ISSN 1004-4140
CN 11-3017/P

基于器官剂量调制技术在男性盆腔CT扫描中的探究

尹炜, 何泉宇, 尹红霞, 秦翔宇, 吴柯薇, 钟朝辉

尹炜, 何泉宇, 尹红霞, 等. 基于器官剂量调制技术在男性盆腔CT扫描中的探究[J]. CT理论与应用研究(中英文), xxxx, x(x): 1-8. DOI: 10.15953/j.ctta.2024.307.
引用本文: 尹炜, 何泉宇, 尹红霞, 等. 基于器官剂量调制技术在男性盆腔CT扫描中的探究[J]. CT理论与应用研究(中英文), xxxx, x(x): 1-8. DOI: 10.15953/j.ctta.2024.307.
Yin W, He Q Y, Yin H X, et al. Exploration of Organ Dose Modulation in Male Pelvic CT Scanning[J]. CT Theory and Applications, xxxx, x(x): 1-8. DOI: 10.15953/j.ctta.2024.307. (in Chinese).
Citation: Yin W, He Q Y, Yin H X, et al. Exploration of Organ Dose Modulation in Male Pelvic CT Scanning[J]. CT Theory and Applications, xxxx, x(x): 1-8. DOI: 10.15953/j.ctta.2024.307. (in Chinese).

基于器官剂量调制技术在男性盆腔CT扫描中的探究

基金项目: 国家重点研发计划(多模态医学图像分析方法和医学图像判读(2020YFA0712203))。
详细信息
    作者简介:

    尹炜,男,医学硕士,放射科主管技师,青年讲师,研究方向为医学影像技术,E-mail:yinwei1234@126.com

    通讯作者:

    钟朝辉✉,男,放射科副主任技师,研究方向为医学影像技术,E-mail: laijinyuxuan12@sina.com

Exploration of Organ Dose Modulation in Male Pelvic CT Scanning

  • 摘要:

    目的:基于器官剂量调制(ODM)技术应用于男性盆腔电子计算机断层(CT)扫描中的探究。在不影响临床诊断的前提下,降低男性盆腔内组织器官所受有效辐射剂量,为将来应用此技术于男性盆腔疾病的流行病学大规模CT筛查,减少人群的辐射损伤提供理论基础。方法:运用随机对照临床试验,连续采集拟行盆腔CT扫描的成年男性受试者150例。本研究中,将受试者按随机表法分为AODM组、BATCM组和CLOW组。AODM组CT扫描开启自动管电流调制(ATCM)技术基础上,同时开启ODM技术;BATCM组仅开启ATCM技术,其余扫描条件一致;CLOW组关闭ATCM技术,设置为固定管电流,其余条件一致。通过在受试者盆腔四方位,前、左、后、右安置DLVA-A CT伏安特性测试仪,测定并记录人体四方位管电流峰值。根据扫描后CT自动生成的辐射剂量表数据,计算出受试者所受有效剂量(ED)。依据AAPM220号报告计算SSDEprostate,估算出前列腺所受有效辐射剂量。选取盆腔内前列腺中心层面,在前列腺区域和臀大肌区域选取感兴趣区(ROI),比较客观噪声(SD)、信噪比(SNR)。在盆腔软组织窗下对重建所得横轴位和冠状位图像,进行李克特5分制主观评分。结果:客观测定数据显示,AODM组前方管电流显著低于BATCM组,具有显著统计学意义;其余方向无统计学差异。三组前列腺区域图像的SD、SNR水平之间两两比较,具有统计学意义;臀大肌区域的SD、SNR水平之间比较,AODM组和BATCM组无统计学意义。三组受试者经CT剂量指数(CTDIvol)估算出的单器官所受有效辐射剂量(EDOS)和整体有效辐射剂量(ED)差异均具有统计学意义。AODM组比较于BATCM组,管电流降低,有效剂量降低。主观评估结果显示,AODM组和BATCM组的横轴位和冠状位图像无统计学差异(P > 0.05);CLOW组和AODM组、CLOW组和BATCM组的横轴位和冠状位图像均具有统计学意义。结论:与传统CT扫描方式相比较,器官剂量调制技术应用于男性盆腔电子计算机断层扫描中,在获得符合临床标准的医学影像前提下,可降低盆腔内辐射敏感器官的辐射强度,减少单器官和总体辐射有效剂量。

