Direct Surface-wave Tomography from Ambient Noise in the Shanxi Rift Zone and Adjacent Areas
-
摘要:
山西断陷带是世界上最活跃的新生代大陆裂谷之一,获得该地区地壳精细三维S波速度结构有助于了解大陆裂谷的形成机制。本研究利用2021年1月至2022年12月期间山西、内蒙、河北、河南和陕西等地布设的113个省级固定台站记录的连续波形数据,提取5~40 s周期范围共
4951 条高质量瑞利波相速度频散曲线,采用面波直接反演成像法,获得山西断陷带及其周边地区地壳0~40 km深度的三维S波速度结构。结果表明:5 km深度处的S波速度结构与地表断陷带分布和沉积层厚度存在一定相关性,断陷带整体呈低速异常特征,两侧隆起区为高速异常;随着深度的增加,低速异常区域有所减少,且低速异常从地表一直延伸至15 km深度左右;从25 km深度开始,山西断陷带中南部的太原盆地、临汾盆地和运城盆地由上地壳的低速异常转为下地壳的高速异常,并持续延伸至上地幔顶部,可能为盆地拉张之前第三纪早期的玄武岩岩浆底侵冷却所致;大同火山区的低速异常从上地幔顶部持续延伸至地壳20 km深度左右,并由西向东转移,较清晰地揭示出大同火山下方的岩浆上涌通道;北纬38° 以北大面积的低速异常推测可能为新生代以来大同火山大量的火山活动引起地壳升温导致部分熔融形成。本研究获得的研究区地壳三维高分辨率S波速度结构为进一步理解大陆裂谷的形成机制提供了新的地震学证据。Abstract:The Shanxi rift zone is one of the most active continental rift zones in the world. Obtaining a fine three-dimensionalS-wave velocity structure of the crust in this region helps understand the formation mechanism of continental rifts. In this study, continuous waveform data recorded at 113 fixed provincial stations deployed in Shanxi, Inner Mongolia, Hebei, Henan, and Shaanxi between January 2021 and December 2022 were utilized. A total of
4951 high-quality Rayleigh wave phase velocity dispersion curves in the 5~40 s period range were extracted. Using the direct surface wave imaging method, a three-dimensional S-wave velocity structure of the crust in the Shanxi rift zone and surrounding areas at depths of 0~40 km was obtained. The results show that the S-wave velocity structure at a depth of 5 km correlates with the distribution of surface fault zones and thickness of the sedimentary layers. Rift zones generally exhibit low-velocity anomalies with high-velocity anomalies on both sides of the uplift areas. As depth increases, the low-velocity anomaly gradually decreases, with low-velocity zones extending from the surface to approximately 15 km depth. At a depth of 25 km, the low-velocity anomalies in the central and southern parts of the Shanxi rift zone, including the Taiyuan, Linfen, and Yuncheng basins, transitioned from the upper crust to high-velocity anomalies in the lower crust, extending to the top of the upper mantle. This may have been caused by cooling of the basaltic magma intruding beneath the basins during the early Tertiary period before rifting. In the Datong volcanic region, the low-velocity anomaly extends from the top of the upper mantle to approximately 20 km depth in the crust and shifts from west to east, clearly revealing the magma upwelling pathway beneath Datong. A large low-velocity anomaly north of 38°N was inferred to have been caused by crustal heating and partial melting due to extensive volcanic activity in the Datong volcanic region since the Neogene. The high-resolution three-dimensional S-wave velocity structure of the crust obtained in this study provides valuable insights into the formation mechanisms of continental rifts. -
