ISSN 1004-4140
CN 11-3017/P

CT影像组学术前预测可切除性食管胃结合部腺癌区域淋巴结转移的研究

秦慧琳, 欧静, 苟月芹, 王悦苏, 罗慧, 张小明, 付茂勇, 陈天武

秦慧琳, 欧静, 苟月芹, 等. CT影像组学术前预测可切除性食管胃结合部腺癌区域淋巴结转移的研究[J]. CT理论与应用研究(中英文), 2025, 34(3): 427-438. DOI: 10.15953/j.ctta.2025.060.
引用本文: 秦慧琳, 欧静, 苟月芹, 等. CT影像组学术前预测可切除性食管胃结合部腺癌区域淋巴结转移的研究[J]. CT理论与应用研究(中英文), 2025, 34(3): 427-438. DOI: 10.15953/j.ctta.2025.060.
QIN H L, OU J, GOU Y Q, et al. Computed Tomography Radiomics to Preoperatively Predict Regional Lymph Node Metastasis of Resectable Adenocarcinoma of the Esophagogastric Junction[J]. CT Theory and Applications, 2025, 34(3): 427-438. DOI: 10.15953/j.ctta.2025.060. (in Chinese).
Citation: QIN H L, OU J, GOU Y Q, et al. Computed Tomography Radiomics to Preoperatively Predict Regional Lymph Node Metastasis of Resectable Adenocarcinoma of the Esophagogastric Junction[J]. CT Theory and Applications, 2025, 34(3): 427-438. DOI: 10.15953/j.ctta.2025.060. (in Chinese).

CT影像组学术前预测可切除性食管胃结合部腺癌区域淋巴结转移的研究

基金项目: 

国家自然科学基金(晚期食管鳞状细胞癌免疫检查点抑制剂联合化学治疗后抵抗的多模态磁共振影像组学预测及其机制研究(82271959))。

详细信息
    作者简介:

    秦慧琳,放射影像学专业硕士研究生,主要从事放射影像诊断工作,E-mail:qinhuilin1234@163.com

    通讯作者:

    陈天武✉,医学博士,二级岗教授、博士生导师、学科主任,E-mail:tianwuchen_nsmc@163.com

  • 中图分类号: R 735.1;R 730.4

Computed Tomography Radiomics to Preoperatively Predict Regional Lymph Node Metastasis of Resectable Adenocarcinoma of the Esophagogastric Junction

  • 摘要:

    目的:研发并验证基于可切除性食管胃结合部腺癌(AEG)原发肿瘤及淋巴结(LN)的双区域CT影像组学模型及影像组学(AEG+LN)−临床联合模型,并探讨其术前诊断区域淋巴结状态的可行性。方法:回顾性地收集来自中心1和中心2的270例经术后病理证实为AEG的患者,其中来自中心1的220例患者按7∶3随机分为训练组(n=153)和内部验证组(n=67),来自中心2的50例患者作为外部验证组。经3D Slicer分别对原发肿瘤和LN进行感兴趣区勾画、影像组学特征提取。通过R-studio行单因素分析、LASSO和Logistic回归分析,对提取的影像组学特征进行筛选及降维,分别建立原发肿瘤、LN影像组学模型,并分别计算Radiomics score(RS)。对于临床资料,采用独立样本t检验或Mann-Whitney U检验比较定量资料,用卡方检验或Fisher概率法比较定性资料。最终建立影像组学(AEG+LN)−临床联合模型,采用受试者工作特征曲线下面积(AUC)、DeLong检验等指标评价模型的诊断效能。结果:分别筛选出10个原发肿瘤和4个淋巴结最优的影像组学特征用于建立原发肿瘤和淋巴结影像组学模型。原发肿瘤T分期作为临床特征,联合AEG-RS及LN-RS建立影像组学−临床联合模型。影像组学−临床联合模型、LN及原发肿瘤模型在训练组的AUC分别为0.925、0.857和0.755,在内部验证组的AUC分别为0.897、0.836和0.716,在外部验证组的AUC分别为0.935、0.849和0.706。结论:原发肿瘤影像组学模型术前预测AEG的区域淋巴结状态的诊断效能有限,LN影像组学模型具有更好的诊断效能;AEG-RS与LN-RS联合临床特征的复合模型能进一步提高诊断效能。

    Abstract:

