Turbidite Sandstone Miscible Rock Physical Modeling and Time-lapse Seismic Forward Modeling Analysis
-
摘要:
深水浊积砂岩表现为高孔隙度、高渗透率,对油气生产和二氧化碳封存具有重要意义。在英国北海油田以及北美洲圭亚那油田深水浊积砂岩储层,开展了大量的时移地震开采开发工作。由于浊积砂岩的高孔隙度与低骨架模量特征,他们是开展时移地震的理想储层。较高的孔隙度,导致储层内流体的模量变化会对储层的弹性参数造成较大的影响,在实际油藏开采过程中,尤其是在注入流体的过程中,由于较高的孔隙压力,往往会出现混相的情况,气体会溶解于地层水和石油中进而导致流体的体积模量及密度发生变化。在时移地震剖面上引起干扰。因此,明确流体混相引起的储层弹性参数变化显得尤为重要。构建考虑流体混相的浊积砂岩储层地震岩石物理模型,建立浊积砂岩物性参数(孔隙度、饱和度)、混相流体参数以及地层压力与弹性参数(纵波速度、横波速度)之间的定量关系,为浊积砂岩的地震响应特征分析、储层预测、流体识别及勘探开发提供理论模型与技术支持。
Abstract:Gas injection technology enhances oil recovery by maintaining reservoir pressure and improving displacement efficiency. In deepwater turbidite sandstone reservoirs (characterized by high porosity, permeability, and pore pressure), fluid injection alters the elastic properties through gas dissolution in formation fluids, thereby affecting the accuracy of time-lapse seismic monitoring. This study established a rock physics model linking reservoir parameters (porosity and saturation), fluid mixing effects, and elastic moduli (P/S-wave velocities) in turbidite systems, providing a theoretical foundation for seismic response analysis and fluid identification in offshore exploration, particularly in North Sea and Guyana oilfields.
-
Keywords:
- turbidity sandstone /
- petrophysics /
- fluid miscibility /
- AVO Forward Simulation
-
-
表 1 混相模型参数
Table 1 Mixed-phase model parameters
储层参数 油藏参数 孔隙压力 69 MPa 温度 114℃ 上覆压力 95 MPa 含油饱和度 80% 泥质含量 22% 石油重量 34(API重量) 含水饱和度 20% 气体重量 0.76 孔隙度 23% 盐度 20083 ppm -
[1] 聂南方, 郭智奇, 刘财. 改进的地震AVAZ裂缝弱度反演方法及其在致密砂岩储层中的应用[J]. 地球与行星物理论评(中英文), 2024, 55(3): 358-368. DOI: 10.19975/j.dqyxx.2023-2025. NIE N F, GUO Z Q, LIU C. Application of the improved seismic AVAZ inversion method for fracture characterization of a tight sandstone gas reservoir in the Ordos Basin[J]. Reviews of Geophysics and Planetary Physics, 2024, 55(3): 358-368. DOI: 10.19975/j.dqyxx.2023-2025. (in Chinese).
[2] KULKARNI, MADHAV M. Multiphase mechanisms and fluid dynamics in gas injection enhanced oil recovery processes[M] LSU Doctoral Dissertations. 2005, DOI: 62.10.31390/gradschool_dissertations.62.
[3] SEQUEIRA DL. Compositional Effects on Gas-Oil Interfacial Tension and Miscibility at Reservoir Conditions[D]. Louisiana State University and Agricultural and Mechanical College 2006.
[4] COATS K H. An equation of state compositional model[J]. Society of Petroleum Engineers Journal, 1980, 20(5): 363-376. DOI: 10.2118/8284-PA.
[5] TODD M R, LONGSTAFF W J. The development, testing, and application of a numerical simulator for predicting miscible flood performance[J]. Journal of Petroleum Technology, 1972, 24(7): 874-882 DOI: 10.2118/3484-PA.
[6] SRIVASTAVA N K, Effect of pressure gradient on displacement performance for miscible/near miscible gas flooding[D]. Stanford University, 2004.