    Abstract:

    Objective: Organ dose modulation (ODM) was used in male pelvic electronic computed tomography (CT) scans. To avoid affecting clinical diagnosis, the effective radiation dose of pelvic tissues and organs in men should be reduced to provide a theoretical basis for the future application of this technology in the epidemiological large-scale CT screening of male pelvic diseases and reduce radiation damage in the population. Methods: 150 adult male subjects with planned pelvic CT scans were selected in a randomized controlled clinical trial. In this study, the subjects were divided into AODM, BATCM, and CLOW groups according to the randomization table method. In the ODM group, the ODM utilized automatic tube current modulation (ATCM); only ATCM and the other scanning conditions were consistent; in the CLOW group, the ATCM was set to fixed tube current, and the other conditions were consistent. The peak human square tubular current was measured and recorded by placing the DLVA-ACT voltammetric characteristic tester in the anterior, left, posterior, and right sides. The effective dose (ED) was calculated from the radiation dose table data automatically generated after the CT scan. The effective radiation dose of the prostate was estimated by calculating SSDEprostate from the AAPM220 report. At the central level of the pelvic prostate, the region of interest (ROI) was selected in the prostate and gluteus muscle regions to compare standard deviation (SD) and signal-to-noise ratio (SNR). The reconstructed transaxial and coronal images were scored under the pelvic soft tissue window. Results: The objective data showed that the anterior tube current was significantly lower than that in the BATCM group; no statistical difference was observed in the other directions. Pairwise comparisons between the SD and SNR levels in the three prostate regions were statistically significant; the SD and SNR levels in the gluteus maximus region were not significant between the AODM and BATCM groups. The difference in the signal organ effective dose (EDOS) and overall effective radiation dose (ED) between the volumetric CT dose Index (CTDIvol). Compared with the BATCM group, the tube current and ED in the AODM group decreased. Conclusion: Compared with traditional CT scanning, ODM is used in male pelvic electronic CT, which can reduce the radiation intensity of radiation-sensitive organs in the pelvic cavity and ED of single organs to obtain medical images that satisfy clinical standards.

  • 颅内孤立性纤维瘤(intracranial solitary fibrous tumor,ISFT)是一种间叶组织来源的梭形细胞肿瘤,发病罕见,尽管近年来国内外相关报道的病例逐渐增多,但是影像及临床医生对其仍缺乏全面认识,术前误诊率高。

    本文介绍1例经术后病理证实的颅内孤立性纤维瘤,结合其病例资料进行相关分析,以提高医生对此种罕见病的术前诊断准确率,对手术方案制定及预后有重要价值,具有报道意义。

    患者,男,52岁,因“双下肢无力,步态不稳20天”入院。入院前10年无明显诱因出现头痛,自行口服药物治疗,未系统治疗。近20天感下肢行走无力,伴踩棉花感,发病以来精神食欲及睡眠较差,大小便正常。

    白蛋白37.3↓(40~55 g/L),天门冬氨酸转移酶9.8↓(15~40 U/L),胱抑素C 1.49↑(0~1.4 mg/L),补体C1 q138.9↓(159~233 mg/L);余(-)。

    CT:平扫左侧桥小脑角区片状低密度影(图1)。MRI:左侧桥小脑角区听神经根部可见大小约4.3 cm×5.9 cm×4.8 cm,囊实性混杂信号影,实性部分T1WI、T2WI呈混杂信号,边界清晰,边缘欠规整,DWI呈混杂信号。增强扫描实性成分呈不均匀明显持续性强化(图2),听神经增粗,左侧内听道扩大。影像诊断为左侧听神经瘤。