    Objective: To construct and validate computed tomography (CT) radiomics models to preoperatively predict regional lymph node (LN) status of resectable adenocarcinoma of the esophagogastric junction (AEG). Methods: In total, 270 consecutive patients with AEG were enrolled in this study. Of these, 220 patients from Institution A were stratified into training (n=153) and test cohorts (n=67). The remaining 50 patients from Institution B were assigned to the external validation cohort. Within the training cohort, preoperative CT radiomics features extracted from the AEGs and LNs were used to construct the AEG and LN radiomics models, respectively; the radiomics scores (RS) of the AEGs and LNs were integrated with the clinical features to build the combined model. The predictive performances of the individual models were evaluated using the area under the receiver operating characteristic (AUROC) curve. The DeLong test was used to compare the predictive performance of the models. Results: Ten AEG and four LN radiomics features were screened to develop the AEG and LN radiomics models for predicting LN status, respectively. The combined model was developed by integrating AEG-RS and LN-RS with cT-stage and it achieved higher AUROC curve values than the AEG or LN radiomics models, alone, for the training (0.925 vs. 0.755 or 0.857), test (0.897 vs. 0.716 or 0.836), and external validation (0.935 vs. 0.706 or 0.849) cohorts. The DeLong test showed that the predictive performance of the combined model was significantly superior to that of the AEG and LN radiomics models, alone, in the three cohorts (all P <0. 05), and the predictive performance of the LN radiomics model was significantly superior to that of the AEG radiomics model in the three cohorts (all P < 0.05). Conclusion: Based on the radiomics method, the combined model is effective at preoperatively evaluating the regional lymph node status of patients with AEG.

  • 卵巢恶性肿瘤中上皮恶性肿瘤最常见,约占卵巢恶性肿瘤的85%~90%,主要包括浆液性囊腺癌、黏液性囊腺癌、透明细胞癌及子宫内膜样癌等[1]。由于恶性程度较高、发展快,该类肿瘤预后往往不佳[2]。同时因为缺乏特异症状和诊断方法,一般难以早期诊断,约 60%~70% 临床确诊时已属晚期[2-3]

    目前 CT和血清肿瘤标志物CA125、HE4在其术前诊断中作用越来越突出[1],我们通过对156例卵巢上皮肿瘤进行研究,探讨CT联合血清CA125及人附睾蛋白4(human epididymis protein 4,HE4)对卵巢上皮恶性肿瘤的诊断价值。

    对2017年1月至2021年5月间于淄博市博山区医院、淄博市第一医院及上海中医药大学附属龙华医院金山分院诊治的156例卵巢上皮肿瘤进行研究。其中良性72例(浆液性囊腺瘤46例,浆液性乳头状囊腺瘤3例,浆液性腺纤维瘤和囊腺纤维瘤1例,黏液性囊腺瘤19例,良性子宫内膜样肿瘤2例,勃勒纳瘤1例),恶性84例,年龄26~71岁,平均年龄(51±13.5)岁。

    入选标准:卵巢原发上皮肿瘤首次确诊,既往无卵巢肿瘤病史及卵巢手术史;未并发其他肿瘤,无肿瘤病史或放、化疗等治疗史;术后经病理学确诊。按国际妇产科联盟(international federation of gynecology and obstetrics,FIGO)对卵巢上皮恶性肿瘤的分期[4],84例恶性肿瘤中Ⅰ期15例,Ⅱ期21例,Ⅲ 期37例,Ⅳ 期11例。其中浆液性囊腺癌61例、黏液性囊腺癌16例、子宫内膜样腺癌5例、透明细胞癌2例。156例病例为连续收集,入组路线图见图1

    图  1  156例卵巢上皮肿瘤病例入组路线图
    Figure  1.  Enrollment diagram of 156 cases of ovarian epithelial tumors

    全部病例清晨采集空腹静脉血约5 mL,自然抗凝后以3000 r/min离10 min,取上清液采用酶联免疫吸附法测定血清中HE4和CA125水平,检测试剂盒购自北京中杉金桥生物有限公司,具体检测步骤严格按照试剂盒说明书进行操作。

    血清CA125和HE4参考值分别设定为0~35 U/mL和0~72 pmol/L,血清CA125>35 U/mL为阳性,≤35 U/mL为阴性;血清HE4高于72 pmol/L为阳性,≤72 pmol/L为阴性。

    采用GE Light Speed 64排CT及Siemens Definition 64排CT进行检查。层厚5 mm,间隔5 mm,扫描范围从膈上至耻骨联合水平,每例均行平扫及动脉、静脉期增强扫描。采用高压注射器经肘静脉注射非离子对比剂碘海醇(300 mgI/mL)80~100 mL,注射流率3 mL/s,注射对比剂后30 s和55 s后分别行动脉期、静脉期扫描。

    由两位高年资CT医师共同进行诊断,参照周康荣等[4]诊断卵巢上皮性恶性肿瘤标准,根据病变的部位、数目、形态、大小、密度、边界、强化特点、与周围结构的关系及腹、盆腔积液等改变进行诊断及分期。

    根据最终病理诊断结果,对CT、血清CA125、HE4及联合诊断的结果进行统计学分析。采用SPSS 20.0软件,计数资料采用(%)表示,组间比较采用χ${}^2 $检验,P<0.05具有统计学意义。

