ISSN 1004-4140
CN 11-3017/P

基于深度学习的医用锥形束CT图像散射伪影校正的研究进展

张文君, 黄钢, 丁海宁, 徐红春

张文君, 黄钢, 丁海宁, 等. 基于深度学习的医用锥形束CT图像散射伪影校正的研究进展[J]. CT理论与应用研究, 2023, 32(2): 285-296. DOI: 10.15953/j.ctta.2022.131.
引用本文: 张文君, 黄钢, 丁海宁, 等. 基于深度学习的医用锥形束CT图像散射伪影校正的研究进展[J]. CT理论与应用研究, 2023, 32(2): 285-296. DOI: 10.15953/j.ctta.2022.131.
ZHANG W J, HUANG G, DING H N, et al. Research Progress of Scattering Artifact Correction in Medical Cone-beam Computed Tomography Imaging Based on Deep Learning[J]. CT Theory and Applications, 2023, 32(2): 285-296. DOI: 10.15953/j.ctta.2022.131. (in Chinese).
Citation: ZHANG W J, HUANG G, DING H N, et al. Research Progress of Scattering Artifact Correction in Medical Cone-beam Computed Tomography Imaging Based on Deep Learning[J]. CT Theory and Applications, 2023, 32(2): 285-296. DOI: 10.15953/j.ctta.2022.131. (in Chinese).

基于深度学习的医用锥形束CT图像散射伪影校正的研究进展

基金项目: 国家自然科学基金(整环SPECT/能谱CT一体化分子影像仪的研发(82127807));上海市分子影像学重点实验室建设项目(批准号:18DZ2260400)。
详细信息
    作者简介:

    张文君: 女,上海理工大学健康科学与工程学院生物医学工程在读硕士研究生,主要从事医学图像处理方面的研究,E-mail:1251890107@qq.com

    黄钢: 男,上海健康医学院教授,博士生导师,主要从事核医学、分子影像学等方面的研究,E-mail:huangg@sumhs.edu.cn

    通讯作者:

    黄钢*,

  • 中图分类号: O  242;O  434.1;TP  319.41

Research Progress of Scattering Artifact Correction in Medical Cone-beam Computed Tomography Imaging Based on Deep Learning

  • 摘要: 医用计算机断层扫描成像系统中,X射线与物体相互作用产生的康普顿散射光子严重影响了图像质量,尤其在锥形束计算机断层扫描和多层探测器系统中。目前已有许多散射伪影校正方法,归纳为3类:硬件校正、软件校正、软硬件混合校正方法,但近年随着计算机计算能力的提高以及深度学习在医学图像处理领域的发展,出现了一些新的散射校正方法。本文首先介绍传统校正方法;然后详细介绍基于深度学习方法进行散射伪影校正,并将其分为基于图像域和基于投影域的深度学习方法,以及对不同的深度学习网络在散射伪影校正中的应用进行讨论;最后展望深度学习在多源计算机断层扫描技术中的应用前景。
    Abstract: In medical computed tomography imaging systems, Compton scattered photons generated by the interaction between X-rays and objects have a serious impact on image quality, especially in cone-beam computed tomography and multi-layer detector systems. Currently, there are many scattering artifact correction methods, which can be classified into three categories: hardware, software, and hybrid software and hardware correction methods. However, with the advances in computing power and development of deep learning in medical image processing, new methods of scattering artifact correction have appeared in recent years. This study first introduces traditional correction methods. Then, a method of scattering artifact correction based on deep learning is described in detail, which is divided into the correction method based on image domain and the correction method based on projection domain. Various deep-learning neural networks for this method are also introduced in detail. Finally, the application prospects of the deep learning method in multi-source computed tomography imaging scattering artifacts were probed .
  • 图  1   硬件校正方法示意图

    Figure  1.   Schematic diagram of the hardware correction method

    图  2   软硬件混合校正方法示意图

    Figure  2.   Schematic diagram of the hybrid correction method of software and hardware

    图  3   深度学习散射伪影校正方法的流程图

    Figure  3.   Flow diagram of deep learning method for scattering artifact correction