    图  1  ISFT患者CT平扫图像
    (a)和(b)轴位CT平扫示左侧桥小脑角区片状低密度影(红箭),周围水肿明显,左侧内听道扩大(蓝箭)。
    Figure  1.  CT plain scan of the patient with ISFT
    图  2  ISFT患者MRI平扫及增强图像
    (a)~(c)MRI平扫示左侧桥小脑角区听神经根部大小约4.3 ㎝×5.9 ㎝×4.8 ㎝囊实性混杂信号影(红箭),实性部分T1WI(a)、T2WI(b)呈混杂信号,边界清晰,边缘欠规整,DWI(c)呈混杂信号,听神经增粗,左侧内听道扩大,邻近脑实质及第四脑室受压推移,瘤周水肿明显,并可见流空血管影;(d)~(g)增强扫描图像,(d)和(e)为轴位,(f)和(g)分别为矢状位和冠状位,肿瘤实性成分呈不均匀明显持续性强化(红箭),窄基底与硬脑膜相连,T2WI低信号区强化明显。
    Figure  2.  MRI plain and contrast-enhanced images of the patient with ISFT

    手术记录:术中见肿瘤色淡红,包膜完整,血供丰富,肿瘤向上方生长到小脑幕孔,压迫脑干,与脑干粘连紧密,并包绕面神经。

    术后病理:脑部梭形细胞肿瘤(图3),免疫组化结果支持孤立性纤维性肿瘤。免疫组化结果:Vim(+),GFAP(-),CD34(+),EMA(-),CK(-),S-100(-),SMA(-),Calponin(-),CD31(-),Bcl-2(+),CD99(少部分+),CD68(散+),Lysozyme(散+),P53(-),Ki-67(+3~5%)。

    图  3  ISFT患者术后病理图像
    (a)和(b)镜下肿瘤细胞呈梭形,稀疏区与密集区交替分布(HE,×200)。
    Figure  3.  Postoperative pathological images of the patient with ISFT

    患者术后1年半门诊复查,左侧面神经麻痹,左侧面部憋胀,余无明显不适。

    孤立性纤维瘤(solitary fibrous tumor,SFT)是一种间叶组织来源的梭形细胞肿瘤,起源于结缔组织中的CD34阳性的树突状细胞,既可发生于胸膜腔,也可发生于全身各部位,如肝脏、腹膜、头颈部等。颅内孤立性纤维瘤由Carneiro等[1]于1996年首先报道,发病率极低,目前国内外文献报道相关病例较少。

    2021年WHO中枢神经系统肿瘤将其划分为间叶性非脑膜上皮肿瘤,分为Ⅰ~Ⅲ 级;核分裂象<5/10 HPF时,若镜下有致密胶原纤维伴相对较低密度的梭形细胞则为Ⅰ级,若梭形肿瘤细胞多而胶原较少,且有“鹿角”状脉管系统则为Ⅱ级,核异型性明显,核分裂象≥5/10个高倍镜视野(high power field,HPF)时,为 Ⅲ 级。该分类取消了2016版“孤立性纤维瘤/血管外皮细胞瘤(hemangiopericytoma,HPC)”的混合术语,并将所谓HPC合并于“孤立性纤维瘤”[2-3]

    孤立性纤维瘤的病因及发病机制尚不明确,Miettinen等[4]认为SFT的发生可能与环境因素或基因变异相关,其可能的机制是包含NAB2-STAT6融合基因的染色体12q13臂内倒置。

    ISFT在人群中的发病率并无显著性别差异,可发生于任何年龄段,以51~60岁年龄组占比最大,本例ISFT为中老年男性,发病年龄与以往文献报道一致。ISFT大多位于小脑幕(16%),其次是大脑额凸、桥小脑角区(CPA)、脑室、大脑镰和颅后窝[5]

    临床表现依据病程和发生的部位不同表现各异,初期可无明显症状,肿瘤体积增大时发生在幕上常有头痛、头晕、恶心、呕吐、癫痫等症状;幕下可有听力下降、脑干受压或行走不稳等症状。本例发生于左侧桥小脑角区,双下肢无力,步态不稳,符合幕下ISFT临床特征。

    CT平扫检查ISFT表现为孤立性、实质性肿块,多呈圆形、类圆形,一般体积较大,边界多光整,境界清楚,无分叶或浅分叶,呈软组织密度,囊变坏死区呈低密度,钙化少见。增强扫描病灶实性部分明显强化,体积较大时可见无强化的囊变坏死区[6]