-
图 1 山西断陷带及其周边区域地质构造
注:(a)为山西断陷带周边的主要地质构造单元;(b)为山西断陷带内部的主要地质构造。其中,(a)中的黑色虚线框为本研究的研究区域,黑色线段代表地块边界,红色三角形代表大同火山;(b)中黑色线段代表断层,蓝色圆圈代表该区域历史上发生过的5~8级地震,其余符号与图(a)相同。YSOB,阴山−燕山造山带;HTB,河套盆地;Ordos Block,鄂尔多斯块体;FWB,汾渭盆地;QDOB,秦岭−大别造山带;Shanxi rift zone,山西断陷带;HCB,华北盆地;DTV,大同火山;DTB,大同盆地;XDB,忻定盆地;TYB,太原盆地;LFB,临汾盆地;YCB,运城盆地;Lüliang OB,吕梁山造山带;Taihang OB,太行山造山带;SLG,石岭关隆起;LS,灵石隆起。
Figure 1. Geological structures of the Shanxi rift zone and surrounding areas
图 3 在5~40 s周期范围内台站ANZ(如图2中的白色三角所示)与所有台站的噪声互相关函数。在正负延迟中均能清楚地看到一致的瑞利波信号
Figure 3. The noise cross-correlation functions between station ANZ (as indicated by the white triangle in Fig.2) and all other stations in the 5~40 s period range. Consistent Rayleigh wave signals can be clearly observed in both positive and negative delays
图 8 (a)S波初始模型(红线)和最终模型(蓝线)对比图,(b)不同周期Rayleigh波相速度平均观测频散曲线(黑色实线)、初始模型拟合的频散曲线(红色虚线)和最终模型拟合的频散曲线(蓝色虚线)对比图
Figure 8. (a) Comparison of the initial S-wave model (red line) and final model (blue line). (b) Comparison of the average observed Rayleigh wave phase velocity dispersion curves (black solid line), dispersion curve fitted by the initial model (red dashed line), and dispersion curve fitted by the final model (blue dashed line) for different periods
图 13 不同深度的S波速度成像结果图
注:DTV,大同火山;XZ,忻州;SLG,石岭关隆起;TY,太原;LS,灵石隆起;LF,临汾;YC,运城。不同深度的平均速度见在图件上部。色标位于图底。其余符号标注与图1相同。
Figure 13. Images of S-wave velocities at different depths
-
[1] KEAREY P, KLEPEIS K A, VINE F J. Global tec-tonics[M]. 2009, John Wiley & Sons.
[2] ZHANG Y Q, MA Y S, YANG N, et al. Cenozoic extensional stress evolution in North China[J]. Journal of Geodynamics, 2003, 36(5): 591-613. DOI: 10.1016/j.jog.2003.08.001.
[3] XU X W, MA X Y. Geodynamics of the Shanxi rift system[J]. Tectonophysics, 1992, 208(1/3): 325-340.
[4] MOLNAR P, TAPPONNIER P. Cenozoic Tectonics of Asia: Effects of a Continental Collision: Features of recent continental tectonics in Asia can be interpreted as results of the India-Eurasia collision[J]. science, 1975, 189(4201): 419-426. DOI: 10.1126/science.189.4201.419.
[5] PELTZER G, TAPPONNIER P, ZHANG Z T, et al. Neogene and quaternary faulting in and along the qinling Shan[J]. Nature, 1985, 317(6037): 500-505. DOI: 10.1038/317500a0.
[6] SHI W, CEN M, CHEN L, et al. Evolution of the late cenozoic tectonic stress regime in the Shanxi Rift, central North China Plate inferred from new fault kinematic analysis[J]. Journal of Asian Earth Sciences, 2015, 114: 54-72. DOI: 10.1016/j.jseaes.2015.04.044.
[7] YIN A. Cenozoic tectonic evolution of Asia: A preliminary synthesis[J]. Tectonophysics, 2010, 488(1/4): 293-325.
[8] ZHANG Y Q, VERGELY P, MERCIER J. Active faulting in and along the Qinling Range (China) inferred from SPOT imagery analysis and extrusion tectonics of south China[J]. Tectonophysics, 1995, 243(1/2): 69-95.
