瘤最大径 <5 cm 85 40 ≥5 cm 52 23 脉管浸润 否 81 29 是 56 34 神经浸润 否 77 28 是 60 35 累及淋巴结站数 1站 63 11 2站 39 18 3站 26 20 4站 9 14 最大淋巴结短径/mm 6<短径≤10 96 33 10<短径≤15 28 16 短径>15 13 14 转移淋巴结数目/枚 数目≤7 82 3 7<数目<15 48 35 数目≥15 7 25 淋巴结形态 规则、清楚 121 11 不规则、模糊 8 26 融合、坏死 8 26 手术方式 部分切除 62 26 全部切除 75 37 辅助治疗 无 23 10 新辅助化疗 5 4 新辅助化疗+术后化疗 18 14 术后化疗 88 33 术后化疗+免疫治疗 3 2 肿瘤标志物 阴性 110 18 阳性 37 45 表 2 临床病理因素的单因素Logistic回归分析筛选出独立危险因素
Table 2 Univariate logistic regression analysis of clinicopathological factors to screen independent risk factors
变量 训练组(n=110) P 内部验证组(n=48) P 外部验证组(n=42) P 未复发组 (n=76) 复发组(n=34) 未复发组 (n=33) 复发组(n=15) 未复发组 (n=28) 复发组(n=14) 转移淋巴结
数目/枚数目≤7 36(47.4) 19(55.9) < 0.001 22(66.7) 6(40.0) 0.005 25(86.2) 7(53.8) < 0.001 7<数目<15 3(8.8) 4(5.3) 3(20.0) 3(9.1) 0(0.0) 0(0.0) 数目≥15 36(47.4) 12(35.3) 8(24.2) 6(40.0) 4(13.8) 6(46.2) 淋巴结形态 规则、清楚 69(90.8) 17(50.0) < 0.001 28(84.8) 5(33.3) < 0.001 22(78.6) 9(64.3) 0.004 不规则、模糊 8(23.5) 4(5.3) 2(13.3) 3(9.1) 4(28.6) 2(7.1) 融合、坏死 3(3.9) 9(26.5) 2(6.1) 8(53.3) 4(14.3) 1(7.1) 肿瘤标志物 阴性 63(82.9) 13(17.1) < 0.001 26(78.8) 7(21.2) < 0.001 21(75.0) 7(25.0) 0.017 阳性 12(35.3) 22(64.7) 3(20.0) 12(80.0) 5(35.7) 9(64.3) 表 3 原发肿瘤及转移性淋巴结预测模型DeLong检验AUC值对比
Table 3 Comparison of AUC values of the DeLong test for primary tumor and metastatic lymph node models
项目 模型类别 训练组 内部验证组 外部验证组 原发肿瘤 影像组学模型 0.844 0.802 0.791 临床模型 0.897 0.831 0.962 影像组学−临床特征联合模型 0.970 0.961 0.976 转移性淋巴结 影像组学模型 0.897 0.842 0.825 临床模型 0.943 0.957 0.977 影像组学−临床特征联合模型 0.990 0.973 0.987 -
[1] SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. Ca-a Cancer Journal for Clinicians, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
[2] 郑荣寿, 张思维, 孙可欣, 等. 2016年中国恶性肿瘤流行情况分析[J]. 中华肿瘤杂志, 2023, 45(3): 212-220. DOI: 10.3760/cma.j.cn112152-20220922-00647. ZHENG R S, ZHANG S W, SUN K X, et al. Cancer statistics in China, 2016[J]. Chinese Journal of Oncology, 2023, 45(3): 212-220. DOI:10.3760/cma.j.cn112152-20220922-00647. (in Chinese).
[3] SMYTH E C, NILSSON M, GRABSCH H I, et al. Gastric cancer[J]. Lancet, 2020, 396(10251): 635-648. DOI: 10.1016/S0140-6736(20)31288-5.
[4] 陶华, 申晋疆. 64排螺旋CT对胃癌淋巴结转移的诊断价值及诊断准确率的影响[J]. 肿瘤影像学, 2020, 29(3): 314-318. DOI: 10.19732/j.cnki.2096-6210.2020.03.019. [5] LI W, ZHANG L, TIAN C, et al. Prognostic value of computed tomography radiomics features in patients with gastric cancer following curative resection[J]. European Radiology, 2019, 29(6): 3079-3089. DOI: 10.1007/s00330-018-5861-9.
[6] WANG Y, LIU W, YU Y, et al. CT radiomics nomogram for the preoperative prediction of lymph node metastasis in gastric cancer[J]. European Radiology, 2020, 30(2): 976-986. DOI: 10.1007/s00330-019-06398-z.