    MRI检查具有良好的软组织分辨能力,在ISFT诊断中具有明显优势。T1WI多呈等低或等信号,T2WI可表现为高信号、稍高信号或低信号。T2WI上出现高低信号混杂的现象称为“阴阳征”或“黑白征”,是影像诊断ISFT一个相当重要的典型征象,即高信号区反映黏液坏死变性及血管间质细胞堆积,稍高信号区反映肿瘤细胞密集区域,低信号区反映致密胶原纤维[7-8]。动态增强扫描肿瘤多为不均匀持续性强化或进行性延迟强化,T2WI低信号区明显强化[9-10]

    此外,ISFT由于瘤体及瘤周血运丰富,常出现流空血管影,也是典型征象之一。但是部分脑膜瘤也可见血管流空,区别在于ISFT多表现为“蛇形流空效应”,而脑膜瘤以“光芒征”多见,其原因是ISFT主要来源于颈内动脉或椎动脉分支供血,而脑膜瘤主要来源于颈外动脉的脑膜中动脉供血[11-12],因此可以为二者鉴别诊断提供思路。部分ISFT可见“脑膜尾征”,但该征象少见,不具有特异性,只能说明肿瘤与硬脑膜关系密切,并不能对肿瘤来源进行鉴别。

    本例患者出现“阴阳征”与流空血管影,并且肿瘤以窄基底与硬膜相连,呈“脑膜尾征”,符合文献报道。

    尽管颅内孤立性纤维瘤患者的MRI表现具有相对特异性,但是未出现“阴阳征”等典型表现时较难做出明确诊断,确诊依赖于病理及免疫组织化学检查。ISFT病理主要表现为梭形细胞呈束状或不规则排列在透明样病变血管周围,伴有宽大的胶原纤维[13]。免疫组化检查常表现为CD34(+)、Bcl-2(+)和Vimentin(+);EMA(-)和S-100(-)[14],其中CD34可作为特异性免疫标志物之一,本例患者免疫组化结果与文献一致,符合颅内孤立性纤维瘤诊断。

    随着对SFT的深入研究,有学者发现STAT6诊断SFT有高度敏感性和特异性[15],STAT6与CD34等传统标记物联合诊断SFT可能成为新趋势。

    ISFT在影像学上主要与脑膜瘤、神经鞘瘤和转移瘤等鉴别。①脑膜瘤:起源于蛛网膜帽状细胞,多呈圆形或类圆形,CT平扫肿瘤多为均匀的略高密度,钙化多见,相邻颅骨可见增生,增强扫描肿瘤呈均匀一致的显著强化,边缘锐利;在T1WI上多数为等信号,少数低信号,T2WI可为高、等或低信号,增强扫描明显均匀强化并有“脑膜尾征”。而ISFT信号多不均匀,稍高信号内可见小片状低信号,不均匀持续性强化或进行性延迟强化;相邻颅骨可有侵蚀,增生少见。②神经鞘瘤:ISFT发生于桥小脑角区时需与听神经鞘瘤鉴别,后者可见特征性桥小脑角区“冰激凌征”,与周围组织分界清楚,囊变坏死多见,多呈不均匀T1WI低、T2WI高信号,增强扫描实性部分明显强化,较早出现颅神经功能缺损症状。本例患者肿瘤发生于桥小脑角区,影像可见听神经增粗、内听道扩大等表现,故术前误诊为听神经瘤。

    综上所述,颅内孤立性纤维瘤是一种临床罕见的中枢神经系统肿瘤,当瘤内出现“阴阳征”或“黑白征”、T2WI低信号区明显强化及流空血管影等时应考虑诊断ISFT,最终确诊需病理及免疫组织化学检查。

  • 图  1   CT盆腔扫描各相关图像质量客观参数的统计学比较

    注:ns(not significant)无统计学差异;* P < 0.05;**P < 0.01;***P < 0.001。

    Figure  1.   Statistical comparison of the objective parameters of relevant image quality in CT pelvic scans

    图  2   AODM组和BATCM组受试者不同方位管电流数值的统计学比较

    注:ns(not significant)无统计学差异;* P < 0.05;** P < 0.01;*** P < 0.001。

    Figure  2.   Statistical comparison of current values of different bearing tubes in AODM and BATCM groups

    图  3   AODM组、BATCM组、CLOW组 重建图像整体图像等级对比

    Figure  3.   Image grade comparison of reconstructed images in AODM, BATCM, and CLOW groups

