ISSN 1004-4140
CN 11-3017/P

低频保护下的近地表Q补偿技术在川中叠前地震资料处理中的应用

韩嵩, 刘延利, 彭浩天, 陈虹帆, 曾鸣, 张菽芮

韩嵩, 刘延利, 彭浩天, 等. 低频保护下的近地表Q补偿技术在川中叠前地震资料处理中的应用[J]. CT理论与应用研究(中英文), xxxx, x(x): 1-10. DOI: 10.15953/j.ctta.2024.298.
引用本文: 韩嵩, 刘延利, 彭浩天, 等. 低频保护下的近地表Q补偿技术在川中叠前地震资料处理中的应用[J]. CT理论与应用研究(中英文), xxxx, x(x): 1-10. DOI: 10.15953/j.ctta.2024.298.
HAN S, LIU Y L, PENG H T, et al. Q-Compensation for Near Surface with Low-Frequency Protection and Its Application in Prestack Processing of Central Sichuan Basin[J]. CT Theory and Applications, xxxx, x(x): 1-10. DOI: 10.15953/j.ctta.2024.298. (in Chinese).
Citation: HAN S, LIU Y L, PENG H T, et al. Q-Compensation for Near Surface with Low-Frequency Protection and Its Application in Prestack Processing of Central Sichuan Basin[J]. CT Theory and Applications, xxxx, x(x): 1-10. DOI: 10.15953/j.ctta.2024.298. (in Chinese).

低频保护下的近地表Q补偿技术在川中叠前地震资料处理中的应用

基金项目: 中国石油东方地球物理公司西南物探研究院项目(2024年度四川盆地物探技术攻关)。
详细信息
    作者简介:

    韩嵩,男,工程师,学士学位,主要从事地震信号处理方面的研究,E-Mail:Hansong@petrochina.com.cn

    通讯作者:

    刘延利✉,女,工程师,博士,主要从事地震资料处理工作,E-Mail:746573860@qq.com

  • 中图分类号: P 631.3

Q-Compensation for Near Surface with Low-Frequency Protection and Its Application in Prestack Processing of Central Sichuan Basin

  • 摘要:

    四川盆地川中须家河组近源成藏具有较大勘探潜力,但其储层类型多为薄层组合的孔隙裂缝性储层,储层纵横向非均质性强,河道砂体及小断层刻画不清晰,需要进行地震高分辨率处理,此外,须五段对于低频响应比较敏感,这就要求在保证全频处理的前提下,着重加强对低频信息的保护与拓展。针对该地质需求,开展低频保护下的近地表Q补偿技术的应用研究,以改善近地表的吸收衰减作用,增强子波的横向一致性,从而提升地震资料品质。首先,基于四川盆地近地表结构特征以及地震波衰减理论,利用表层旅行时,联合地震初至波主频等信息建立近地表Q场;然后,在传统稳定Q补偿的基础上,引入低频保护系数,提出低频保护下的稳定Q补偿流程。最后,对比分析理想主频、截止频率以及低频保护系数等参数对补偿效果的影响,确立该工区近地表补偿的最优参数组合。基于优选的参数组合对工区内的实际地震资料进行叠前道集补偿,补偿结果表明:基于该流程进行近地表Q补偿,可以有效地提高地震资料的分辨率,恢复砂体的振幅特征,改善同相轴的横向连续性;并且在拓展高频的同时,能够保持低频信息不被压制。使用处理后的资料提取的属性与工区内的实钻结果相吻合,显著提升了对砂体的刻画精度,为后续的油气勘探提供了坚实的数据支撑和技术保障。

    Abstract:

    The near-source reservoir formation in the Xujiahe Formation of the Sichuan Basin has great exploration potential, but its reservoir types are mostly thin-layered porous and fractured reservoirs with strong vertical and horizontal heterogeneity. The channel sand bodies and small faults are not clearly delineated, requiring high-resolution seismic processing. Moreover, the Xujiahe Formation is more sensitive to low-frequency response; thus, it is necessary to focus on the protection and expansion of low-frequency information while ensuring full-frequency processing. In response to this geological requirement, we have conducted research on near surface Q-compensation technology under low-frequency protection to improve the absorption and attenuation effects near the surface and the impact on the lateral consistency of wavelets, thereby enhancing the quality of seismic data. First, based on the near-surface structural characteristics of the Sichuan Basin and the theory of seismic wave attenuation, the near surface Q-field is established using surface travel time and combined with information such as the dominant frequency of the first seismic arrival. Then, based on the stable Q-compensation method, we propose a new stable Q-compensation process by introducing a low-frequency protection coefficient to protect low frequencies. Finally, the influence of parameters such as the ideal dominant frequency, cutoff frequency, and low-frequency protection coefficient on the compensation effect was compared and analyzed, and the optimal parameter combination for near-surface compensation was established. Based on the optimized parameter combination, the prestack gathers are compensated. The compensation results show that using this process for near surface Q-compensation can effectively improve the resolution of seismic data, restore the amplitude characteristics of sand bodies, and improve the lateral continuity of events. While expanding high frequencies, it can maintain low-frequency information without being suppressed. The attributes extracted from the processed data are consistent with actual drilling results in the work area, significantly improving the accuracy of sand body characterization and providing solid data and technical support for subsequent oil and gas exploration.

  • 图  1   低频保护下的Q补偿频谱示意图

    Figure  1.   Schematic diagram of Q-compensation with low-frequency protection

    图  2   工区地表高程图

    Figure  2.   Surface elevation of the work area

    图  3   工区近地表厚度图

    Figure  3.   Near-surface thickness of the work area

    图  4   近地表地震波传播路径示意图

    Figure  4.   Propagation path of seismic waves in near surface

    图  5   工区内检波点处的近地表旅行时分布

    Figure  5.   Travel time of seismic waves at detection points in near surface

    图  6   工区内单炮初至波及其初至时间

    Figure  6.   The first arrival waves and their arrival time

    图  7   初至波的质心频率分布

    Figure  7.   Centroid frequency distribution of first arrival waves

    图  8   使用主频不同的理想子波获得的近地表Q值分布

    Figure  8.   Near-surface Q obtained using ideal wavelets with different main frequencies

    图  9   使用主频不同的理想子波获得的近地表Q并补偿CMP后叠加

    Figure  9.   Compensated results obtained from different Q computed by different ideal frequencies

    图  10   不同主频的理想子波补偿后剖面的频谱对比图

    Figure  10.   Spectra of the profiles in Fig. 8

    图  11   不同截止频率的道集补偿效果

    Figure  11.   Compensated CMPs obtained using different cut frequencies

    图  12   不同截止补偿后道集的频谱对比图

    Figure  12.   Spectra of the CMPs in Fig. 10

    图  13   使用不同的低频保护系数进行补偿效果

    Figure  13.   Compensated by different low-frequency protection coefficients

    图  14   不同低频保护系数补偿后频谱对比图

    Figure  14.   Spectra of the CMPs in Fig. 13

    图  15   Q补偿前后叠加剖面及其自相关对比

    Figure  15.   The stack profiles and their autocorrelation profiles

    图  16   Q补偿前后均方根振幅属性图

    Figure  16.   The RMS attributes

  • [1] 韩嵩, 陈康, 汤聪, 等. 四川盆地蓬莱气区近地表Q场求取及应用[J]. 石油地球物理勘探, 2024, 59(3): 443-453.

    HAN S, CHEN K, TANG C, et al. Calculation and application of near-surface Q field in Penglai Gas Area, Sichuan Basin[J]. Oil Geophysical Prospecting, 2024, 59(3): 443-453. (in Chinese).

    [2] 郑公营, 吕其彪, 赵爽, 等. 隐蔽河道砂体地震识别关键技术——以四川盆地中江气田中侏罗统沙溪庙组为例[J]. 天然气工业, 2022, 42(9): 35-46.

