Diving Wave Tomography and Reflection Tomography for PSDM Velocity Model Building of Complex Depth Imaging in Loess Tableland Area of Western Edge of Ordos Basin
-
摘要: 针对鄂尔多斯盆地西缘黄土塬区复杂地表和复杂地下构造导致难以准确成像问题,采用浅层潜水波层析反演(DWT)速度建模技术,同时辅以中深层反射波层析成像技术,形成一套实用叠前深度偏移速度建模方法。首先生成一个基于钻井和解释信息的起始近地表速度,其次利用潜水波层析反演建立初始近地表模型,将其与常规处理获得的中深层速度模型进行匹配拼接,建立起初始的起伏地表全速度模型,然后在此基础上利用基于反射波的网格层析进行中深层速度建模,经过多轮次迭代,最终获得可靠的高精度速度模型。鄂尔多斯盆地西缘MJT工区地震资料的成像处理验证了这一套速度建模技术的有效性,地下构造成像更合理也更精确。Abstract: To solve the problem of complex structures under complicated surface conditions in the loess plateau of the western edge of Ordos Basin, a practical prestack depth migration velocity modeling method was developed by using shallow layer diving wave tomography (DWT) and deep layer reflecting wave tomography. First generate a starting near-surface velocity based on drilling and interpret information, secondly diving wave tomographic inversion is used to establish initial near-surface model, with the regular treatment of deep velocity model matching, set up the initial irregular surface velocity model, and then on the basis of grid reflection wave tomography, after iterative rounds, finally obtained the reliable and high precision velocity model. The imaging processing of seismic data in the MJT work area on the western margin of Ordos Basin has verified the effectiveness of this set of velocity modeling technology, and the imaging of underground structure is more reasonable and accurate.
-
Keywords:
- loess tableland /
- diving wave tomography /
- reflecting wave tomography /
- PSDM
-
-
[1] 夏义平, 徐礼贵, 郑良合, 等. 鄂尔多斯盆地西缘逆冲断裂带构造特征及油气勘探方向[J]. 石油地质, 2005, 10(5):13-19 , 72. XIA Y P, XU L G, ZHENG L H, et al. Structural features and oil-gas prospecting targets of thrusting fault belt in western edge of Ordos Basin[J]. China Petroleum Exploration, 2005, 10(5):13-19, 72. (in Chinese).
[2] 杨华, 付金华, 欧阳征健, 等. 鄂尔多斯盆地西缘晚三叠世构造-沉积环境分析[J]. 沉积学报, 2011, 229(3):427-439. YANG H, FU J H, OUYANG Z J, et al. Analysis of tectonic-sedimentory setting in middle and upper triassic in the west margin of the Ordos basin[J]. Acta Sedimentologica Sinica, 2011, 229(3):427-439. (in Chinese).
[3] 杨华, 陶家庆, 欧阳征健, 等. 鄂尔多斯盆地西缘构造特征及其成因机制[J]. 西北大学学报(自然科学版), 2011, 41(5):863-868. YANG H, TAO J Q, OUYANG Z J, et al. Structural characteristics and forming mechanism in the western margin of the Ordos basin[J]. Journal of Northwest University (Natural Science Edition), 2011, 41(5):863-868. (in Chinese). [4] 王兆旗, 庄锡进, 李立胜, 等. 非线性层析反演速度建模技术[J]. CT理论与应用研究, 2017, 26(5):543-553. DOI:10.15953/j.1004-4140.2017.26.05.02. WANG Z Q, ZHUANG X J, LI L S, et al. Non-linear tomography inversion technology for velocity modeling[J]. CT Theory and Applications, 2017, 26(5):543-553. DOI:10.15953/j.1004-4140. 2017.26.05.02. (in Chinese)
[5] 崔栋, 张研, 胡英, 等. 近地表速度建模方法综述[J]. 地球物理学进展, 2014, 29(6):2635-2641. CUI D, ZHANG Y, HU Y, et al. The review of near surface velocity modeling[J]. Progress in Geophysics, 2014, 29(6):2635-2641. (in Chinese).