[7] JIANG Y, WANG W, CHEN C, et al. Radiomics signature on computed tomography imaging: Association with lymph node metastasis in patients with gastric cancer[J]. Frontiers in Oncology, 2019, 9: 340. DOI: 10.3389/fonc.2019.00340.
[8] YANG J, WU Q, XU L, et al. Integrating tumor and nodal radiomics to predict lymph nodemetastasis in gastric cancer[J]. Radiotherapy and Oncology, 2020, 150: 89-96. DOI:10-1016/j.radonc.2020.06.004. DOI: 10.1016/j.radonc.2020.06.004.
[9] GAO X, MA T, CUI J, et al. A CT-based radiomics model for prediction of lymph nodemetastasis in early stage gastric cancer[J]. Academic Radiology, 2021, 28(6): e155-e164. DOI: 10.1016/j.acra.2020.03.045.
[10] SHIN J, LIM J S, HUH Y M, et al. A radiomics-based model for predicting prognosis of locally advanced gastric cancer in the preoperative setting[J]. Scientific Reports, 2021, 11(1): 1879. DOI: 10.1038/s41598-021-81408-z.
[11] 洪晴, 荆明, 林姗, 等. 胃癌根治术后淋巴结阳性患者的复发转移分析及Nomogram预测模型的建立[J]. 河南医学研究, 2022, 31(10): 1729-1734. HONG J, JING M, LIN S, et al. Analysis of recurrence and metastasis of patients with positive lymph nodes after radical operation of gastric cancer and establishment of nomogram prediction model[J]. Henan Medical Research, 2022, 31(10): 1729-1734. (in Chinese).
[12] 日本胃癌学会. 胃癌处理规约[M]. 15版. 东京: 金原出版株式会社, 2017. [13] 何裕隆. 胃癌淋巴转移[M]. 北京: 人民卫生出版社, 2011. [14] 日本胃癌学会. 胃癌治疗指南[M]. 5版. 东京: 金原出版株式会社, 2018. [15] 金元贞, 仝开军, 舒荣宝, 等. 胃癌区域淋巴结转移的CT征象分析[J]. 中国CT和MRI杂志, 2020, 18(5): 14-17. JIN Y Z, TONG K J, SHU R B, et al. Analysis of CT signs of gastric cancer with extraserosal infiltration[J]. Chinese Journal of CT and MRI, 2020, 18(5): 14-17. (in Chinese).
[16] 李彦磊. 胃癌根治术后CT诊断复发转移区域的研究[D]. 青岛: 青岛大学, 2011. DOI: 10.7666/d.y2043916. [17] KOO T K, LI M Y. A guideline of selecting and reporting intraclass correlation coefficients for reliability research[J]. Journal of Chiropractic Medicine, 2016, 15(2): 155-163. DOI: 10.1016/j.jcm.2016.02.012. (in Chinese).
[18] KUMAR V, RAMNARAYANAN K, SUNDAR R, et al. Single-cell atlas of lineage states, tumor microen-vironment and subtype-specific expression programs in gastric cancer[J]. Cancer Discovery, 2022, 12(3): 670-691. DOI: 10.1158/2159-8290.CD-21-0683.
[19] WANG B, ZHANG Z, LIU W, et al. Targeting regulatory T cells in gastric cancer: Pathogenesis, immunotherapy, and prognosis[J]. Biomedicine & Pharmacotherapy, 2023, 158: 114180. DOI: 10.1016/j.biopha.2022.114180.
[20] NEGURA I, PAVEL-TANASA M, DANCIU M. Regulatory T cells in gastric cancer: Key controllers from pathogenesis to therapy[J]. Cancer Treatment Reviews, 2023, 120: 102629. DOI: 10.1016/j.ctrv.2023.102629.
[21] LEE C K, JEONG S H, JANG C, et al. Tumor metastasis to lymph nodes requires YAP-dependent metabolic adaptation[J]. Science, 2019, 363(6427): 644-649. DOI: 10.1126/science.aav0173.
[22] 朱志, 杜雨薇, 刘福囝, 等. 淋巴结转移在胃癌预后中的评价[J]. 腹部外科, 2021, 34(3): 179-183, 188. ZHU Z, DU Y W, LIU F J, et al. Prognostic evaluations of gastric cancer with lymph node metastasis[J]. Journal of Abdominal Surgery, 2019, 363(6427): 644-649. DOI:10.1126/science.aav0173. (in Chinese).
[23] HAUGEN B R. 2015 American thyroid association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: What is new and what has changed?[J]. Cancer, 2017, 123(3): 372-381. DOI: 10.1002/cncr.30360.
[24] KIM I H, PARK S S, LEE C M, et al. Efficacy of adjuvant S-1 versus XELOX chemotherapy for patients with gastric cancer after D2 lymph node dissection: A retrospective, multi-center observational study[J]. Annals of Surgical Oncology, 2018, 25(5): 1176-1183. DOI: 10.1245/s10434-018-6375-z.