[9] ZHANG Y Q, MERCIER J L, VERGELY P. Extension in the graben systems around the Ordos (China), and its contribution to the extrusion tectonics of south China with respect to Gobi-Mongolia[J]. Tectonophysics, 1998, 285(1/2): 41-75.
[10] SHEN Z K, ZHAO C, YIN A, et al. Contemporary crustal deformation in east Asia constrained by Global Positioning System measurements[J]. Journal of Geophysical Research: Solid Earth, 2000, 105(B3): 5721-5734. DOI: 10.1029/1999JB900391.
[11] 韩竹军, 徐杰, 冉勇康, 等. 华北地区活动地块与强震活动[J]. 中国科学: D辑, 2003, 33(B04): 108-118. HAN Z J, XU J, RAN Y K, et al. Active blocks and strong seismic activity in North China region[J]. Science in China (Series D), 2003, 33(B04): 108-118. (in Chinese).
[12] 邢作云, 赵斌, 涂美义, 等. 汾渭裂谷系与造山带耦合关系及其形成机制研究[J]. 地学前缘, 2005, 12(2): 247-262. DOI: 10.3321/j.issn:1005-2321.2005.02.027. XING Z Y, ZHAO B, TU M Y, et al. The formation of the Fenwei rift valley[J]. Earth Science Frontiers, 2005, 12(2): 247-262. DOI: 10.3321/j.issn:1005-2321.2005.02.027. (in Chinese).
[13] 王椿镛, 吴庆举, 段永红, 等. 华北地壳上地幔结构及其大地震深部构造成因[J]. 中国科学: 地球科学, 2017, 47(6): 684-719. WANG C Y, WU Q J, DUAN Y H, et al. Crustaland upper mantle structure and deep tectonic genesis of large earthquakes in North China[J]. Science China Earth Sciences, 2017, 60: 821-857. (in Chinese).
[14] 李虎侯, 孙建中. 用热释光年龄研究大同火山活动的时代[J]. 中国科学: B辑, 1984, 7. LI H H, SUN J Z. Using thermoluminescence age to study the era of Datong volcanic activity[J]. Science in China (Ser B), 1984, 14(7): 637-644. (in Chinese).
[15] ZHAO H, LIU Z, WANG C M, et al. Luminescence dating of volcanic eruptions in Datong, northern China[J]. Quaternary Geochronology, 2015, 30: 357-362. DOI: 10.1016/j.quageo.2015.04.012.
[16] HUANG J L, ZHAO D P. High‐resolution mantle tomography of China and surrounding regions[J]. Journal of Geophysical Research: Solid Earth, 2006, 111(B9).
[17] LI S, GUO Z, CHEN Y J, et al. Lithospheric structure of the northern Ordos from ambient noise and teleseismic surface wave tomography[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(8): 6940-6957. DOI: 10.1029/2017JB015256.
[18] LEI J S. Upper-mantle tomography and dynamics beneath the North China Craton[J]. Journal of Geophysical Research: Solid Earth, 2012, 117(B6).
[19] 潘纪顺, 李朋辉, 段永红, 等. 华北克拉通中西部地区的地壳结构研究[J]. 地震地质, 2021, 43(5): 1269-1291. PAN J S, LI P H, DUAN Y H, et al. Study on the crustal structure of the central and western part of the North China craton[J]. Seismology and Geology, 2021, 43(5): 1269-1291. (in Chinese).
[20] CAI Y, WU J, RIETBROCK A, et al. S wave velocity structure of the crust and upper mantle beneath Shanxi rift, central North China Craton and its tectonic implications[J]. Tectonics, 2021, 40(4): e2020TC006239. DOI: 10.1029/2020TC006239.
[21] 张娜, 黄金刚, 魏越超, 等. 山西断陷带南部三维P波速度结构及地震分布特征[J]. 地质科学, 2021, 56(4): 1267-1278. DOI: 10.12017/dzkx.2021.069. ZHANG N, HUANG J G, WEI Y C, et al. Three dimensional P-wave velocity structure and seismic distribution characteristics in southern Shanxi fault rift zone[J]. Chinese Journal of Geology, 2021, 56(4): 1267-1278. DOI: 10.12017/dzkx.2021.069. (in Chinese).
