Subduction Dynamics at the Northwestern Pacific Slab Edge: Constraints of Tomography in Kamchatka
-
摘要:
堪察加半岛位于太平洋板块的西北边缘处。太平洋板块沿堪察加海沟俯冲进入地幔,而在板块边缘处,其俯冲特征是否有不同?本研究从IRIS网站下载76个固定台站记录到的来自2239个近震事件和75个远震事件的77141条P波到时数据,利用近震-远震联合层析成像方法(TOMOG3D)获得堪察加地区壳幔内的三维P波速度结构。成像结果显示,研究区域下方上地幔内存在非常明显的高速异常块体,且与深源地震的空间分布高度一致。分析认为,该高速异常体为俯冲的西太平洋板块,俯冲角度和深度沿堪察加海沟由北向南均逐渐增加。地幔过渡带和下地幔顶部存在明显的高速异常块体,可能是因为堪察加半岛下方的太平洋俯冲板块在边缘或深部发生岩石圈熔融或拆沉现象,该高速异常块体即为拆沉的岩石圈。本文的成像结果中还可清晰地观察到2个板块窗口。堪察加地区浅部火山前线下方出现大范围的低速异常,可能是由于俯冲板块脱水或流经板块窗口的地幔流热物质导致。
Abstract:Kamchatka is located at the northwestern edge of the Pacific plate. The Pacific slab is subducting into the mantle along the Kamchatka trench. Are there any differences in subduction features near the edge? To answer this question, seismic tomography was applied to 77,141 P-wave arrival times of 2239 local earthquakes and 75 teleseismic events recorded at 76 permanent stations to study the three-dimensional velocity structure to a depth of 700 km below Kamchatka. A clear high-velocity anomaly was evident beneath the study region, which is consistent with the distribution of intermediate-depth and deep-focus earthquakes. This high-velocity anomaly was interpreted as the subducting Pacific slab with its subduction angle and depth gradually increasing from the north to south along the Kamchatka trench. Another high-velocity anomaly appeared in the mantle transition zone and the uppermost lower mantle, which may reflect a piece of detached oceanic lithosphere due to melting of the subducting slab near the slab edge. Two slab windows were also found, through which hot mantle materials flowed from the subslab to the upper-mantle wedge. Large-scale low-velocity anomalies exist under the volcanic front, which reflect hot and wet upwelling flow in the mantle wedge due to the slab dehydration.
-
-
图 11 两种不同速度模型的可恢复测试结果
(a)和(b)为两种不同的输入模型,(c)和(d)为对应的输出模型。4个剖面结果均沿剖线AA′(见图8)。
Figure 11. Results of two restoring resolution tests
-
[1] 臧绍先, 宁杰远. 西太平洋俯冲带的研究及其动力学意义[J]. 地球物理学报, 1996, 39(2): 188−202. DOI: 10.3321/j.issn:0001-5733.1996.02.006. ZANG S X, NING J Y. Study on the subduction zone in Western Pacific and its implication for the geodynamics[J]. Chinese Journal of Geophysics, 1996, 39(2): 188−202. DOI: 10.3321/j.issn:0001-5733.1996.02.006. (in Chinese).
[2] HONTHAAS C, BELLON H, KEPEZHINSKAS P K, et al. New 40K-40Ar dates for the Cretaceous-Quaternary magmatism of northern Kamchatka (Russie)[J]. Comptes Rendus-Academie des Sciences, Serie II: Sciences de la Terre et des Planetes, 1995, 320: 197-204.
[3] BRAITSEVA O A, MELEKESTSEV I V, PONOMAREVA V V, et al. Ages of calderas, large explosive craters and active volcanoes in the Kurile–Kamchatka region. Russia[J]. Bull Volcanol, 1995, 57: 383−402.