    ZHENG G Y, LYU Q B, ZHAO S, et al. Key technologies for seismic identification of hidden channel sandbodies: A case study of Middle Jurassic Shaximiao Formation in the Zhongjiang Gas Field of the Sichuan Basin[J]. Natural Gas Industry, 2022, 42(9): 35-46. (in Chinese).

    [3] 韦红, 白清云, 孙佳林, 等. 地震信号谐波提频技术在辫状河砂体精细识别的应用[J]. CT理论与应用研究(中英文), 2024, 33(5): 577-584.

    WEI H, BAI Q Y, SUN J L, et al. Application of seismic signal harmonic frequency enhancement technology for fine identification of braided river sand bodies[J]. CT Theory and Applications, 2024, 33(5): 577-584. (in Chinese).

    [4]

    FUTTERMAN W I. Dispersive body waves[J]. Journal of Geophysical Research, 1962, 67(13): 5279-5291. DOI: 10.1029/JZ067i013p05279.

    [5]

    LIU Q, MÜLLER T M, REZAEE R, et al. Effect of fluid patch clustering on the P-wave velocity-saturation relation: A critical saturation model[J]. Geophysics, 2024, 89(6): MR325-MR334.

    [6]

    BRZOSTOWSKI M A, MCMECHAN G A. 3-D tomographic imaging of near-surface seismic velocity and attenuation[J]. Geophysics, 1992, 57(3): 396-403. DOI: 10.1190/1.1443254.

    [7]

    LIU W, SHI Y, WANG N, et al. Source-independent Q-compensated viscoacoustic least-squares reverse time migration[J]. Geophysics, 2024, 89(5): S361-S377. DOI: 10.1190/geo2023-0639.1.

    [8]

    YADARI N E, ERNST F, MULDER W. Near-surface attenuation estimation using wave-propagation modeling[J]. Geophysics, 2008, 73(6): U27-U37. DOI: 10.1190/1.2976548.

    [9]

    KROHN C E, MURRAY T J. Shallow near-surface effects[J]. GEOPHYSICS, 2016, 81(5): T221-T231. DOI: 10.1190/geo2016-0028.1.

    [10] 刘立彬, 田坤, 张学涛. 微测井和地震资料联合的近地表Q反演方法及应用[J]. 地球物理学进展, 2023, 38(4): 1625-1636.

    LIU Li B, TIAN K, ZHANG X T. 2023. Near surface Q inversion method combined with micro-log and seismic data and its application[J]. Progress in Geophysics, 38(4): 1625-1636. (in Chinese).

    [11] 郭念民, 周旭, 徐凯驰, 等. 基于锤击和多级井中检波器接收微测井的近地表Q值调查方法[J]. 石油地球物理勘探, 2023, 58(2): 295-304.

    GUO N M, ZHOU X, XU K C, et al. Near-surface Q-value survey method based on uphole with hammer excitation and receiving using multi-stage geophones in wells[J]. Oil Geophysical Prospecting, 2023, 58(2): 295-304. (in Chinese).

    [12] 王一惠, 王小卫, 张涛, 等. 西部沙漠区中深层地震数据近地表Q补偿应用研究[J]. 石油物探, 2021, 60(6): 944-953. DOI: 10.3969/j.issn.1000-1441.2021.06.008.

    WANG Y H, WANG X W, ZHANG T, et al. Application of near-surface Q compensation for seismic data from a mid-depth layer in the western desert in China[J]. Geophysical Prospecting for Petroleum, 2021, 60(6): 944-953. DOI: 10.3969/j.issn.1000-1441.2021.06.008. (in Chinese).

    [13] 蒋立, 陈勇, 肖艳玲, 等. 地表过渡带近地表Q补偿与地表一致性反褶积处理效果对比研究[J]. 石油物探, 2018, 57(6): 870-877. DOI: 10.3969/j.issn.1000-1441.2018.06.009.

    JINAG L, CHEN Y, XIAO Y L, et al. A comparison of near-surface Q compensation and surface-consistent deconvolution in the near-surface transition zone[J]. Geophysical Prospecting for Petroleum, 2018, 57(6): 870-877. DOI: 10.3969/j.issn.1000-1441.2018.06.009. (in Chinese).