    图  4   卷积核方法、卷积核与MC混合方法和深度学习方法校正散射伪影的对比图

    Figure  4.   Comparison diagram of kernel-based scatter estimation (KSE), the hybrid scatter estimation (HSE) and deep scatter estimation (DSE) for scattering artifact correction

    表  1   基于深度学习神经网络的CBCT散射伪影校正的研究汇总

    Table  1   Research summary of CBCT scattering artifact correction based on deep learning neural network

    项目作者  年份 数据模体 数据获取 数据集(训练︰测试/
    训练︰验证︰测试)
    网络MAE/HUSSIM  其他指标耗时/s  




    Hansen等[36]2018前列腺癌患者的盆腔放射治疗PCT和CBCT15︰7︰8(患者数) U-Net144.000降至46.000   -ME/HU:138.000降至 -3.0000.010/投影
    Maier等[6]2018头部、胸部、盆腔MC 仿真22︰6(患者数) U-Net  -   -ME/HU:278.000降至6.0000.010/投影
    Nomura等[37]2019数字几何数字胸部和数字头部模体Gate的MC仿真14400︰200︰360 U-Net头17.900胸29.000 头1.000
     胸0.999
    PSNR/dB:头:37.200
    胸:31.700
    4.800/360投影
    Lee等[38]2019数字胸部模体Gate的MC仿真12960︰360 CNN  - MC:0.960
     CNN:0.992
    PSNR/dB:
    MC:42.100
    CNN:49.720
    0.017/投影
    钟安妮[40]2020头颈癌患者的头颈部gDRR和 gMMC包进行MC仿真22︰3(患者数)
    盆腔模体测试
     U-Net  - 头0.999
     盆腔0.999
    UIQI:头0.994盆腔0.997头,盆腔:9.050,
    9.670/360投影
    Lalonde等[41]2020头颈癌患者的头颈部MCGPU包仿真患者CBCT投影29︰9︰10(患者数) U-Net69.640降至13.410   -ME/HU:-28.610降至 -0.8010.014/投影
    Ma等[22]2020头部盆腔gCTD包进行MC
    仿真
    头部:45︰45
    盆腔测试
     Deep Q-Net  - 0.990PSNR/dB:36.050 dB1.810/投影
    Rusanov等[39]2021头胸腹模体和患者头颈部放疗PCT和CBCT8004︰1000(头胸腹模体︰患者头颈) U-Net318.000降至74.000 0.750提升至
     0.812
    CNR:6.690到13.90020.000/500投影




    Kida等[34]2018前列腺癌患者的盆腔部放射治疗PCT和CBCT14400︰3600 U-Net  - 脂肪0.965
     肌肉0.969
    PSNR/dB:
    脂肪50.600
    肌肉51.300
    20.000/180切片
    Xie等[42]2018肺癌患者的胸部放射治疗PCT和CBCT15︰5(患者数) Deep CNN  -   -PSNR/dB:7.889提升至8.8230.008/切片
    Jiang等[43]2019患者盆腔MC-GPU包进行MC仿真2400︰480︰320 U-NetRNM  - 0.950提升至
     0.990
    RMSE/HU:200.000降至20.00027.000/160切片
    Liang等[44]2019头颈癌患者头颈部以及一个真实头部模体放射治疗PCT和CBCT81(6480)︰9(720)︰20 CycleGAN69.290 降至29.850 0.730提升至
     0.850
    PSNR/dB:25.280提升至30.650  -