    图  4   AODM组、BATCM组、CLOW组不同重建方式下的图像

    注:窗宽400 HU,窗位40 HU。

    Figure  4.   Images under different reconstruction methods in the AODM, BATCM, and CLOW groups

    图  5   前列腺中心层面运用ODM技术管电流强度各区域拟合示意图

    Figure  5.   Schematic of each area of tube current intensity using ODM at the prostate center level

    表  1   三组受试者的一般资料比较 ($ \bar x \pm s $

    Table  1   Comparison of the general data of the three groups ($ \bar x \pm s $

    一般资料 AODM BATCM CLOW F P
    年龄(岁)    33.70±5.02 33.62±3.82 33.24±6.64 0.108 0.898
    身高(cm)    170.00±4.03 169.48±3.68 170.14±3.99 0.396 0.693
    体重(kg)    75.54±4.96 74.24±5.18 75.42±4.48 1.083 0.341
    体重指数(kg/m2 26.13±1.24 25.82±1.21 26.05±0.98 0.933 0.396
    下载: 导出CSV

    表  2   图像客观质量SD前列腺、SD臀大肌、SNR前列腺、SNR臀大肌比较$ \bar x \pm s $

    Table  2   Image objective quality comparison of SD prostate, SD gluteus, SNR prostate, and SNR gluteus$ \bar x \pm s $

    观察指标SD前列腺SD臀大肌SNR前列腺SNR臀大肌
    AODM23.09±2.0718.86±2.331.25±0.162.11±0.22
    BATCM17.40±1.8919.24±1.811.80±0.232.10±0.23
    CLOW20.39±2.0223.24±2.791.54±0.171.48±0.17
    F101.97953.420106.538155.574
    P0.0000.0000.0000.000
    P A-B0.0000.4120.0000.798
    P B-C0.0000.0000.0000.000
    P A-C0.0000.0000.0000.000
    下载: 导出CSV

    表  3   盆腔CT扫描前列腺中心层面不同方位管电流及辐射剂量指标比较 ($ \bar x \pm s $

    Table  3   Comparison of Tube mA and radiation dose in different azimuth tubes at central level of pelvic CT scan ($ \bar x \pm s $

    观察指标 管电流(mA) EDOS
    (mSv)
    ED
    (mSv)
    A L P R
    AODM组(n=50) 230.34±28.55 325.50±38.36 302.68±36.10 325.80±38.01 0.99±0.18 10.76±1.54
    BATCM组(n=50) 299.84±32.54 321.24±36.00 299.84±32.54 321.24±36.00 1.26±0.24 11.89±1.61
    CLOW组(n=50) 300.16±1.81 300.16±1.81 300.16±1.81 300.16±1.81 1.33±0.31 8.17±0.86
    F 129.251 9.966 0.153 10.227 25.651 95.969
    P 0.000 0.000 0.858 0.000 0.000 0.000
    P A-B 0.000 0.485 0.614 0.452 0.000 0.001
    P B-C 0.949 0.001 0.955 0.001 0.291 0.000
    P A-C 0.000 0.000 0.654 0.000 0.000 0.000
    下载: 导出CSV

    表  4   横轴位AODM组、BATCM组、CLOW组图像质量评分(%)

    Table  4   Image quality scores for Axis position AODM, BATCM, and CLOW (%)

    分组 评分
    5分(%) 4分(%) 3分(%) 2分(%) 1分(%)
    AODM 16(32%) 25(50%) 6(12%) 2(4%) 1(2%)
    BATCM 17(34%) 26(52%) 5(10%) 2(4%) 0(0%)
    CLOW 5(10%) 14(28%) 18(36%) 9(18%) 4(8%)
    x2 34.658
    P 0.000
    P A-B 0.666
    P B-C 0.000
    P A-C 0.000
    下载: 导出CSV

    表  5   冠状位AODM组、BATCM组、CLOW组图像质量评分(%)

    Table  5   Image quality scores for Coronal position AODM, BATCM, and CLOW (%)

    分组 评分
    5分(%) 4分(%) 3分(%) 2分(%) 1分(%)
    AODM 16(32%) 25(50%) 4(8%) 2(4%) 3(6%)
    BATCM 17(34%) 23(46%) 5(10%) 3(6%) 2(4%)
    CLOW 5(10%) 14(28%) 18(36%) 9(18%) 4(8%)
    x2 30.688
    P 0.000
    P A-B 0.949
    P B-C 0.000
    P A-C 0.000
    下载: 导出CSV
  • [1]

    DALAH Z E, GRAZYNA W, BASTAKI A M U, et al. Impact of head CT organ dose modulation on lens dose and image quality [J]. Radiation Physics and Chemistry, 2024, 223 111895-111895. DOI:10.1016/ J.RADPHYSCHEM.2024.111895.

