A Variational Model for Removing Concentric Elliptical Artifacts from CT Images
-
摘要: 在计算机断层成像(CT)中,伪影会降低重建图像的质量。针对该问题,本文提出一种去除CT图像中同心椭圆伪影的方法。该方法基于方向全变分(DTV)的思想,将椭圆伪影的去除问题建模为能量最小化问题,并通过对椭圆伪影边缘特征的分析,建立适应于椭圆伪影的变分模型。由于提出的模型为具有可分裂结构的非光滑凸优化问题,因此本文使用交替方向乘子法(ADMM)。最后,通过仿真实验验证该模型对于去除椭圆伪影的有效性。Abstract: In computed tomography (CT) imaging, artifacts will degrade the quality of reconstructed images. To solve this issue, in this paper we propose a method to remove concentric elliptical artifacts from CT images. This method is based on the idea of Directional total variation (DTV), which models the problem of elliptical artifact removal as an energy minimization problem, and establishes a variation-based model which is adapted the elliptical artifacts by analyzing the edge features of elliptical artifacts. Since the proposed model is a non-smooth convex optimization problem with a divisible structure, the alternating direction multiplier method (ADMM) is applied. Finally, the effectiveness of the model in removing elliptical artifacts is verified by simulation experiments.
-
-
表 1 算法1
Table 1 Algorithm 1
算法1:使用ADMM解决问题(4) 1. 初始化:λ>0,γ1>0,γ2>0,选择{{\boldsymbol{f}}^0},\,\;{{\boldsymbol{v}}^0},\,\;{{\boldsymbol{\alpha}} ^0}和{{\boldsymbol{\beta}} ^0}的初始值
2. 对于k = 1,\;2,\; \cdots 通过(7),(10)和(13)依次获得{{\boldsymbol{w}}^{k + 1}},\;{{\boldsymbol{v}}^{k + 1}},\;{{\boldsymbol{f}}^{k + 1}}
3. 直到满足\frac{ { { {\left\| { {{\boldsymbol{f}}^k} - {{\boldsymbol{f}}^{k - 1} } } \right\|}_2} } }{ { { {\left\| { {{\boldsymbol{f}}^{k - 1} } } \right\|}_2} } } \leq {10^{ - 5} }或k \geq 500时终止
4. 将{\boldsymbol{f}}: = {{\boldsymbol{f}}^{k + 1}}作为输出图像表 2 去伪影前后Shepp-Logan模体的SSIM和PSNR对比
Table 2 Comparison of SSIM and PSNR of Shepp-Logan phantom before and after artifact removal
对应图像 Shepp-Logan模体 SSIM(含伪影) SSIM(不含伪影) PSNR(含伪影) PSNR(不含伪影) (g)、(m) 0.990 0.997 49.052 51.442 (i)、(o) 0.961 0.984 44.178 48.122 (j)、(p) 0.981 0.992 46.369 49.611 (k)、(q) 0.989 0.997 46.150 47.742 (l)、(r) 0.963 0.988 43.389 47.108 表 3 去伪影前后胸腔CT的SSIM和PSNR对比
Table 3 Comparison of SSIM and PSNR of chest CT before and after artifact removal
对应图像 Shepp-Logan 模体 SSIM(含伪影) SSIM(不含伪影) PSNR(含伪影) PSNR(不含伪影) (g)、(m) 0.619 0.655 32.472 34.238 (i)、(o) 0.917 0.940 32.984 33.371 (j)、(p) 0.833 0.828 34.254 35.229 (k)、(q) 0.933 0.954 33.328 34.801 (l)、(r) 0.859 0.874 34.766 34.156 -
[1] WANG G, YU H, de MAN B. An outlook on X-ray CT research and development[J]. Medical Physics, 2008, 35(3): 1051−1064. doi: 10.1118/1.2836950
[2] 汤少杰, 张砚博, 汪友明, 等. 可同时抑制多种图像伪影的最优骨校正[J]. CT理论与应用研究, 2018,27(3): 301−314. DOI: 10.15953/j.1004-4140.2018.27.03.03. TANG S J, ZHANG Y B, WANG Y M, et al. An optimal bone correction capable of simultaneously suppressing various types of image artifacts[J]. CT Theory and Applications, 2018, 27(3): 301−314. DOI: 10.15953/j.1004-4140.2018.27.03.03. (in Chinese).
