ISSN 1004-4140
    CN 11-3017/P

    TTI介质一阶纯qP波方程正演模拟

    Forward Modeling of First Order Pure QP Wave Equation in Tilted Transverse Isotropy Media

    • 摘要: 逆时偏移(RTM)是复杂构造地震成像的核心技术,而构建无伪横波干扰的纯qP波方程是各向异性介质RTM的关键挑战。本文对新声学近似的频散关系和Li提出的精确qP波频散关系进行对比分析,并基于更高精度的频散关系,采用椭圆分解法推导了VTI介质纯qP波方程,通过引入自共轭微分算子建立了TTI介质纯qP波一阶速度-应力波动方程,采用交错网格有限差分法实现了高精度频散关系的正演模拟,并使用波数旋转法推导得到TTI介质纯qP波二阶位移方程,使用规则网格差分求解。频散关系和模型测试表明,基于新频散关系得到的方程相比基于新声学近似频散关系得到的方程有更高的精度,交错网格有限差分法求解的一阶速度-应力方程对渐进近似引起的振幅不均衡有压制作用且有较好的计算效率。

       

      Abstract: Reverse Time Migration (RTM) is a core technique for seismic imaging in complex structures. A key challenge in anisotropic RTM is constructing a pure qP-wave equation free of pseudo-shear-wave artifacts. In this study, we compare and analyze the dispersion relation derived from the new acoustic approximation with the accurate qP-wave dispersion relation developed by Li. Based on Li’s more precise dispersion relation, we derive a pure qP-wave equation for vertical transversely isotropic (VTI) media using the elliptic decomposition method. Furthermore, by introducing a self-adjoint differential operator, we establish a first-order velocity-stress wave equation for pure qP-waves in tilted transverse isotropy (TTI) media. Forward modeling based on the high-precision dispersion relation is implemented using a staggered-grid finite-difference method. Additionally, a second-order displacement equation for pure qP-waves in TTI media is derived via the wavenumber rotation approach and solved using a conventional grid finite-difference scheme. Both dispersion analysis and model tests demonstrate that the equations based on the updated dispersion relation achieve higher accuracy than those derived from the new acoustic approximation. When solved using the staggered-grid finite-difference method, the first-order velocity-stress equation effectively mitigates amplitude imbalance induced by the asymptotic approximation while maintaining favorable computational efficiency.

       

    /

    返回文章
    返回