    血清CA125、HE4水平在卵巢上皮良、恶性肿瘤组中阳性率的比较详见表1,结果显示恶性组血清CA125及HE4阳性率均显著高于良性组。

    表  1  血清CA125、HE4在卵巢上皮良、恶性肿瘤组中阳性率的比较
    Table  1.  Comparison among positive rates of serum CA125 and HE4 in benign and malignant ovarian epithelial tumors
    分组CA125HE4
    恶性肿瘤组(n=84)85.71%(72/84)80.95%(68/84)
    良性肿瘤组(n=72)38.89%(28/72)22.22%(16/72)
    χ${} ^2$36.9453.81
    P0.0000.000
    下载: 导出CSV 
    | 显示表格

    CT、血清CA125、HE4单独及联合应用对卵巢上皮恶性肿瘤的诊断结果比较显示CA125诊断的灵敏度高于HE4,HE4诊断特异度高于CA125,CA125联合HE4诊断的准确率高于CT;CT+CA125+HE4诊断准确率高于单独CT或肿瘤标志物诊断(表2),部分病例CT图像见图2图5

    表  2  CT、血清CA125、HE4单独及联合应用对卵巢上皮恶性肿瘤的诊断结果比较
    Table  2.  Comparison among the diagnostic results of CT, serum CA125, HE4 alone and combination application in epithelial ovarian cancer
    诊断项目 灵敏度/%特异度/%阳性预测值/%阴性预测值/%准确率/%
    CA125     85.71a61.1172.0078.5774.36
    HE4      80.9577.78b80.95b77.7879.49b
    CA125+HE4  90.48c83.33c86.36c88.24c87.18c
    CT      83.3380.5683.3380.5682.05
    CT+CA125+HE495.24d88.89d90.91d94.18d92.31d
    χ2      9.8618.5912.999.9921.30
    P       0.0430.0010.0110.0410.000
     注:a-高于HE4;b-高于CA125;c-高于CA125、HE4及CT;d-高于CA125、HE4、CA125+HE4及CT。
    下载: 导出CSV 
    | 显示表格
    图  2  46岁女性,右侧卵巢黏液性囊腺癌
    Figure  2.  A 46-year-old female, mucinous cystadenocarcinoma in the right ovary
    图  3  70岁女性,右侧卵巢浆液性囊腺癌
    Figure  3.  A 70-year-old female, serous cystadenocarcinoma in the right ovary
    图  4  43岁女性,左侧卵巢透明细胞癌
    Figure  4.  A 43-year-old female,clear cell carcinoma in the left ovarian
    图  5  55岁女性,右侧卵巢子宫内膜样腺癌
    Figure  5.  A 55-year-old female, endometrioid adenocarcinoma in the right ovarian

    卵巢恶性肿瘤致死率居女性生殖系统恶性肿瘤之首[4]。该类肿瘤主要包括上皮细胞来源恶性肿瘤、性索间质来源恶性肿瘤、生殖细胞来源恶性肿瘤及转移性肿瘤,其中绝大多数为上皮细胞来源,以浆液性囊腺癌最为多见,其他尚有黏液性囊腺癌、透明细胞癌及内膜样腺癌、未分化癌等[5-6]。由于恶性肿瘤5年生存率由发病早期的90% 下降至晚期的25%~30%,因而及时确诊并积极治疗是改善预后、延长生存的关键[6-7]

    CA125是一种高分子质量的糖蛋白,作为目前妇科应用最广泛的肿瘤标志物,主要存在于间皮细胞组织、苗勒管上皮、间皮细胞及苗勒管衍生物发生的肿瘤中,如卵巢上皮癌、输卵管癌、子宫内膜癌、宫颈腺癌及间皮细胞癌等[8-9]。约85.0% 的晚期卵巢癌血清CA125升高,手术后和化疗奏效时水平下降,肿瘤复发会再度升高,因此广泛应用于卵巢上皮恶性肿瘤的临床诊断、疗效观察与监测[10-11]。其不足之处在于特异度不高,正常排卵期、子宫内膜异位症、子宫肌瘤、盆腔炎、卵巢过度刺激综合征、以及非卵巢癌的恶性肿瘤如肺癌、胃癌等状况下也会升高,导致假阳性;同时CA125在早期卵巢癌表达率较低,对浆液性癌以外恶性肿瘤如黏液性癌等的检出率也较低[8,11]

    本研究中CA125诊断的灵敏度较高,达到85.70%,但特异度、阳性预测值、阴性预测值及诊断准确率均较低,也说明单独应用CA125并不适合卵巢癌的筛查及早期诊断。