    [2]

    MATSUBARA K, KOSHIDA K, NOTO K, et al. A head phantom study for intraocular dose evaluation of 64-slice multidetector CT examination in patients with suspected cranial trauma [J]. European Journal of Radiology, 2010, 79 (2): 283-287. DOI: 10.1016/j.ejrad.2010.02.002.

    [3]

    PONDARD S, DESPORT C, MUNIER M, et al. Multicentric characterization of organ-based tube current modulation in head computed tomography: A dosimetric and image quality study. [J]. Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics (AIFB), 2024, 122 103389-103389. DOI: 10.1016/J.EJMP.2024.103389.

    [4]

    RAMOS G M S, ALTUVE M . Automatic segmentation of prostate and organs at risk in CT images using an encoder–decoder structure based on residual neural network [J]. Biomedical Signal Processing and Control, 2025, 101 107234-107234. DOI: 10.1016/J.BSPC.2024.107234.

    [5] 吴柯薇, 钟朝辉, 王振常, 等. 器官剂量调制技术在头颅CT平扫中的应用[J]. 中国介入影像与治疗学, 2019, 16(08): 491-494. DOI: 10.13929/j.1672-8475.201904002.

    WU K W, ZHONG Z H, WANG Z C, et al. Application of organ dose modulation in plain head CT[J]. Chinese Journal of Interventional Imaging and Therapy, 2019, 16(08): 491-494. DOI: 10.13929/j.1672-8475.201904002.

    [6] 倪晓龙, 周凤云, 施政, 等. 基于剂量模拟人的腹部CT扫描辐射剂量分布研究[J]. CT理论与应用研究, 2024, 33(06): 808-814. DOI: 10.15953/j.ctta.2024.087.

    NI X L, ZHOU F Y, SHI Z, et al. Radiation dose distribution study of abdominal CT scans based on dose simulated human[J]. CT Theory and Applications, 2024, 33(06): 808-814. DOI: 10.15953/j.ctta.2024.087.

    [7] 张彪, 刘涛, 胡奎, 等. 器官剂量调制技术在胸腹盆CT联扫中降低器官剂量的模体研究[J]. 临床放射学杂志, 2021, 40(12): 2386-2390. DOI: 10.13929/j.1672-8475.201904002.

    ZHANG B, LIU T, HU K, et al. A phantom study of organ dose reduction in thorac-abdominal pelvic CT intra-scan scan[J]. Journal of Clinical Radiology, 2021, 40(12): 2386-2390. DOI: 10.13929/j.1672-8475.201904002.

    [8]

    FUJII K, NOMURA K, MURAMATSU Y, et al. Correlation analysis of organ doses determined by Monte Carlo simulation with dose metrics for patients undergoing chest-abdomen-pelvis CT examinations [J]. Physica Medica, 2020, 77 1-9. DOI: 10.1016/j.ejmp.2020.07.016.

    [9] 温德英, 杨杰尹, 汪琴, 等. 深度学习重建算法在上腹部CT成像中的应用[J]. CT理论与应用研究, 2022, 31(03): 329-336. DOI: 10.15953/j.ctta.2021.005.

    WEN D Y, YANG J Y, WANG Q, et al. Application of a deep learning reconstruction algorithm in CT imaging of the upper abdomen[J]. CT Theory and Applications, 2022, 31(03): 329-336. DOI: 10.15953/j.ctta.2021.005.

    [10]

    EFFENEY B, PULLAR A, BURBERY J, et al. Dose to organs at risk for total body irradiation: Single-institution data using the modulated arc total body irradiation technique. [J]. Pediatric blood & cancer, 2024, 71 (9): e31164. DOI: 10.1002/PBC.31164.