    Kurz等[45]2019前列腺癌患者的盆
    腔部
    放射治疗PCT和CBCT25︰8(患者数)CycleGAN103.000降至87.000  -ME/HU:24.000降至
    -6.000
    10.000/88切片
    Harms等[46]2019头部盆腔放射治疗PCT和CBCT头部︰22︰2
    盆腔︰19︰1(患者数)
    Res-CycleGAN头部23.800降至13.000
    盆腔56.300降至16.100
      -PSNR/dB:头32.300提升至37.500。盆腔22.200提升至30.700  -
    Chen等[47]2020头颈癌患者头颈部放射治PCT和CBCT30(2400)︰7(560)︰7(560)U-Net44.380降至18.9800.711提升至0.891PSNR:27.350提升至33.260 dB  -
    Kida等[48]2020前列腺癌患者的盆
    腔部
    放射治PCT和CBCT16︰4(患者数)CycleGAN  -0.575提升至0.688CT值:更接近PCT1.000/32切片
    Tien等[49]2021乳腺癌患者胸部放射治PCT和CBCT12(8706)︰
    3(1150)
    Cycle-Deblur GAN0.053降至0.0240.987提升至0.996PSNR/dB:24.435提升至30.5600.170/切片
    Dong等[50]2021前列腺癌患者的盆
    腔部
    放射治疗PCT和CBCT49︰9(患者数)CycleGAN49.960降至14.6000.728提升至0.825PSNR/dB:26.820提升至32.500  -
    Qiu等[51]2021肺癌患者的胸部放疗PCT和CBCT4︰1(20患者)HM-Cycle-GAN110.000降至66.2000.850提升至0.910PSNR/dB:23.000提升至30.300  -
    Liu等[52]2021患者胸部数据放疗PCT和CBCT32︰8︰12(患者数)GAN70.560降至32.7000.640提升至0.860PSNR/dB:28.670提升至34.120<1.000/切片
    Park等[53]2022患者颌面部骨骼多层螺旋CT和牙科CBCT11000,11422(不配对):1100;6831︰1100(配对)GAN  -  -骨强度/HU:1162.000提升至1220.0000.200/切片
    Zhang等[54]2022头颈癌患者头颈部放疗PCT和CBCT90︰30(患者数)Conditional GAN36.230降至16.7500.830提升至0.920PSNR/dB:25.340提升至30.5800.620/切片
    投影
    域与
    图像
    域 
    Iskender
    [55]
    2021数字钛棒模体和图像映射的数字胸部模体MC仿真27︰3(患者数)DCNN钛棒35.000降至15.100
    胸部35.800降至12.300
    钛棒0.988提升至0.997。
    胸部0.860提升至0.975
    PSNR/dB:钛棒36.840提升至50.860。胸部26.850提升至37.1502.000~4.000/重建体积
     注:MAPE(mean absolute percentage error)平均绝对百分比误差,ME(mean error)平均误差,MAE(mean absolute error)平均绝对值误差,PSNR(peak signal to noise ratio)峰值
       信噪比,SSIM(structured similarity indexing method)结构相似性指数方法,RMSE(root mean square error)均方根误差,UIQI(universal image quality Index)通用图像质量
       指数,CNR(contrast-to-noise ratio)对比度噪声比,RNM(residual network modules)残差网络模型。
    下载: 导出CSV
  • [1]

    JOSEPH P M, SPITAL R D. The effects of scatter in X-ray computed tomography[J]. Medical Physics, 1982, 9(4): 464−472. doi: 10.1118/1.595111

    [2] 邵义文, 卢文婷, 周凌宏. 锥形束CT系统的散射校正方法分析[J]. 中国医学物理学杂志, 2008,25(3): 634−637.

    SHAO Y W, LU W T, ZHOU L H. Review of the methods for X-ray scatter correction in cone-beam CT system[J]. Chinese Journal of Medical Physics, 2008, 25(3): 634−637. (in Chinese).

    [3] 张峰, 闫镔, 李建新, 等. 工业X-CT散射校正技术综述[J]. CT理论与应用研究, 2009,18(4): 34−43.

    ZHANG F, YAN B, LI J X, et al. Review of scatter correction on X-ray industrial computed tomography[J]. CT Theory and Applications, 2009, 18(4): 34−43. (in Chinese).

    [4] 戎军艳, 刘文磊, 高鹏, 等. 锥束CT散射抑制方法综述[J]. CT理论与应用研究, 2016,25(2): 235−250. DOI: 10.15953/j.1004-4140.2016.25.02.15.

    RONG J Y, LIU W L, GAO P, et al. The review of scatter suppression methods in cone beam CT[J]. CT Theory and Applications, 2016, 25(2): 235−250. DOI: 10.15953/j.1004-4140.2016.25.02.15. (in Chinese).