    HE4是一种人附睾分泌蛋白,在卵巢癌组织中表达水平明显升高,但在正常卵巢组织中一般不表达,在癌旁组织和良性肿瘤中有低水平的表达,因而是鉴别卵巢癌的新型肿瘤标志物,具有简单易测、创伤性小、受干扰因素少的优势[12-13]

    HE4在鉴别卵巢肿瘤的良恶性时准确率较高,尤其是对Ⅰ期卵巢癌的敏感度明显高于CA125,不足之处在于HE4对绝经前后肿瘤的诊断效能亦不同,绝经、年龄越大往往HE4水平有所升高因而对绝经前恶性肿瘤的诊断能力更高;此外多项研究证实HE4在卵巢透明细胞癌和黏液性癌中表达率较低[10-12],如联合CA125则能提高敏感性及特异度[14]

    本研究显示HE4诊断的灵敏度低于CA125,但特异度、阳性预测值、阴性预测值及诊断准确率均高于CA125,HE4联合CA125则具有较高的诊断效能,灵敏度、特异度及诊断准确率高于两者单独诊断。

    CT技术的发展有利于显示恶性肿瘤病变本身及继发改变的细节,从而及时诊断和准确分期[15-16]。总结本组资料并复习相关文献,我们认为卵巢上皮性恶性肿瘤的CT一般具有下述特征[4,17-18]:早期主要表现为囊性或囊实性,病情发展呈囊实性或部分实性;体积较大,一般直径大于4 cm;呈多房囊腔,肿瘤囊壁及囊腔内分隔厚薄不均匀,最大可超过3 cm;增强瘤体实性部分较明显强化,囊内可见明显强化的壁结节;后期往往伴有腹、盆腔积液及周边结构侵犯、淋巴结及远处转移,有时可见到较明显的肿瘤血管及两侧卵巢同时发病。

    本组CT诊断准确率为82.12%,对大部分Ⅱ期肿瘤和全部 Ⅲ、Ⅳ 期肿瘤均得以正确诊断及分期。漏诊者均为单发体积较小的Ⅰ、Ⅱ期囊性肿瘤,因为体积较小、实性成分少且强化不明显而误认为良性囊腺瘤;3例良性肿瘤因为体积较大且实性成分强化较明显而误诊为恶性。因此CT不能单独根据病灶大小、强化程度等对病灶性质进行判断。此外卵巢转移瘤和原发性肿瘤有时具有相似的CT表现,而肿瘤标志物CA125及HE4则可以一定程度上弥补CT的不足。

    本组资料证实,CT联合血清CA125及HE4对卵巢上皮恶性肿瘤诊断的灵敏度、特异度及准确率分别为95.21%、88.92% 及92.32%,明显高于单独的CT或肿瘤标志物检测。

    综上所述,CT联合血清CA125及HE4对卵巢上皮恶性肿瘤的诊断具有重要价值,有利于早期诊断及准确分期,从而为临床治疗提供可靠的依据,是术前鉴别卵巢上皮肿瘤良恶性的有效组合,值得临床推广应用。

  • 图  1   原发肿瘤、淋巴结ROI勾画示例图

    注:原发肿瘤和淋巴结ROI的勾画均在门静脉期CT图像上进行,沿着原发肿瘤和淋巴结的边缘逐层勾画ROI,选取最大截面作为ROI勾画示意图。

    Figure  1.   Examples of manual delineation of regions of interest of primary tumors and lymph nodes

    图  2   使用最小绝对收缩和选择算子(Lasso)回归对影像组学特征进行降维及筛选

    注:(a)和(b)分别为原发肿瘤及淋巴结影像组学特征的LASSO系数分布收敛图;(c)和(d)采用10倍交叉验证法以调整正则化参数(λ),左侧虚线表示最小误差准则的λ值,右侧虚线表示1标准误差(1-SE)准则的λ值。

    Figure  2.   Radiomics feature selection using the least absolute shrinkage and selection operator method

    图  3   观察者1与观察者2组间一致性分析

    Figure  3.   Reproducibility analysis of the extracted radiomics features between Reader 1 and Reader 2

    图  4   小提琴图用于显示Radiomics score在淋巴结阴性组和淋巴结阳性组的分布情况

    注:(a)~(c)分别为Radiomics score在原发肿瘤影像组学模型训练组、内部验证组、外部验证组的分布情况。(d)~(f)分别为Radiomics score在淋巴结影像组学模型训练组、内部验证组、外部验证组的分布情况。

    Figure  4.   Violin plots showing the distribution of radiomics scores in lymph node positive and lymph node negative cohorts

    图  5   原发肿瘤影像组学模型、淋巴结影像组学模型与影像组学−临床特征联合模型的Delong检验

    注:(a)~(c)分别为训练组、内部验证组、外部验证组中原发肿瘤影像组学模型、淋巴结影像组学模型与影像组学−临床特征联合模型的相互比较。

    Figure  5.   DeLong tests of the primary tumor radiomics model, the lymph node radiomics model, and the combined model