[7] 刘玉章, 陈兴隆, 低渗油藏CO_2驱油混相条件的探讨[J]. 石油勘探与开发, 2010, (4): 466-470. LIU Y Z, CHEN X L. Miscible conditions of CO2 flooding technology used in low permeability reserviors[J]. Petroleum Exploration and Development, 2010, 37(4): 466-470. (in Chinese).
[8] 冉新权, 赵继勇, 何永宏, 等, 超低渗透油藏CO_2驱混相范围确定新方法[J]. 西南石油大学学报(自然科学版) 2011, (5): 89-93. RAN X Q, ZHAO J Y, HE Y H, et al. A new method for determining the miscible range of CO₂ flooding in ultra-low permeability reservoirs[J]. Journal of Southwest Petroleum University (Natural Science Edition), 2011, (5): 89-93. (in Chinese).
[9] 吴忠宝, 甘俊奇, 曾倩, 等. 低渗透油藏二氧化碳混相驱油机理数值模拟[J]. 油气地质与采收率 2012, (3): 67-70. WU Z B, GAN J Q, ZENG Q, et al. Numerical simulation of CO₂ miscible flooding mechanism in low permeability reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2012, (3): 67-70. (in Chinese).
[10] AHMADI A M, HASANVAND Z M, SHOKROLAHZADEH S. Technical and economic feasibility study of flue gas injection in an Iranian oil field[J]. Petroleum, 2015, 1(3): 217-222. DOI: 10.1016/j.petlm.2015.07.010.
[11] 王锐, 吕成远, 伦增珉, 等, 低渗透油藏CO_2驱替过程中的混相特征实验研究[J]. 陕西科技大学学报(自然科学版), 2015, 33(3): 105-108. WANG R, LYU C Y, LUN Z M, et al. Experimental study on miscibility characteristics during CO₂ flooding in low permeability reservoirs[J]. Journal of Shaanxi University of Science and Technology (Natural Science Edition), 2015, 33(3): 105-108. (in Chinese).
[12] 袁舟, 廖新维, 赵晓亮, 等. 砂岩油藏CO2驱替过程中溶蚀作用对储层物性的影响[J]. 油气地质与采收率, 2020, 27(5): 97-104. YUAN Z, LIAO X W, ZHAO X L, et al. Sandstone reservoir CO2Effect of dissolution on reservoir physical properties during displacement[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(5): 97-104. (in Chinese).
[13] 朱清源, 吴克柳, 张晟庭, 等. 致密砂岩气藏注CO_2提高天然气采收率微观机理[J]. 天然气工业, 2024, 44(4): 135-145. ZHU Q Y, WU K L, ZHANG S T, et al. Microscopic mechanism of CO2 injection to enhance gas recovery in tight sandstone gas reservoirs[J]. Natural Gas Industry, 2024, 44(4): 135-145. (in Chinese).
[14] 杨勇, 张世明, 曹小朋, 等. 胜利油田CO_2高压混相驱油与封存理论技术及矿场实践[J/OL]. 石油勘探与开发, 2024, 51(5): 1080-1091. YANG Y, ZHANG S M, CAO X P, et al. CO2 high-pressure miscible flooding and storage technology and its application in Shengli Oilfield, East China[J]. Petroleum Exploration and Development, 2024, 51(5): 1080-1091. (in Chinese).
[15] 吕其彪, 孙作兴. 岩石物理模版在储层定量解释中的应用[J]. 地球物理学进展, 2012, 27(2): 610-618. LV Q B, SUN Z X. Application of rockphysics chart to quantitative reservoir interpretation[J]. Progress in Geophysics, 2012, 27(2): 610-618. (in Chinese).
[16] 贾凌云, 李琳, 王千遥, 等. 流体体积模量计算方法研究[J]. 地球物理学进展, 2018, 33(1): 223-227. JIA L Y, LI L, WANG Q Y, et al. Research on calculation methods of fluid bulk modulus[J]. Progress in Geophysics, 2018, 33(1): 223-227. (in Chinese).