    [5]

    MAIER J, SAWALL S, KNAUP M, et al. Deep scatter estimation (DSE): Accurate real-time scatter estimation for X-ray CT using a deep convolutional neural network[J]. Journal of Nondestructive Evaluation, 2018, 37(3): 1−9.

    [6]

    MAIER J, EULIG E, VöTH T, et al. Real-time scatter estimation for medical CT using the deep scatter estimation: Method and robustness analysis with respect to different anatomies, dose levels, tube voltages, and data truncation[J]. Medical Physics, 2019, 46(1): 238−249. doi: 10.1002/mp.13274

    [7] HSIEH J. 计算机断层成像技术: 原理、设计、伪像和进展[M]. 张朝宗, 郭志平, 王贤刚, 等, 译. 1版. 北京: 科学出版社, 2006: 22-25.
    [8]

    NIU T, ZHU L. Overview of X-ray scatter in cone-beam computed tomography and its correction methods[J]. Current Medical Imaging, 2010, 6(2): 82−89. doi: 10.2174/157340510791268515

    [9]

    ENDO M, TSUNOO T, SATOH K, et al. Performance of cone-beam CT using a flat-panel imager[C]// Medical Imaging 2001: Physics of Medical Imaging. SPIE, 2001: 815-821.

    [10]

    SIEWERDSEN J H, MOSELEY D J, BAKHTIAR B, et al. The influence of antiscatter grids on soft-tissue detectability in cone-beam computed tomography with flat-panel detectors: Antiscatter grids in cone-beam CT[J]. Medical Physics, 2004, 31(12): 3506−3520. doi: 10.1118/1.1819789

    [11]

    KYRIAKOU Y, KALENDER W. Efficiency of antiscatter grids for flat-detector CT[J]. Physics in Medicine & Biology, 2007, 52(20): 6275.

    [12]

    COBOS S F, NIKOLOV H N, POLLMANN S I, et al. Reduction of ring artifacts caused by 2D anti-scatter grids in flat-panel CBCT[C]//Medical Imaging 2020: Physics of Medical Imaging, 2020, International Society for Optics and Photonics: 1131228: 537-543.

    [13] 张定华. 锥束CT技术及其应用[M]. 1版. 西安: 西北工业大学出版社, 2010: 142-155.
    [14]

    NEITZEL U. Grids or air gaps for scatter reduction in digital radiography: A model calculation[J]. Medical Physics, 1992, 19(2): 475−481. doi: 10.1118/1.596836

    [15]

    RüHRNSCHOPF E P, KLINGENBECK K. A general framework and review of scatter correction methods in X-ray cone-beam computerized tomography. Part 1: Scatter compensation approaches[J]. Medical Physics, 2011, 38(7): 4296−4311. doi: 10.1118/1.3599033

    [16]

    NAIMUDDIN S, HASEGAWA B, MISTRETTA C A. Scatterglare correction using a convolution algorithm with variable weighting[J]. Medical Physics, 1987, 14(3): 330−334. doi: 10.1118/1.596088

    [17] 谢世朋, 丁铭晨. 基于自适应点扩散函数的锥束CT散射校正[J]. 中国医学影像技术, 2015,31(11): 1763−1767. doi: 10.13929/j.1003-3289.2015.11.041

    XIE S P, DING M C. Scatter correction for cone beam CT using self-adaptive scattered point spread function[J]. Chinese Journal of Medical Imaging Technology, 2015, 31(11): 1763−1767. (in Chinese). doi: 10.13929/j.1003-3289.2015.11.041

    [18]

    BHATIA N, TISSEUR D, LéTANG J. Convolution-based scatter correction using kernels combining measurements and Monte Carlo simulations[J]. Journal of X-ray Science and Technology, 2018, 25(4): 613−628.

    [19]

    ROGERS D. Fifty years of Monte Carlo simulations for medical physics[J]. Physics in Medicine & Biology, 2006, 51(13): R287.