[22] ZHANG H, HUANG Q, ZHAO G, et al. Three-dimensional conductivity model of crust and uppermost mantle at the northern Trans North China Orogen: Evidence for a mantle source of Datong volcanoes[J]. Earth and Planetary Science Letters, 2016, 453: 182-192. DOI: 10.1016/j.jpgl.2016.08.025.
[23] 宋晓燕, 雷建设. 2013年内蒙古通辽MS5.3地震震源区地壳速度结构与孕震环境[J]. 地球物理学报, 2022, 65(10): 3912-3929. SONG X Y, LEI J S. Crustal velocity structure and seismogenic environments in the source areas of the 2013 Tongliao, Inner Mongolia, MS5.3 earthquake[J]. Chinese Journal of Geophysics. 2022, 65(10): 3912-3929. (in Chinese).
[24] 杨宇, 雷建设, 张广伟, 等. 前郭MS5.8和松原MS5.7地震震源区地壳速度结构与孕震环境[J]. 地球物理学报, 2019, 62(11): 4259-4278. YANG Y, LEI J S, ZHANG G W, et al. Crustal velocity structure and seismogenic environments in the source areas of the Qianguo MS5.8 and Songyuan MS5.7earthquakes[J]. Chinese Journal of Geophysics. 2019, 62(11): 4259-4278. (in Chinese).
[25] YAO H J, ROBERT D, MAARTEN V. Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis—I. Phase velocity maps[J]. Geophys Journal International, 2006, 166: 732-744. DOI: 10.1111/j.1365-246X.2006.03028.x.
[26] YAO H J, ROBERT D, MAARTEN V. Surface wave array tomography in SE Tibet from ambient seismic noise and two-station analysis-II. Crustal and upper-mantle structure[J]. Geophysical Journal International, 2008, 173(1): 205-219. DOI: 10.1111/j.1365-246X.2007.03696.x.
[27] 李伦, 蔡晨, 付媛媛, 等. 多种面波层析成像方法及其在青藏高原的应用与对比[J]. 地球与行星物理论评(中英文), 2023, 54(2): 174-196. DOI: 10.19975/j.dqyxx.2022-019. LI L, CAI C, FU Y Y, et al. Multiple surface wave tomography methods and their applications to the Tibetan Plateau[J]. Reviews of Geophysics and Planetary Physics, 2023, 54(2): 174-196. DOI: 10.19975/j.dqyxx.2022-019. (in Chinese).
[28] 宋美琴, 何正勤, 郑勇, 等. 山西地区面波相速度分布图像[J]. 地球物理学进展, 2013, 28(4): 1836-1848. SONG M Q, HE Z Q, ZHENG Y, et al. Rayleigh-wave phase velocity distribution in Shanxi region[J]. Progress in Geophys. 2013, 28(4): 1836-1848. (in Chinese).
[29] 周铭, 徐朝繁, 耿伟, 等. 山西地区地壳S波速度结构[J]. 大地测量与地球动力学, 2016, 36(10): 912-917. ZHOU M, XU C F, GENG W, et al. The Crustal S-wave velocity structure of Shanxi region[J]. Journal of Geodesy and Geodynamincs, 2016, 36(10): 912-917. (in Chinese).
[30] 侯爵, 潘佳铁, 李永华, 等. 华北克拉通中西部地壳S波速度结构及其地质意义[J]. 地球物理学报, 2023, 66(5): 1960-1975. DOI: 10.6038/cjg2022Q0287. HOU J, PAN J T, LI Y H, et al. Crustal S-wave velocity structure in the western and central North China Craton and its geological significance[J]. Chinese Journal of Geophysics, 2023, 66(5): 1960-1975. DOI: 10.6038/cjg2022Q0287. (in Chinese).