    表  1   食管胃结合部腺癌淋巴结转移阳性组与阴性组的临床资料

    Table  1   Clinical data of lymph node positive and lymph node negative groups in patients with adenocarcinoma of the esophagogastric junction

    变量 训练组(n=153) P 内部验证组(n=67) P 外部验证组(n=50) P
    LN−(n=58) LN+(n=95) LN−(n=26) LN+(n=41) LN−(n=19) LN+(n=31)
    性别,n(%) 女性 11(19.0%) 28(29.5%) 0.148 6(23.1%) 10(24.4%) 0.442 3(15.8%) 6(19.4%) 0.750
    男性 47(81.0%) 67(70.5%) 20(76.9%) 31(75.6%) 16 84.2%) 25(80.6%)
    年龄/岁(均数±标准差) 67.59±7.47 69.46±6.48 0.103 66.81±11.68 70.02±6.92 0.161 67.36±8.50 66.84±8.00 0.035
    T分期,n(%) cT1 17(29.3%) 1(1.1%) < 0.001 8(30.8%) 0 < 0.001 8(42.1%) 0 < 0.001
    cT2 12(20.7%) 6(6.3%) 9(34.6%) 3(7.3%) 7(36.8%) 6(19.4%)
    cT3 29(50.0%) 79(83.2%) 9(34.6%) 34(82.9%) 4(21.1%) 21(67.7%)
    cT4 0 9(9.5%) 0 4(9.8%) 0 4(12.9%)
    Siewert type,n(%) 1(1.7%) 3(3.1%) 0.199 0 0 0.176 2(10.5%) 0 0.249
    45(77.6%) 61(64.2%) 20(76.9%) 25(61.0%) 11(57.9%) 20(64.5%)
    12(20.7%) 31(32.6%) 6(23.1%) 16(39.0%) 6(31.6%) 11(35.5%)
    注:LN − 为阴性淋巴结组,LN+为阳性淋巴结组。
    下载: 导出CSV

    表  2   原发肿瘤和淋巴结筛选的影像学特征

    Table  2   Detailed information of the radiomics features of the primary tumors and lymph nodes

    Volume of interest Selected features
    Primary tumor Original_shape_Sphericity
    Original_shape_Maximum3DDiameter
    Log-sigma-1-5-mm-3D_firstorder_Skewness
    Log-sigma-2-0-mm-3D_firstorder_Range
    Log-sigma-0-5-mm-3D_gldm_DependenceNonUniformityNormalized
    Log-sigma-1-5-mm-3D_glszm_GrayLevelVariance
    Log-sigma-2-0-mm-3D_glcm_Idm
    Wavelet-HHL_firstorder_TotalEnergy
    Wavelet-LLH_gldm_LargeDependenceLowGrayLevelEmphasis
    Wavelet-LLH_glrlm_RunEntropy
    Lymph node Log-sigma-2-0-mm-3D_glrlm_ShortRunHighGrayLevelEmphasis
    Wavelet-HLH_glcm_DifferenceAverage
    Wavelet-HLH_glcm_DifferenceEntropy
    Wavelet-HHL_glrlm_GrayLevelVariance
    下载: 导出CSV

    表  3   淋巴结转移阳性组与阴性组的Radiomics score

    Table  3   Radiomics scores of lymph node positive and lymph node negative groups

    变量 训练组(n=153) P 内部验证组(n=67) P 外部验证组(n=50) P
    LN−(n=58) LN+(n=95) LN−(n=26) LN+(n=41) LN−(n=19) LN+(n=31)
    Radiomics score,中位数(IQR) LN −0.91(−2.41,−0.23) 1.16(0.18,2.08) < 0.001 −1.49(−2.60,−0.06) 1.06(−0.08,2.24) < 0.001 −1.61(−2.89,−0.24) 0.74(−0.01,1.63) < 0.001
    CA −0.55(−1.20,0.33) 0.43(−0.12,1.18) < 0.001 −0.37(−1.23,0.16) 0.25(−0.28,0.82) < 0.001 −0.38(−1.09,0.15) 0.21(−0.28,0.59) 0.005
    注:LN为淋巴结,LN − 为阴性淋巴结,LN+为阳性淋巴结,IQR为四分位距,CA为原发肿瘤,P<0.05表示具有统计学意义。
    下载: 导出CSV