[25] 赵建溪, 任刚, 蔡嵘, 等. 多排螺旋CT诊断早期胃癌淋巴结转移的准确性研究[J]. 诊断学理论与实践, 2016, 15(2): 174-179. DOI: 10.16150/j.1671-2870.2016.02.020. ZHAO J X, REN G, CAI R, et al. Accuracy of multidetector-row CT in diagnosing lymph node metastasis in patients with early gastric cancer[J]. Journal of Diagnostics Concepts & Practice, 2016, 15(2): 174-179. DOI: 10.16150/j.1671-2870.2016.02.020. (in Chinese).
[26] WANG J, WANG L, LI S, et al. Risk factors of lymph node metastasis and its prognostic significance in early gastric cancer: A multicenter study[J]. Frontiers in Oncology, 2021, 11: 649035. DOI: 10.3389/fonc.2021.649035.
[27] 余磊, 赵亚军, 宁忠良. 早期胃癌淋巴结转移的相关危险因素分析[J]. 中国普外基础与临床杂志, 2018, 25(10): 1190-1193. YU L, ZHAO Y J, NING Z L. Risk factors of lymphatic metastasis in early gastric cancer[J]. Chinese Journal of Bases and Clinics in General Surgery, 2018, 25(10): 1190-1193. (in Chinese).
[28] 游佳, 李颖慧, 吴泽航, 等. 能谱CT动静脉期碘含量差值对胃癌淋巴结转移的预测价值[J]. 国际医学放射学杂志, 2021, 44(4): 408-414. DOI: 10.19300/j.2021.L18683. YOU J, LI Y H, WU Z H, et al. The predictive value of iodine content difference between arterial and venous phases of energy spectrum CT for lymph node metastasis of gastric cancer[J]. International Journal of Medical Radiology, 2021, 44(4): 408-414. DOI: 10.19300/j.2021.L18683. (in Chinese).
[29] ZHAO B, HUANG X, ZHANG J, et al. Clinicopathologic factors associasted with recurrence and long-term survival in node-negative advanced gastric cancer patients[J]. Revista Espanola de Enfermedades Digestivas, 2018, 111(2): 111-120. DOI: 10.17235/reed.2018.5829/2018.
[30] JIANG Y, LI T, LIANG X, et al. Association of adjuvant chemotherapy with survival in patients with stage Ⅱ or Ⅲ gastric cancer[J]. Jama Surgery, 2017, 152(7): e171087. DOI: 10.1001/jamasurg.2017.1087.
[31] SHITARA K, CHIN K, YOSHIKAWA T, et al. Phase Ⅱ study of adjuvant chemotherapy of S-1 plus oxaliplatin for patients with stage Ⅲ gastric cancer after D2 gastrectomy[J]. Gastric Cancer, 2017, 20(1): 175-181. DOI: 10.1007/s10120-015-0581-1.
[32] BOKU N, RYU M H, KATO K, et al. Safety abd efficacy of nivolunab in combination with S-1/capecitabine plus oxaliplatin in patients with previously untreated, unresectable advanced, or recurrent gastric/gastroesophageal junction cancer: Interim results of a randomized, phase Ⅱ trial (ATTRACTION-4)[J]. Annals of Oncology, 2019, 30(2): 250-258. DOI: 10.1093/annonc/mdy540.
[33] CHAI R, MA H, XU M, et al. Differentiating axillary lymph node metastasis in invasive breast cancer patients: A comparison of radiomic signatures from multiparametric breast MR sequences[J]. Journal of Magnetic Resonance Imaging, 2019, 50(4): 1125-1132. DOI: 10.1002/jmri.26701.
[34] KAN Y, DONG D, ZHANG Y, et al. Radiomic signature as a predictive factor for lymph nodemetastasis in early-stage cervical cancer[J]. Journal of Magnetic Resonance Imaging, 2019, 49(1): 304-310. DOI: 10.1002/jmri.26209.
[35] 黄列彬, 刘昱, 黄文斯, 等. CT纹理分析联合临床病理信息预测进展期胃癌术后复发的价值[J]. 放射学实践, 2022, 37(2): 214-219. DOI: 10.13609/j.cnki.1000-0313.2022.02.013. HUANG L B, LIU Y, HUANG W S, et al. The value of CT texture analysis combined with clinicopathological information in predicting postoperative recurrence of advanced gastric cancer[J]. Radiologic Practice, 2022, 37(2): 214-219. DOI:10.13609/j.cnki.1000-0313.2022.02.013. (in Chinese).
[36] GAO X, MA T, CUI J, et al. A radiomics-based model for prediction of lymph node metastasis in gastric cancer[J]. European Journal of Radiology, 2020, 129: 109069. DOI: 10.1016/j.ejrad.2020.109069.