[31] 王霞, 宋美琴, 郑勇, 等. 山西及邻区壳幔速度图像特征及其构造意义[J]. 地震地质, 2019, 41(1): 119-136. DOI: 10.3969/j.issn.0253-4967.2019.01.008. WANG X, SONG M Q, ZHENG Y, et al. Velocity characteristics of Shanxi and adjacent area and its Tectonic significance[J]. Seismology and Geology, 2019, 41(1): 119-136. DOI: 10.3969/j.issn.0253-4967.2019.01.008. (in Chinese).
[32] 吴昊昱. 基于背景噪声成像技术的山西地壳结构及强震孕震环境研究[D]. 太原: 太原理工大学, 2017. WU H Y. Research on the crustal structure and seismogenic environment of strong earthquake in Shanxi Province based on background noise[D]. Taiyuan: Taiyuan University of Technology, 2017. (in Chinese).
[33] 窦立婷, 姚华建, 房立华, 等. 山西断陷带地区高分辨率地壳速度结构及其构造演化意义[J]. 中国科学: 地球科学, 2021, 51(5): 709-724. DOU L T, YAO H J, FANG L H, et al. High-resolution crustal velocity structure in the Shanxi rift zone and its tectonic implications[J]. Science China Earth Sciences, 2021, 51(5): 709-724. (in Chinese).
[34] FANG H J, YAO H J, ZHANG H J, et al. Direct inversion of surface wave dispersion for three-dimensional shallow crustal structure based on ray tracing: Methodology and application[J]. Geophysical Journal International, 2015, 201: 1256-1263.
[35] BENSEN G D, RITZWOLLWE M H, BARMIN M P, et al. Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements[J]. Geophysical Journal International, 2007, 169(3): 1239-1260. DOI: 10.1111/j.1365-246X.2007.03374.x.
[36] SHAPIRO N M, CAMPILLO M. Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise[J]. Geophysical Research Letters, 2004, 31(7).
[37] YAO H J, XU G M, XIAO X, et al. A quick tracing method based on image analysis technique for the determination of dual stations phase velocities dispersion curve of surface wave[J]. Seismological and Geomagnetic Observation and Research, 2004, 25(1): 1-8.
[38] PENG J, HUANG J, LIU Z, et al. Constraints on S-wave velocity structures of the lithosphere in mainland China from broadband ambient noise tomography[J]. Physics of the Earth and Planetary Interiors, 2020, 299: 106406. DOI: 10.1016/j.pepi.2019.106406.
[39] SHEARER P M. Introduction to seismology[M]. Cambridge University Press. 2004.
[40] XU Y G, MA J L, FREY F A, et al. Role of lithosphere–asthenosphere interaction in the genesis of Quaternary alkali and tholeiitic basalts from Datong, western North China Craton[J]. Chemical Geology, 2005, 224(4): 247-271. DOI: 10.1016/j.chemgeo.2005.08.004.
[41] 唐有彩, 陈永顺, 杨英杰, 等. 华北克拉通中部地区背景噪声成像[J]. 地球物理学报, 2011, 54(8): 2011-2022. DOI: 10.3969/j.issn.0001-5733.2011.08.008. TANG Y C, CHEN Y S, YANG Y J, et al. Ambient noise tomography in North China Craton[J]. Chinese Journal of Geophysics, 2011, 54(8): 2011-2022. DOI: 10.3969/j.issn.0001-5733.2011.08.008. (in Chinese).
[42] 唐有彩, 冯永革, 陈永顺, 等. 山西断陷带地壳结构的接收函数研究[J]. 地球物理学报, 2010, 53(9): 2102-2109. DOI: 10.3969/j.issn.0001-5733.2010.09.010. TANG Y C, FENG Y G, CHEN Y S, et al. Receiver function analysis at Shanxi Rift[J]. Chinese Journal of Geophysics, 2010, 53(9): 2102-2109. DOI: 10.3969/j.issn.0001-5733.2010.09.010. (in Chinese).