    [14] 冯心远, 曾鸣, 屠志慧, 等. 基于数据驱动的近地表Q补偿方法及其应用[J]. 内蒙古石油化工, 2023, 49(11): 27-30,38. DOI: 10.3969/j.issn.1006-7981.2023.11.006.
    [15] 刘桓, 苏勤, 曾华会, 等. 近地表Q补偿技术在川中地区致密气勘探中的应用[J]. 岩性油气藏, 2021, 33(3): 104-112. DOI: 10.12108/yxyqc.20210310.

    LIU H, SU Q, ZENGH H, et al. Application of near-surface Q compensation technology intight gas exploration incentral Sichuan Basin[J]. Lithologic Reservoirs, 2021, 33(3): 104-112. DOI: 10.12108/yxyqc.20210310. (in Chinese).

    [16] 陈志德, 王成, 刘国友, 等. 近地表Q值模型建立方法及其地震叠前补偿应用[J]. 石油学报, 2015, 36(2): 188-196. DOI: 10.7623/syxb201502007.

    CHEN Z D, WANG C, LIU G Y, et al. Modeling method of near-surface Q value and its seismic pre-stack compensation application[J]. Acta Petrolei Sinica, 2015, 36(2): 188-196. DOI: 10.7623/syxb201502007. (in Chinese).

    [17] 蔡杰雄, 郑浩, 刘定进, 等. 近地表Q因子估算影响因素分析[J]. 地球物理学进展, 2018, 33(2): 547-553. DOI: 10.6038/pg2018BB0153.

    CAI J X, ZHENG H, LIU D J, et al. Analysis of influencing factors of near surface Q estimation[J]. Progress in Geophysics, 2018, 33(2): 547-553. DOI: 10.6038/pg2018BB0153. (in Chinese).

    [18]

    CHEN Z, CHEN X, WANG Y, et al. Estimation of Q factors from reflection seismic data for a band-limited and stabilized inverse Q filter driven by an average-Q model[J]. Journal of Applied Geophysics, 2014, 101(Null).

    [19]

    WANG Y. A stable and efficient approach of inverse Q filtering[J]. Geophysics, 2002, 67(2): 657-663. DOI: 10.1190/1.1468627.

  • 期刊类型引用(6)

    1. 夏颖贤,陈志强,张丽,邢宇翔,高河伟. 基于等角多段探测器的非均匀采样CT直接FBP重建算法研究. 中国体视学与图像分析. 2024(02): 106-115 . 百度学术
    2. 詹美娜,倪松,余海军,谢海霞,刘丰林,谭辉. 大直径回转体零部件壳体局部加速器CT检测. 光学学报. 2024(22): 1-13 . 百度学术
    3. 马世博,刘宏伟,迟永波,王奕博,张昭. 基于超声波断层图像的三维重构方法. 沈阳工业大学学报. 2023(01): 71-77 . 百度学术
    4. 张小刚,俞东宝,汤慧,朱永利,张洪伟. 压水堆燃料组件管座的X射线数字成像检测. 铸造. 2023(10): 1277-1283 . 百度学术
    5. 王雪峰,陈兴稣,王元庆. 基于联合代数迭代的非视域激光图像重建方法. 应用激光. 2022(03): 135-140 . 百度学术
    6. 栗乔新,金科,庞志峰. 一种去除CT图像中同心椭圆伪影的变分模型. CT理论与应用研究. 2022(06): 773-781 . 本站查看

    其他类型引用(8)

图(16)
计量
  • 文章访问数:  12
  • HTML全文浏览量:  1
  • PDF下载量:  4
  • 被引次数: 14
出版历程
  • 收稿日期:  2024-12-11
  • 修回日期:  2025-02-23
  • 录用日期:  2025-02-25
  • 网络出版日期:  2025-04-15

目录

    /

    返回文章
    返回
    x 关闭 永久关闭