    表  4   3种模型在不同组学的诊断效能

    Table  4   Predictive performance of three models for each cohort

    分组 模型 AUC 准确性 敏感性 特异性 F1-score
    训练组   影像组学−临床特征联合模型 0.925 0.836 0.873 0.800 0.842
    淋巴结影像组学模型 0.857 0.805 0.811 0.800 0.806
    原发肿瘤影像组学模型 0.755 0.689 0.716 0.663 0.697
    内部验证组 影像组学−临床特征联合模型 0.897 0.780 0.780 0.780 0.780
    淋巴结影像组学模型 0.836 0.756 0.756 0.756 0.756
    原发肿瘤影像组学模型 0.716 0.610 0.537 0.683 0.579
    外部验证组 影像组学−临床特征联合模型 0.935 0.838 0.741 0.935 0.821
    淋巴结影像组学模型 0.849 0.774 0.742 0.806 0.767
    原发肿瘤影像组学模型 0.706 0.661 0.613 0.710 0.644
    下载: 导出CSV
  • [1]

    ALLEMANI C, MATSUDA T, DI CARLO V, et al. Global surveillance of trends in cancer survival 2000-14 (CONCORD-3): Analysis of individual records for 37513025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries[J]. Lancet, 2018, 391(10125): 1023-1075. DOI: 10.1016/S0140-6736(17)33326-3.

    [2]

    BRAY F, LAVERSANNE M, SUNG H, et al. Global cancer statistics 2022: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA: A Cancer Journal for Clinicians, 2024, 74(3): 229-263. DOI: 10.3322/caac.21834.

    [3]

    KOSUGI SI, ICHIKAWA H, HANYU T, et al. Appropriate extent of lymphadenectomy for squamous cell carcinoma of the esophagogastric junction[J]. International Journal of Surgery, 2017, 44: 339-343. DOI: 10.1016/j.ijsu.2017.07.041.

    [4]

    KUROKAWA Y, TAKEUCHI H, DOKI Y, et al. Mapping of lymph node metastasis from esophagogastric junction tumors: A prospective nationwide multicenter study[J]. Annals of surgery, 2021, 274(1): 120-127. DOI: 10.1097/sla.0000000000003499.

    [5] 朱甲明, 孙景旭, 王鑫, 等. 食管胃结合部腺癌围手术期综合治疗进展[J]. 中国实用外科杂志, 2024, 44(10): 1186-1191. DOI: 10.19538/j.cjps.issn1005-2208.2024.10.21.

    ZHU J M, SU J X, WANG X, et al. Progress in perioperative multimodal therapy of esopha-gogastric junction adenocarcinoma[J]. Chinese Journal of Practical Surgery, 2024, 44(10): 1186-1191. DOI: 10.19538/j.cjps.issn1005-2208.2024.10.21. (in Chinese).

    [6]

    YABUSAKI H, NASHIMOTO A, MATSUKI A, et al. Comparison of the surgical treatment strategies for Siewert type II squamous cell carcinoma in the same area as esophagogastric junction carcinoma: Data from a single Japanese high-volume cancer center[J]. Surgery Today, 2014, 44(8): 1522-1528. DOI: 10.1007/s00595-013-0773-4.

    [7]

    RAPTIS D, MAAK M, KRAUTZ C, et al. Surgical and oncological outcome after extended lymph node dissection for carcinoma of the stomach and the esophagogastric junction: A retrospective analysis from an experienced single center[J]. Archives of Medical Science, 2024, 20(1): 124-132. DOI: 10.5114/aoms/141165.

    [8]

    RICE T W, ISHWARAN H, HOFSTETTER W L, et al. Esophageal cancer: Associations with (pN+) lymph node metastases[J]. Annals of Surgery, 2017, 265(1): 122-129. DOI: 10.1097/sla.0000000000001594.

    [9] 夏甘树, 刘志强, 李守淼, 等. 局部进展期食管胃结合部腺癌围手术期化疗疗效研究[J]. 中华肿瘤防治杂志, 2022, 29(21): 1563-1567. DOI: 10.16073/j.cnki.cjcpt.2022.21.07.

    XIA G S, LIU Z Q, LI S S, et al. Efficacy of perioperative chemotherapy for locally advanced adenocarcinoma of esophagogastric junction[J]. Chinese Journal of Cancer Prevention and Treatment, 2022, 29(21): 1563-1567. DOI: 10.16073/j.cnki.cjcpt.2022.21.07. (in Chinese).

    [10]

    ELSHOLTZ F H J, ASBACH P, HAAS M, et al. Introducing the Node Reporting and Data System 1.0 (Node-RADS): A concept for standardized assessment of lymph nodes in cancer[J]. European Radiology, 2021, 31(8): 6116-6124. DOI: 10.1007/s00330-020-07572-4.

    [11] 何辉虎, 高凯绩, 孙家和, 等. 规范化淋巴结分拣对胃食管结合部恶性肿瘤手术治疗的效果[J]. 安徽医科大学学报, 2024, 59(8): 1465-1470. DOI: 10.19405/j.cnki.issn1000-1492.2024.08.026.
    [12]

    TIAN D, LI H X, YANG Y S, et al. The minimum number of examined lymph nodes for accurate nodal staging and optimal survival of stage T1-2 esophageal squamous cell carcinoma: A retrospective multicenter cohort with SEER database validation[J]. International Journal of Surgery, 2022, 104: 106764. DOI: 10.1016/j.ijsu.2022.106764.