[6] 夏竹, 张少华, 王学军. 中国西部复杂地区近地表特征与表层结构探讨[J]. 石油地球物理勘探, 2003, 38(4):414-424. XIA Z, ZHANG S H, WANG X J. Discussion on near-surface characters and structures in complex of Western China[J]. Geophysical Prospecting for Petroleum, 2003, 38(4):414-424. (in Chinese).
[7] 方勇, 温铁民, 李虹, 等. 多方位角网格层析成像技术及应用效果[J]. 物探化探计算技术, 2016, 38(5):677-398. FANG Y, WEN T M, LI H, et al. The application of multi-azimuth grid tomographic imaging technology[J]. Computing techniques for geophysical and geochemical exploration, 2016, 38(5):677-398. (in Chinese).
[8] 王华忠, 张兵, 刘少勇, 等. 山前带地震数据成像处理流程探讨[J]. 石油物探, 2012, 51(6):574-583. WANG H Z, ZHANG B, LIU S Y, et al. Discussiong on the imaging processing workflow for foothill seismic data[J].Geophysical Prospecting for Petroleum, 2012, 51(6):574-583. (in Chinese).
[9] 杨勤勇, 方伍宝. 复杂地表复杂地下地区地震成像技术研究[J]. 石油与天然气地质, 2008, 29(5):676-682. YANG Q Y, FANG W B. A study on seismic imaging techniques in complex surface and subsurface areas[J]. Oil & Gas Geology, 2008, 29(5):676-682. (in Chinese).
[10] 刘小民, 邬达理, 梁硕博, 等. 潜水波胖射线走时层析速度反演及其在深度偏移速度建模中的应用[J]. 石油物探, 2017, 56(5):718-726. LIU X M, WU D L, LIANG S B, et al. Diving wave tomography velocity inversion using fat ray in prestack depth migration[J]. Geophysical Prospecting for Petroleum, 2017, 56(5):718-726. (in Chinese).
[11] 王孝, 曾华会, 刘文卿, 等. 基于微测井分步约束的近地表速度层析反演[J]. 石油地球物理勘探, 2018, 53(S1):69-74. WANG X, ZENG H H, LIU W Q, et al. Near-surface velocity tomographic inversion with a joint stepped-constraint of uphole and firstbreak information[J]. Oil Geophysical Prospecting, 2018, 53(S1):69-74. (in Chinese).
[12] 胡自多, 贺振华, 王西文, 等. 无射线追踪层析静校正技术在黄土塬区的应用[J]. 石油地球物理勘探, 2010, 45(S1):94-100. HU Z D, HE Z H, WANG X W, et al. Application of non ray-tracing tomography static correction technique in loess plateau[J]. Geophysical Prospecting for Petroleum, 2010, 45(S1):94-100. (in Chinese).
[13] 郭振波, 孙鹏远, 钱忠平, 等. 快速回转波近地表速度建模方法. 石油地球物理勘探, 2019, 54(2):261-267. GUO Z B, SUN P Y, QIAN Z P, et al. Fast near-surface model building with turning wave[J]. Geophysical Prospecting for Petroleum, 2019, 54(2):261-267. (in Chinese).
[14] 崔岩, 王彦飞. 基于初至波走时层析成像的Tikhonov正则化与梯度优化算法[J]. 地球物理学报,2015, 58(4):1367-1377. CUI Y, WANG Y F. Tikhonov regularization and gradient descent algorithms for tomography using first-arrival seismic traveltimes[J]. Chinese Journal of Geophysics, 2015, 58(4):1367-1377. (in Chinese).
[15] STORK C. Reflection tomography in the postmigrated domain[J]. Geophysics, 1992, 57:680-692.
[16] WANG T F, KANG W, CHENG J B. Migration velocity model building using local angle domain nonlinear tomography[C]//CPS/SEG Beijing 2014 International Geophysical Conference, 2014:739-742.