    [11] 王晓庆, 姜荣, 林思圆, 等. 眼部CT扫描应用器官剂量调制技术的可行性研究[J]. 中国医学装备, 2024, 21(01): 40-45. DOI: 10.3969/j.issn.1672-8270.2024.01.008.

    WANG X Q, JIANG R, LIN S Y, et al. Feasibility study of applying the organ dose modulation technique for ocular CT scanning[J]. CHINA MEDICAL EQUIPMENT, 2024, 21(01): 40-45. DOI: 10.3969/j.issn.1672-8270.2024.01.008.

    [12]

    CYNTHIA M, M D B, MARYAM B, et al. Use of Water Equivalent Diameter for Calculating Patient Size and Size-Specific Dose Estimates (SSDE) in CT: The Report of AAPM Task Group 220. [J]. AAPM report, 2014, 2014 6-23.

    [13]

    WONG M Y, KOH Y W C, LEW S K, et al. Deformable anthropomorphic pelvis phantom for dose accumulation verification. [J]. Physics in medicine and biology, 2024, 69 (12). DOI: 10.1088/1361-6560/AD52E4.

    [14] 来守永, 丁金立, 王迪. 器官剂量调制技术降低肺结核病人胸部CT平扫辐射剂量探讨[J]. 生物医学工程与临床, 2018, 22(02): 179-182. DOI: 10.13339/j.cnki.sglc.20180313.012.

    LAI S Y, DING J L, WANG D. Study of radiation dose reduction by chest CT in tuberculosis patients[J]. Biomedical Engineering and Clinical Medicine, 2018, 22(02): 179-182. DOI: 10.13339/j.cnki.sglc.20180313.012. (in Chinese).

    [15] 张永县, 牛延涛, 刘丹丹, 等. 管电压联合器官剂量调制技术对胸部CT辐射剂量和图像质量影响的模体研究[J]. 中华放射医学与防护杂志, 2019, 39(7): 529-533. DOI: 10.3760/cma.j.issn.0254-5098.2019.07.009.

    ZHANG Y X, NIU Y T, LIU D D, et al. A phantom study on the effect of radiation dose and image quality on chest CT[J]. Chinese Journal of Radiological Medicine and Protection, 2019, 39(7): 529-533. DOI: 10.3760/cma.j.issn.0254-5098.2019.07.009.

    [16]

    PADOLE A, KHAWAJA A D R, Otrakji A, et al. Comparison of Measured and Estimated CT Organ Doses for Modulated and Fixed Tube Current. [J]. Academic Radiology, 2016, 23(5): 634-642. DOI: 10.1016/j.acra.2015.12.008.

    [17] 原媛, 钟朝辉, 王振常, 等. 器官剂量调制技术在头颈CTA中对辐射敏感器官的照射强度和图像质量的影响[J]. 临床和实验医学杂志, 2019, 18(06): 645-649. DOI: 10.3969/j.issn.1671-4695.2019.06.026.

    YUAN Y, ZHONG Z H, WANG Z C, et al. The effect of organ dose modulation techniques on the irradiation intensity and image quality of radiation-sensitive organs in head and neck CTA[J]. Journal of Clinical and Experimental Medicine, 2019, 18(06): 645-649. DOI: 10.3969/j.issn.1671-4695.2019.06.026.

    [18]

    INOUE Y, ITOH H, KOIZUMI K, et al. Effects of organ dose modulation applied to a part of the scan range on radiation dose in computed tomography of the body. [J]. Journal of radiological protection : official journal of the Society for Radiological Protection, 2024, 44 (3): 031509-031509. DOI: 10.1088/1361-6498/AD6D76.

  • 期刊类型引用(1)

    1. 杨庆东,彭泱泱,李绿洲. 腹壁侵袭性纤维瘤误诊为子宫肌瘤1例及文献复习. 中国当代医药. 2025(09): 138-142 . 百度学术

    其他类型引用(0)

图(5)  /  表(5)
计量
  • 文章访问数:  24
  • HTML全文浏览量:  3
  • PDF下载量:  3
  • 被引次数: 1
出版历程
  • 收稿日期:  2024-12-14
  • 修回日期:  2025-01-19
  • 录用日期:  2025-01-23
  • 网络出版日期:  2025-03-05

目录

/

返回文章
返回
x 关闭 永久关闭