    [20] 闫浩, 牟轩沁, 罗涛, 等. 锥束X射线CT投影的蒙特卡罗仿真[J]. 西安交通大学学报, 2008,42(4): 414−417. doi: 10.3321/j.issn:0253-987X.2008.04.007

    YAN H, MOU X Q, LUO T, et al. Monte Carlo simulation of cone-beam X-ray computer tomography projection[J]. Journal of Xi’an Jiaotong University, 2008, 42(4): 414−417. (in Chinese). doi: 10.3321/j.issn:0253-987X.2008.04.007

    [21]

    COLIJN A P, BEEKMAN F J. Accelerated simulation of cone beam X-ray scatter projections[J]. IEEE Transactions on Medical Imaging, 2004, 23(5): 584−590.. doi: 10.1109/TMI.2004.825600

    [22]

    MA J, PIAO Z, HUANG S, et al. Monte Carlo simulation fused with target distribution modeling via deep reinforcement learning for automatic high-efficiency photon distribution estimation[J]. Photonics Research, 2021, 9(3): B45−B56. doi: 10.1364/PRJ.413486

    [23]

    XU Y, CHEN Y, TIAN Z, et al. Metropolis Monte Carlo simulation scheme for fast scattered X-ray photon calculation in CT[J]. Optics Express, 2019, 27(2): 1262−1275. doi: 10.1364/OE.27.001262

    [24]

    BAER M, KACHELRIEß M. Hybrid scatter correction for CT imaging[J]. Physics in Medicine & Biology, 2012, 57(21): 6849.

    [25]

    MASLOWSKI A, WANG A, SUN M S, et al. Acuros CTS: A fast, linear Boltzmann transport equation solver for computed tomography scatter. Part I: Core algorithms and validation[J]. Medical Physics, 2018, 45(5): 1899−1913. doi: 10.1002/mp.12850

    [26]

    WANG A, MASLOWSKI A, MESSMER P, et al. Acuros CTS: A fast, linear Boltzmann transport equation solver for computed tomography scatter. Part II: System modeling, scatter correction, and optimization[J]. Medical Physics, 2018, 45(5): 1914−1925. doi: 10.1002/mp.12849

    [27] 李双镭, 张丽, 陈志强, 等. 450 keV锥束CT系统的散射校正研究[J]. 核电子学与探测技术, 2006,26(6): 908−908. doi: 10.3969/j.issn.0258-0934.2006.06.059

    LI S L, ZHANG L, CHEN Z Q, et al. X-ray scatter correction algorithm for 450 keV cone-beam CT system[J]. Nuclear Electronics & Detection Technology, 2006, 26(6): 908−908. (in Chinese). doi: 10.3969/j.issn.0258-0934.2006.06.059

    [28] 唐天旭, 段晓礁, 周志政, 等. 基于散射校正板的锥束微纳CT系统的散射校正[J]. 光学学报, 2019,39(8): 0834001. doi: 10.3788/AOS201939.0834001

    TANG T X, DUAN X J, ZHOU Z Z, et al. Scatter correction based on beam stop array for cone-beam micro-computed tomography[J]. Acta Optica Sinica, 2019, 39(8): 0834001. (in Chinese). doi: 10.3788/AOS201939.0834001

    [29]

    GAO H, FAHING R, BENNETT N R, et al. Scatter correction method for X-ray CT using primary modulation: Phantom studies[J]. Medical Physics, 2010, 37(2): 934−946. doi: 10.1118/1.3298014

    [30]

    ZHU L, BENNETT N R, FAHRIG R. Scatter correction method for X-ray CT using primary modulation: Theory and preliminary results[J]. IEEE transactions on medical imaging, 2006, 25(12): 1573−1587.

    [31]

    GAO H, ZHU L, FAHRIG R. Virtual scatter modulation for X-ray CT scatter correction using primary modulator[J]. Journal of X-ray Science and Technology, 2017, 25(6): 1−17.

    [32]

    SCHöRNER K. Development of methods for scatter artifact correction in industrial X-ray cone-beam computed tomography[D]. München: Technische Universität München, 2012.