[43] TANG Y C, CHEN Y J, ZHOU S Y, et al. Lithosphere structure and thickness beneath the North China craton from joint-inversion of ambient noise and surface wave tomography[J]. Journal of Geophysical Research: Solid Earth, 2013, 118: 2333-2346. DOI: 10.1002/jgrb.50191.
[44] 施程成, 鲁来玉, 王椿镛, 等. 华北克拉通中西部地区瑞利面波噪声层析成像[J]. CT理论与应用研究. 2014, 23(1): 53-64. SHI C C, LU L Y, Wang C Y, et al. Rayleigh-wave tomography based on ambient seismic noise in the Central and Western Blocks of the North China Craton[J]. CT Theory and Applications, 2014, 23(1): 53-64. (in Chinese).
[45] 岑敏, 董树文, 施炜, 等. 大同盆地形成机制的构造研究[J]. 地质论评, 2015, 61(6): 1235-1247. CEN M, DONG S W, SHI W, et al. Structural Analysis on the Formation Mechanism of Datong Basin[J]. Geological Review, 2015, 61(6): 1235-1247. (in Chinese).
[46] ZHANG C, YAO H J, LIU Q Y, et al. Linear array ambient noise adjoint tomography reveals intense crustmantle interactions in North China Craton[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(1): 368-383. DOI: 10.1002/2017JB015019.
[47] AI S, ZHENG Y, HE L, et al. Joint inversion of ambient noise and earthquake data in the Trans-North China Orogen: On-going lithospheric modification and its impact on the Cenozoic continental rifting[J]. Tectonophysics, 2019, 763: 73-85.
[48] 黄翔, 丁志峰, 宁杰远, 等. 基于背景噪声和地震面波联合反演华北克拉通中部岩石圈结构[J]. 地震学报, 2022, 44(4): 539-554. DOI: 10.11939/jass.20210042. HUANG X, DING Z F, NING J Y, et al. Joint inversion of the lithospheric structure of the central North China Craton from ambient noise and seismic surface wave[J]. Acta Seismologica Sinica, 2022, 44(4): 539-554. DOI:10.11939/jass.20210042. (in Chinese).
[49] 黄翔, 丁志峰, 宁杰远, 等. 基于背景噪声研究华北克拉通中部 Rayleigh 波相速度和方位各向异性[J]. 地球物理学报, 2021, 64(8): 2701-2715. DOI: 10.6038/cjg2021O0442. HUANG X, DING Z F, NING J Y, et al. Rayleigh wave phase velocity and azimuthal anisotropy of central North China Craton derived from ambient noise tomography[J]. Chinese Journal of Geophysics, 2021, 64(8): 2701-2715. DOI: 10.6038/cjg2021O0442. (in Chinese).
[50] 郭震, 陈永顺, 殷伟伟. 背景噪声面波与布格重力异常联合反演: 山西断陷带三维地壳结构[J]. 地球物理学报, 2015, 58(3): 821-831. DOI: 10.6038/cjg20150312. GUO Z, CHEN Y S, YIN W W. Three-dimensional crustal model of Shanxi graben from 3D joint inversion of ambient noise surface wave and Bouguer gravity anomalies[J]. Chinese Journal of Geophysics, 2015, 58(3): 821-831. DOI: 10.6038/cjg20150312. (in Chinese).
[51] 裴静娴. 大同地区火山岩流烘烤沉积物的热发光年龄测定[J]. 科学通报, 1981, 26(16): 1003-1005. DOI: 10.1360/csb1981-26-16-1003. PEI J X. Thermoluminescence age determination of volcanic rock flow baked sediments in Datong area[J]. Chinese Science Bulletin, 1981, 26(16): 1003-1005. DOI: 10.1360/csb1981-26-16-1003. (in Chinese).