    [13]

    YOSHIKAWA T, TAKEUCHI H, HASEGAWA S, et al. Theoretical therapeutic impact of lymph node dissection on adenocarcinoma and squamous cell carcinoma of the esophagogastric junction[J]. Gastric Cancer, 2016, 19(1): 143-149. DOI: 10.1007/s10120-014-0439-y.

    [14] 邓靖宇. 胃癌根治术标本规范淋巴结送检及操作中国专家共识(2019版)[J]. 中国实用外科杂志, 2019, 39(9): 881-889. DOI: 10.19538/j.cjps.issn1005-2208.2019.09.01.
    [15]

    KUBOTA K, SUZUKI A, SHIOZAKI H, et al. Accuracy of multidetector-row computed tomography in the preoperative diagnosis of lymph node metastasis in patients with gastric cancer[J]. Gastrointestinal Tumors, 2017, 3(3/4): 163-170. DOI: 10.1159/000454923.

    [16]

    FOLEY K G, CHRISTIAN A, FIELDING P, et al. Accuracy of contemporary oesophageal cancer lymph node staging with radiological-pathological correlation[J]. Clinical Radiology, 2017, 72(8): 693. e1-693. e7. DOI: 10.1016/j.crad.2017.02.022.

    [17]

    JIA P F, LI Y R, WANG L Y, et al. Radiomics in esophagogastric junction cancer: A scoping review of current status and advances[J]. European Journal of Radiology, 2024, 177: 111577. DOI: 10.1016/j.ejrad.2024.111577.

    [18]

    HILEY C, de BRUIN E C, MCGRANAHAN N, et al. Deciphering intratumor heterogeneity and temporal acquisition of driver events to refine precision medicine[J]. Genome Biology, 2014, 15(8): 453. DOI: 10.1186/s13059-014-0453-8.

    [19]

    AVANZO M, STANCANELLO J, EL N I. Beyond imaging: The promise of radiomics[J]. Physica Medica, 2017, 38: 122-139. DOI: 10.1016/j.ejmp.2017.05.071.

    [20]

    REGINELLI A, NARDONE V, GIACOBBE G, et al. Radiomics as a new frontier of imaging for cancer prognosis: A narrative review[J]. Diagnostics (Basel), 2021, 11(10). DOI: 10.3390/diagnostics11101796.

    [21] 周健文, 冯峰. 食管癌CT影像组学研究进展[J]. CT理论与应用研究, 2022, 31(5): 687-696. DOI: 10.15953/j.ctta.2021.006.

    ZHOU J W, FENG F. Research progress on CT radiomics of esophageal cancer[J]. CT Theory and Applications, 2022, 31(5): 687-696. DOI:10.15953/j.ctta.2021.006. (in Chinese).

    [22]

    KOSUGA T, KONISHI T, KUBOTA T, et al. Clinical significance of neutrophil-to-lymphocyte ratio as a predictor of lymph node metastasis in gastric cancer[J]. BMC cancer, 2019, 19(1): 1187. DOI: 10.1186/s12885-019-6404-8.

    [23]

    LI Z L, ZHAO L Y, ZHANG W H, et al. Clinical significance of lower perigastric lymph nodes dissection in Siewert type II/III adenocarcinoma of esophagogastric junction: A retrospective propensity score matched study[J]. Langenbeck’s Archives of Surgery, 2022, 407(3): 985-998. DOI: 10.1007/s00423-021-02380-w.

    [24] 周慧, 冯峰. 食管癌疗效评价及预后的CT影像组学研究进展[J]. CT理论与应用研究(中英文), 2024, 33(3): 377-383. DOI: 10.15953/j.ctta.2023.155.

    ZHOU H, FENG F. Enhancing esophageal cancer prognosis and treatment evaluation: Recent advances in computed tomography radiomics[J]. CT Theory and Applications, 2024, 33(3): 377-383. DOI: 10.15953/j.ctta.2023.155. (in Chinese).

    [25]

    RICE T W, ISHWARAN H, FERGUSON M K, et al. Cancer of the esophagus and esophagogastric junction: An eighth edition staging primer[J]. Journal of Thoracic Oncology, 2017, 12(1): 36-42. DOI: 10.1016/j.jtho.2016.10.016.

    [26]

    SHI Y J, LIU C, WEI Y Y, et al. Quantitative CT analysis to predict esophageal fistula in patients with advanced esophageal cancer treated by chemotherapy or chemoradiotherapy[J]. Cancer Imaging, 2022, 22(1): 62. DOI: 10.1186/s40644-022-00490-2.