[17] 张佳佳, 李宏兵, 刘怀山, 等. 几种岩石骨架模型的适用性研究[J]. 地球物理学进展, 2010, 25(5): 1697-1702. DOI: 10.3969/j.issn.1004-2903.2010.05.024. ZHANG J J, LI H B, LIU H S, et al. Accuracy of dry frame models in the study of rock physics[J]. Progress in Geophysics, 2010, 25(5): 1697-1702. DOI:10.3969/j.issn.1004-2903.2010.05.024. (in Chinese).
[18] Dario Grana, Seismic Reservoir Modeling, Theory, Examples, and Algorithms[M]. 2021.
[19] 马凌波, 张佳佳, 张广智, 等. 基于岩石物理模型的碳酸盐岩物性参数替换方法[J]. CT理论与应用研究(中英文), 2024, 33(3): 273-288. DOI: 10.15953/j.ctta.2023.185. MA L B, ZHANG J J, ZHANG G Z, et al. Carbonate rock physical property parameter substitution method based on rock physics models[J]. CT Theory and Applications, 2024, 33(3): 273-288. DOI: 10.15953/j.ctta.2023.185.
[20] KAMAL I, SALIH M N, MARTYUSHEV A D. Correlations between petroleum reservoir fluid properties and amount of evolved and dissolved natural gas: Case study of transgressive–regressive-sequence sedimentary rocks[J]. Journal of Marine Science and Engineering, 2023, 11(10).
[21] TROYAKOV K V, KAVERZINA A S, RYBIN V V, et al. Effect of undissolved gas on fluid bulk modulus[J]. E3S Web of Conferences, 2024, 471. DOI: 10.1051/e3sconf/202447102019.
[22] AL HAGREY SA, KÖHN D, RABBEL W. Geophysical assessments of renewable gas energy compressed in geologic pore storage reservoirs[J]. Springer Plus, 2014, 3(1): 267. DOI: 10.1186/2193-1801-3-267.
[23] 胡华锋, 张立强, 孙振涛. 衰减岩石物理模型驱动的流体饱和度地震反演方法[J]. 石油地球物理勘探, DOI: 10.13810/j.cnki.issn.1000-7210.20240179. HU H F, ZHANG L Q, SUN Z T. Seismic inversion for fluid saturation based on attenuated rock physics model[J]. Oil Geophysical Prospecting, 2025, 60(2): 474-485 DOI:10.13810/j.cnki.issn.1000-7210.20240179. (in Chinese).
[24] 吴思, 韩波, 纪利祥, 等. 利用叠前AVO反演预测砂岩储层有效压力[J]. 石油地球物理勘探, 2024, 59(5): 1165-1173. DOI: /10.13810/j.cnki.issn.1000-7210.2024.05.020. WU S, HAN B, JI L X, et al. Pre-stack AVO inversion for estimating effective pressure in sandstone reservoirs[J]. Oil Geophysical Prospecting, 24, 59(5): 1165-1173. DOI:10.13810/j.cnki.issn.1000-7210.2024.05.020. (in Chinese).
[25] 桂志鹏, 邵奇奇, 张军华, 等. 2024. 含强屏蔽滩坝砂储层正演模拟分析及描述[J]. 地球物理学进展, 2024, 39(5): 1911-1922. DOI: 10.6038/pg2024HH0357. GUI Z P, SHAO Q Q, ZHANG J H, et al. 2024. Forward modeling analysis and description of beach-bar sand reservoir with strong shielding[J]. Progress in Geophysics, 2024, 39(5): 1911-1922. DOI: 10.6038/pg2024HH0357.
-
期刊类型引用(2)
1. 张科,张春晓. 基于深度残差网络的儿科肺炎辅助诊断算法. 中国医疗设备. 2022(09): 42-46+56 . 百度学术
2. 周丽媛,赵启军,高定国. 基于注意力引导深度纹理特征学习的复杂背景藏药材切片图像识别. 世界科学技术-中医药现代化. 2022(12): 4825-4832 . 百度学术
其他类型引用(5)