    [33]

    LITJENS G, KOOI T, BEJNORDI B E, et al. A survey on deep learning in medical image analysis[J]. Medical Image Analysis, 2017, 42: 60−88. doi: 10.1016/j.media.2017.07.005

    [34]

    KIDA S, NAKAMOTO T, NAKANO M, et al. Cone beam computed tomography image quality improvement using a deep convolutional neural network[J]. Cureus, 2018, 10(4): e2548.

    [35]

    XU S, PRINSEN P, WIEGERT J, et al. Deep residual learning in CT physics: Scatter correction for spectral CT[C]//2017 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), October 21-28, 2017, Atlanta, GA, USA. New York: IEEE, 2017: 1-3.

    [36]

    HANSEN D C, LANDRY G, KAMP F, et al. ScatterNet: A convolutional neural network for cone-beam CT intensity correction[J]. Medical Physics, 2018, 45(11): 4916−4926. doi: 10.1002/mp.13175

    [37]

    NOMURA Y, XU Q, SHIRATO H, et al. Projection-domain scatter correction for cone beam computed tomography using a residual convolutional neural network[J]. Medical Physics, 2019, 46(7): 3142−3155. doi: 10.1002/mp.13583

    [38]

    LEE H, LEE J. A deep learning-based scatter correction of simulated X-ray images[J]. Electronics, 2019, 8(9): 944. doi: 10.3390/electronics8090944

    [39]

    RUSANOV B, EBERT M A, MUKWADA G, et al. A convolutional neural network for estimating cone-beam CT intensity deviations from virtual CT projections[J]. Physics in Medicine & Biology, 2021, 66(21): 215007.

    [40] 钟安妮. 基于深度卷积神经网络的CT/CBCT图像伪影校正方法研究[D]. 广州: 南方医科大学, 2020: 44-59

    ZHONG A N. Artifact correction of CT/CBCT image based on deep convolutional network[D]. Guangzhou: Southern Medical University, 2020: 44-59. (in Chinese).

    [41]

    LALONDE A, WINEY B, VERBURG J, et al. Evaluation of CBCT scatter correction using deep convolutional neural networks for head and neck adaptive proton therapy[J]. Physics in Medicine & Biology, 2020, 65(24): 245022.

    [42]

    XIE S, YANG C, ZHANG Z, et al. Scatter artifacts removal using learning-based method for CBCT in IGRT system[J]. IEEE Access, 2018, 6: 78031−78037. doi: 10.1109/ACCESS.2018.2884704

    [43]

    JIANG Y, YANG C, YANG P, et al. Scatter correction of cone-beam CT using a deep residual convolution neural network (DRCNN)[J]. Physics in Medicine & Biology, 2019, 64(14): 145003.

    [44]

    LIANG X, CHEN L, NGUYEN D, et al. Generating synthesized computed tomography (CT) from cone-beam computed tomography (CBCT) using CycleGAN for adaptive radiation therapy[J]. Physics in Medicine & Biology, 2019, 64(12): 125002.

    [45]

    KURZ C, MASPERO M, SAVENIJE M H, et al. CBCT correction using a cycle-consistent generative adversarial network and unpaired training to enable photon and proton dose calculation[J]. Physics in Medicine & Biology, 2019, 64(22): 225004.

    [46]

    HARMS J, LEI Y, WANG T, et al. Paired cycle-GAN: Based image correction for quantitative cone-beam computed tomography[J]. Medical Physics, 2019, 46(9): 3998−4009. doi: 10.1002/mp.13656

    [47]

    CHEN L, LIANG X, SHEN C, et al. Synthetic CT generation from CBCT images via deep learning[J]. Medical Physics, 2020, 47(3): 1115−1125. doi: 10.1002/mp.13978

    [48]

    KIDA S, KAJI S, NAWA K, et al. Visual enhancement of cone-beam CT by use of cycleGAN[J]. Medical Physics, 2020, 47(3): 998−1010.. doi: 10.1002/mp.13963

    [49]

    TIEN H J, YANG H C, SHUENG P W, et al. Cone-beam CT image quality improvement using cycle-deblur consistent adversarial networks (cycle-deblur GAN) for chest CT imaging in breast cancer patients[J]. Scientific Reports, 2021, 11(1): 1−12. doi: 10.1038/s41598-020-79139-8

    [50]

    DONG G, ZHANG C, LIANG X, et al. A deep unsupervised learning model for artifact correction of pelvis cone-beam CT[J]. Frontiers in Oncology, 2021: 11.