    [27]

    LI R, CHEN T W, HU J, et al. Tumor volume of resectable adenocarcinoma of the esophagogastric junction at multidetector CT: Association with regional lymph node metastasis and N stage[J]. Radiology, 2013, 269(1): 130-138. DOI: 10.1148/radiol.13122269.

    [28]

    ZWANENBURG A, VALLIÈRES M, ABDALAH M A, et al. The image biomarker standardization initiative: Standardized quantitative radiomics for high-throughput image-based phenotyping[J]. Radiology, 2020, 295(2): 328-338. DOI: 10.1148/radiol.2020191145.

    [29]

    DU K P, HUANG W P, LIU S Y, et al. Application of computed tomography-based radiomics in differential diagnosis of adenocarcinoma and squamous cell carcinoma at the esophagogastric junction[J]. World Journal of Gastroenterology, 2022, 28(31): 4363-4375. DOI: 10.3748/wjg.v28.i31.4363.

    [30]

    LI J, DONG D, FANG M, et al. Dual-energy CT-based deep learning radiomics can improve lymph node metastasis risk prediction for gastric cancer[J]. European Radiology, 2020, 30(4): 2324-2333. DOI: 10.1007/s00330-019-06621-x.

    [31]

    HUANG W, LI L, LIU S, et al. Enhanced CT-based radiomics predicts pathological complete response after neoadjuvant chemotherapy for advanced adenocarcinoma of the esophagogastric junction: A two-center study[J]. Insights into imaging, 2022, 13(1): 134. DOI: 10.1186/s13244-022-01273-w.

    [32]

    LIU S, SHI H, JI C, et al. Preoperative CT texture analysis of gastric cancer: Correlations with postoperative TNM staging[J]. Clinical radiology, 2018, 73(8): 756. e1-756. e9. DOI: 10.1016/j.crad.2018.03.005.

    [33]

    LI Y, GU X, YANG L, et al. Prediction of lymphovascular invasion in esophageal squamous cell carcinoma by computed tomography-based radiomics analysis: 2D or 3D?[J]. Cancer Imaging, 2024, 24(1): 141. DOI: 10.1186/s40644-024-00786-5.

    [34]

    ZHENG H D, TIAN Y C, HUANG Q Y, et al. Enhancing lymph node metastasis prediction in adenocarcinoma of the esophagogastric junction: A study combining radiomic with clinical features[J]. Medical Physics, 2024, 51(12): 9057-9070. DOI: 10.1002/mp.17374.

    [35]

    LOPCI E, KAUPPI J, LUGARESI M, et al. Siewert type I and II oesophageal adenocarcinoma: Sensitivity/specificity of computed tomography, positron emission tomography and endoscopic ultrasound for assessment of lymph node metastases in groups of thoracic and abdominal lymph node stations[J]. Interactive Cardiovascular and Thoracic Surgery, 2019, 28(4): 518-525. DOI: 10.1093/icvts/ivy314.

    [36]

    NG F, GANESHAN B, KOZARSKI R, et al. Assessment of primary colorectal cancer heterogeneity by using whole-tumor texture analysis: Contrast-enhanced CT texture as a biomarker of 5-year survival[J]. Radiology, 2013, 266(1): 177-184. DOI: 10.1148/radiol.12120254.

    [37]

    GANESHAN B, GOH V, MANDEVILLE H C, et al. Non-small cell lung cancer: Histopathologic correlates for texture parameters at CT[J]. Radiology, 2013, 266(1): 326-336. DOI: 10.1148/radiol.12112428.

    [38]

    LUBNER M G, SMITH A D, SANDRASEGARAN K, et al. CT texture analysis: Definitions, applications, biologic correlates, and challenges[J]. Radiographics, 2017, 37(5): 1483-1503. DOI: 10.1148/rg.2017170056.

    [39] 薛公博, 刘鸿雁, 王国华, 等. 不同重建算法对肝脏肿瘤患者门静脉期腹部CT直方图和小波特征的影响[J]. 中华放射学杂志, 2025, 59(1): 50-56. DOI: 10.3760/cma.j.cn112149-20241124-00697.
    [40]

    KAKEJI Y, YAMAMOTO M, ITO S, et al. Lymph node metastasis from cancer of the esophagogastric junction, and determination of the appropriate nodal dissection[J]. Surgery Today, 2012, 42(4): 351-358. DOI: 10.1007/s00595-011-0114-4.

图(5)  /  表(4)
计量
  • 文章访问数:  46
  • HTML全文浏览量:  6
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-02-20
  • 修回日期:  2025-02-27
  • 录用日期:  2025-02-28
  • 网络出版日期:  2025-03-10

目录

/

返回文章
返回
x 关闭 永久关闭