[3] 黄铜港, 李保磊, 汤少杰, 等. 基于双域滤波与距离变换的螺旋CT图像风车伪影校正[J]. 中国体视学与图像分析, 2021,26(2): 123−133. doi: 10.13505/j.1007-1482.2021.26.02.003 HUANG T G, LI B L, TANG S J, et al. Windmill artifact reduction for helical CT based on dual-domain filtering and distance transform[J]. Chinese Journal of Stereology and Image Analysis, 2021, 26(2): 123−133. (in Chinese). doi: 10.13505/j.1007-1482.2021.26.02.003
[4] 韩泽芳, 上官宏, 张雄, 等. 基于深度学习的低剂量CT成像算法研究进展[J]. CT理论与应用研究, 2022,31(1): 117−134. DOI: 10.15953/j.1004-4140.2022.31.01.14. HAN Z F, SHANGGUAN H, ZHANG X, et al. Advances in research on low-dose CT imaging algorithm based on deep learning[J]. CT Theory and Applications, 2022, 31(1): 117−134. DOI: 10.15953/j.1004-4140.2022.31.01.14. (in Chinese).
[5] 陈昶羽, 高河伟, 张涛, 等. CT解析重建方法进展: 从圆轨迹扫描到多源直线扫描成像[J]. CT理论与应用研究, 2021,30(2): 263−277. DOI: 10.15953/j.1004-4140.2021.30.02.14. CHEN C Y, GAO H W, ZHANG T, et al. Progress on analytical CT reconstruction methods: From circular trajectory scanning to multi-source linear trajectory scanning imaging[J]. CT Theory and Applications, 2021, 30(2): 263−277. DOI: 10.15953/j.1004-4140.2021.30.02.14. (in Chinese).
[6] SADI F, LEE S Y, HASAN M K. Removal of ring artifacts in computed tomographic imaging using iterative center weighted median filter[J]. Computers in Biology and Medicine, 2010, 40(1): 109−118. doi: 10.1016/j.compbiomed.2009.11.007
[7] NATTERER F, RITMAN E L. Past and future directions in X-ray computed tomography (CT)[J]. International Journal of Imaging Systems and Technology, 2002, 12(4): 175−187. doi: 10.1002/ima.10021
[8] 张华, 黄魁东, 史仪凯, 等. 一种基于空气扫描的锥束CT环形伪影校正方法[J]. CT理论与应用研究, 2012,21(2): 247−254. ZHANG H, HUANG K D, SHI Y K, et al. Artifact correction method based on air scan for cone-beam CT[J]. CT Theory and Applications, 2012, 21(2): 247−254. (in Chinese).
[9] KAK A C, SLANEY M. Principles of computerized tomographic imaging[M]. IEEE. Press, 1989.
[10] ZHAO S, LI J, HUO Q. Removing ring artifacts in CBCT images via generative adversarial network[C]//2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2018: 1055-1059.
[11] SIJBERS J, POSTNOV A. Reduction of ring artefacts in high resolution micro-CT reconstructions[J]. Physics in Medicine and Biology, 2004, 49(14): N247−253. doi: 10.1088/0031-9155/49/14/N06
[12] CHEN Y W, DUAN G, FUJITA A, et al. Ring artifacts reduction in cone-beam CT images based on independent component analysis[C]//2009 IEEE Instrumentation and Measurement Technology Conference. IEEE, 2009: 1734-1737.
[13] KYRIAKOU Y, PRELL D, KALENDER W A. Ring artifact correction for high-resolution micro CT[J]. Physics in Medicine & Biology, 2009, 54(17): N385.
[14] YAN L, WU T, ZHONG S, et al. A variation-based ring artifact correction method with sparse constraint for flat-detector CT[J]. Physics in Medicine & Biology, 2016, 61(3): 1278.
[15] MURATA K, OGAWA K. Ring-artifact correction with total-variation regularization for material images in photon-counting CT[J]. IEEE Transactions on Radiation and Plasma Medical Sciences, 2020, 5(4): 568−577.
[16] SALEHJAHROMI M, WANG Q, GJESTEBY L A, et al. A directional TV based ring artifact reduction method[C]//Medical Imaging 2019: Physics of Medical Imaging. SPIE, 2019, 10948: 593-599.
[17] LI Y, ZHAO Y, JI D, et al. Sparse-domain regularized stripe decomposition combined with guided-image filtering for ring artifact removal in propagation-based X-ray phase-contrast CT[J]. Physics in Medicine Biology, 2021, 66(10): 105011.
[18] PANG Z F, ZHOU Y M, WU T, et al. Image denoising via a new anisotropic total-variation-based model[J]. Signal Processing: Image Communication, 2019, 74: 140−152. doi: 10.1016/j.image.2019.02.003
[19] BAYRAM I, KAMASAK M E. A directional total variation[C]//2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO). IEEE, 2012: 265-269.