    [51]

    QIU R L, LEI Y, SHELTON J, et al. Deep learning-based thoracic CBCT correction with histogram matching[J]. Biomedical Physics & Engineering Express, 2021, 7(6): 065040.

    [52]

    LIU J, YAN H, CHENG H, et al. CBCT-based synthetic CT generation using generative adversarial networks with disentangled representation[J]. Quantitative Imaging in Medicine and Surgery, 2021, 11(12): 4820. doi: 10.21037/qims-20-1056

    [53]

    PARK H S, JEON K, LEE S H, et al. Unpaired-paired learning for shading correction in cone-beam computed tomography[J]. IEEE Access, 2022, 10: 26140−26148. doi: 10.1109/ACCESS.2022.3155203

    [54]

    ZHANG Y, DING S G, GONG X C, et al. Generating synthesized computed tomography from CBCT using a conditional generative adversarial network for head and neck cancer patients[J]. Technology in Cancer Research & Treatment, 2022, 21: 15330338221085358.

    [55]

    ISKENDER B, BRESLER Y. Scatter correction in X-ray CT by physics-inspired deep learning[J]. arXiv Preprint arXiv: 2103.11509, 2021.

    [56]

    LANDRY G, HANSEN D, KAMP F, et al. Comparing Unet training with three different datasets to correct CBCT images for prostate radiotherapy dose calculations[J]. Physics in Medicine & Biology, 2019, 64(3): 035011.

    [57]

    ROSSI M, CERVERI P. Comparison of supervised and unsupervised approaches for the generation of synthetic CT from cone-beam CT[J]. Diagnostics, 2021, 11(8): 1435. doi: 10.3390/diagnostics11081435

    [58]

    DONG G, ZHANG C, DENG L, et al. A deep unsupervised learning framework for the 4D CBCT artifact correction[J]. Physics in Medicine & Biology, 2022, 67(5): 055012.

    [59]

    ENGEL K J, HERRMANN C, ZEITLER G. X-ray scattering in single- and dual-source CT[J]. Medical Physics, 2008, 35(1): 318−332.

    [60]

    GONG H, YAN H, JIA X, et al. X-ray scatter correction for multi-source interior computed tomography[J]. Medical Physics, 2017, 44(1): 71−83. doi: 10.1002/mp.12022

    [61]

    GONG H, LI B, JIA X, et al. Physics model-based scatter correction in multi-source interior computed tomography[J]. IEEE Transactions on Medical Imaging, 2017, 37(2): 349−360.

    [62]

    PIVOT O, FOURNIER C, TABARY J, et al. Scatter correction for spectral CT using a primary modulator mask[J]. IEEE Transactions on Medical Imaging, 2020, 39(6): 2267−2276. doi: 10.1109/TMI.2020.2970296

    [63]

    ERATH J, VöTH T, MAIER J, et al. Deep learning-based forward and cross-scatter correction in dual-source CT[J]. Medical Physics, 2021, 48(9): 4824−4842. doi: 10.1002/mp.15093

  • 期刊类型引用(2)

    1. 张科,张春晓. 基于深度残差网络的儿科肺炎辅助诊断算法. 中国医疗设备. 2022(09): 42-46+56 . 百度学术
    2. 周丽媛,赵启军,高定国. 基于注意力引导深度纹理特征学习的复杂背景藏药材切片图像识别. 世界科学技术-中医药现代化. 2022(12): 4825-4832 . 百度学术

    其他类型引用(5)

图(4)  /  表(1)
计量
  • 文章访问数:  1160
  • HTML全文浏览量:  324
  • PDF下载量:  254
  • 被引次数: 7
出版历程
  • 收稿日期:  2022-06-28
  • 修回日期:  2022-10-10
  • 录用日期:  2022-10-11
  • 网络出版日期:  2022-10-23
  • 发布日期:  2023-03-30

目录

    /

    返回文章
    返回
    x 关闭 永久关闭