[52] CHEN S, O'REILLY S Y, ZHOU X, et al. Thermal and petrological structure of the lithosphere beneath Hannuoba, Sino-Korean Craton, China: evidence from xenoliths[J]. Lithos, 2001, 56(4): 267-301. DOI: 10.1016/S0024-4937(00)00065-7.
[53] ZHENG T Y, ZHAO L, ZHU R X. Insight into the geodynamics of cratonic reactivation from seismic analysis of the crust-mantle boundary[J]. Geophysical Research Letters, 2008, 35(8).
[54] ZHENG Y, SHEN W, ZHOU L, et al. Crust and uppermost mantle beneath the North China Craton, northeastern China, and the Sea of Japan from ambient noise tomography[J]. Journal of Geophysical Research: Solid Earth, 2011, 116(B12).
[55] AI S X, ZHENG Y, RIAZ M S, et al. Seismic evidence on different rifting mechanisms in southern and northern segments of the Fenhe-Weihe Rift zone[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(1): 609-630.
[56] 殷伟伟, 雷建设, 黄金刚, 等. 山西断陷带上地幔顶部Pn波速度结构与各向异性成像[J]. 地球物理学报, 2020, 63(12): 4382-4395. YIN W W, LEI J S, HUANG J G, et al. Pn velocity and anisotropic uppermost-mantle tomography in and around the Shanxi rift zone[J]. Chinese Journal of Geophysics, 2020, 63(12): 4382-4395. (in Chinese).
[57] 常利军, 丁志峰, 王椿镛. 华北中西部和青藏高原东北缘上地幔各向异性变形特征[J]. 地球物理学报, 2021, 64(1): 114-130. DOI: 10.6038/cjg2021O0315. CHANG L J, DING Z F, WANG C Y. Upper mantle anisotropy and implications beneath the central and western North China and the NE margin of Tibetan Plateau[J]. Chinese Journal of Geophysics, 2021, 64(1): 114-130. DOI: 10.6038/cjg2021O0315. (in Chinese).
[58] GUO Z, AFONSO J C, QASHQAI M T, et al. Thermochemical structure of the North China Craton from multi-observable probabilistic inversion: Extent and causes of cratonic lithosphere modification[J]. Gondwana Research, 2016, 37: 252-265. DOI: 10.1016/j.gr.2016.07.002.
[59] BAO X, SONG X, XU M, et al. Crust and upper mantle structure of the North China Craton and the NE Tibetan Plateau and its tectonic implications[J]. Earth and Planetary Science Letters, 2013, 369: 129-137.
[60] JIANG M, AI Y, CHEN L, et al. Local modification of the lithosphere beneath the central and western North China Craton: 3-D constraints from Rayleigh wave tomography[J]. Gondwana Research, 2013, 24(3/4): 849-864.
[61] ZHANG P Z, DENG Q D, ZHANG G M, et al. The strong earthquakes mainland and activity blocks[J]. Science China (Ser D), 2003, 33: 12-19.
[62] 张培震, 邓起东, 张国民, 等. 中国大陆的强震活动与活动地块[J]. 中国科学(D辑), 2003, 33(s1): 12-20. DOI: 10.3321/j.issn:1006-9267.2003.z1.002. ZHANG P Z, DENG Q D, ZHANG G M, et al. Strong earthquake activity and active blocks in Chinese mainland[J]. Science in China (Ser D), 2003, 33(s1): 12-20. DOI: 10.3321/j.issn:1006-9267.2003.z1.002. (in Chinese).
[63] 陈凌, 危自根, 程骋. 从华北克拉通中西部结构的区域差异性探讨克拉通破坏[J]. 地学前缘, 2010, 17(1): 212-228. CHEN L, WEI Z G, CHENG C. Significant structural variations in the Central and Western North China craton and its implications for the craton destruction[J]. Earth Science Frontiers, 2010, 17(1): 212-228. (in Chinese).