[17] ETIENNE ROBEIN著. 王克斌等译. 地震资料叠前偏移成像-方法、原理和优缺点分析[M]. 北京:石油工业出版社, 2012, (5):56-82. [18] GUILLAUME P, LAMBARE G, LEBLANC O, et al. Kinematic invariants:An efficient and flexible approach for velocity model building[C]//SEG Technical Program Expanded, 2008:3687-3692. DOI: 10.1190/1.3064100.
[19] BARNES C, GEREA C, CLEMENT F, et al. Diving wave tomography:A robust method for velocity estimation in a foothills geological context[C]//SEG Technical Program Expanded Abstracts, 2011, 30(1):3954-3957.
[20] TANIS M C, SHAH H, WATSON P A, et al. Diving-wave refraction tomography and reflection tomography for velocity model building[C]//SEG Technical Program Expanded Abstracts, 2006:25(1):3541
[21] GONG T J, LIU M, GUO J Q, et al. A compensatory velocity model building method with DWT and grid-based tomography[C]//2017 CGS/SEG International Geophysical Conference, 2017:944-947.
-
期刊类型引用(14)
1. 丁晓凌,李春海. MRI、CTA单独及联合检查对急性缺血性脑卒中患者颈动脉病变的诊断价值. 医学临床研究. 2025(02): 333-335 . 百度学术
2. 陈育锋,程影,祁良. 老年脑梗死颅内动脉狭窄的数字减影血管造影、CT血管成像影像特征及诊断价值比较分析. 中国医药导报. 2022(10): 151-154 . 百度学术
3. 万宏燕,杨瑜,韩媛媛. 颈部血管超声联合CT血管造影对脑梗死患者颈动脉斑块的诊断价值. 实用心脑肺血管病杂志. 2022(06): 98-101 . 百度学术
4. 毕文君. 超声与磁共振血管成像对脑卒中颈部血管狭窄性病变的诊断价值分析. 中国实用医药. 2022(16): 100-102 . 百度学术
5. 王文峰,郭晓莲,常叶,牟荣骥. SMI技术联合CTA在缺血性脑卒中患者颈动脉狭窄中应用及影像学特征. 中国老年学杂志. 2022(17): 4142-4145 . 百度学术
6. 傅国萍,马黎,周峰,刘荣荣,徐玲佳. 急性缺血性脑卒中伴脑白质疏松与颅内外动脉狭窄的相关性研究. 中国基层医药. 2022(10): 1452-1456 . 百度学术
7. 丁芳,吴穹宇,葛芳清,王卫霞. 高血压对颈动脉斑块的影响及斑块特点与血管狭窄的关系. 南通大学学报(医学版). 2022(04): 336-339 . 百度学术
8. 邓雁秀,黎冠东,李伟,刘壮盛. 探讨双源高分辨螺旋CT颈部血管造影对脑梗死的诊断价值. 承德医学院学报. 2021(02): 119-122 . 百度学术
9. 王碧昊,王保平,段燕东,焦向锋,肖雁,张建芳. 血流储备分数CT成像对冠状动脉旁路移植术后的影像学评价. CT理论与应用研究. 2021(03): 361-369 . 本站查看
10. 路远. CTA诊断颈动脉狭窄效能分析. 医药论坛杂志. 2021(10): 44-46 . 百度学术
11. 谢绪峰. 低剂量CT血管造影应用于临床颈动脉狭窄程度分级中的效果体会. 影像研究与医学应用. 2021(09): 121-122 . 百度学术
12. 严德星,熊伟坚,白奕斌,叶峰,陈龙. 64排多层螺旋CT血管内成像在颈动脉狭窄诊断中的应用. 海南医学. 2021(17): 2234-2237 . 百度学术
13. 郑纬. 头颈结合CT血管造影应用在头颈动脉狭窄中的效果分析. 影像研究与医学应用. 2021(21): 50-51 . 百度学术
14. 朱慧萍,辛剑锋. 超声、CT血管造影对颈动脉狭窄患者颈动脉粥样硬化斑块数量、分布、性质及颈动脉狭窄程度的评估价值. 中外医疗. 2021(35): 195-198 . 百度学术
其他类型引用(0)
计量
- 文章访问数: 281
- HTML全文浏览量: 13
- PDF下载量: 36
- 被引次数: 14