[4] 冯梅, 安美建. 基于面波频散的三维横波速度方位各向异性层析成像方法[J]. CT理论与应用研究, 2020, 29(4): 381−397. DOI: 10.15953/j.1004-4140.2020.29.04.01. FENG M, AN M J. Method on 3D tomography of S-wave velocity azimuthal anisotropy by using surface-wave dispersion curves[J]. CT Theory and Applications, 2020, 29(4): 381−397. DOI: 10.15953/j.1004-4140.2020.29.04.01. (in Chinese).
[5] KOULAKOV I. Seismic tomography of Kamchatka volcanoes[J]. Russian Geology and Geophysics, 2022, 63(11): 1207−1244. DOI: 10.2113/RGG20214380.
[6] KOULAKOV I, SHAPIRO N M, SENS-SCHÖNFELDER C, et al. Mantle and crustal sources of magmatic activity of Klyuchevskoy and surrounding volcanoes in Kamchatka inferred from earthquake tomography[J]. Journal of Geophysical Research: Solid Earth, 2020, 125: e2020JB020097. DOI: 10.1029/2020JB020097.
[7] KOULAKOV I, DOBRETSOV N, BUSHENKOVA N, et al. Slab shape in subduction zones beneath the Kurile-Kamchatka and Aleutian arcs based on regional tomography results[J]. Russian Geology and Geophysics, 2011, 52: 650−667. DOI: 10.1016/j.rgg.2011.05.008.
[8] FAN J, ZHAO D. Subslab heterogeneity and giant megathrust earthquakes[J]. Nature Geoscience, 2021, 14: 349−353. DOI: 10.1038/s41561-021-00728-x.
[9] ZHAO L, LIU X, ZHAO D, et al. Mapping the pacific slab edge and toroidal mantle flow beneath Kamchatka[J]. Journal of Geophysical Research: Solid Earth, 2021, 126: e2021JB022518. DOI: 10.1029/2021JB022518.
[10] GREEN R G, SENS-SCHÖNFELDER C, SHAPIRO N, et al. Magmatic and sedimentary structure beneath the klyuchevskoy volcanic group, kamchatka, from ambient noise tomography[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(3): 280−392.
[11] SLAVINA L B, PIVOVAROVA N B. Three-dimensional velocity models of focal zones and refinement of hypocenter parameters[J]. Physics of the Earth and Planetary Interiors, 1992, 75(1/3): 77−88.
[12] GORBATOV A, KOSTOGLODOV V, SUÁREZ G, et al. Seismicity and structure of the Kamchatka Subduction Zone[J]. Journal of Geophysical Research: Solid Earth, 1997, 102(B8): 17883−17898. DOI: 10.1029/96JB03491.
[13] GORBATOV A, FUKAO Y, WIDIYANTORO S. et al. Seismic evidence for a mantle plume oceanwards of the Kamchatka-Aleutian trench junction[J]. Geophysical Journal International, 2001, 146: 282−288. DOI: 10.1046/j.0956-540x.2001.01439.x.
[14] JIANG G, ZHAO D, ZHANG G. Seismic tomography of the Pacific slab edge under Kamchatka[J]. Tectonophysics, 2009, 465: 190−203. DOI: 10.1016/j.tecto.2008.11.019.
[15] ZHAO D, HASEGAWA A, KANAMORI H. Deep structure of Japan subduction zone as derived from local, regional, and teleseismic events[J]. Journal of Geophysical Research: Solid Earth, 1994, 99(B11): 22313−22329. DOI: 10.1029/94JB01149.
[16] ZHAO D. Seismic imaging of northwest Pacific and East Asia: New insight into volcanism, seismogenesis, and geodynamics[J]. Earth-Science Reviews, 2021, 214: 103507. DOI: 10.1016/j.earscirev.2021.103507.
[17] KENNETT B, ENGDAHL E. Traveltimes for global earthquake location and phase identification[J]. Geophysical Journal International, 1991, 105(2): 429−465. DOI: 10.1111/j.1365-246X.1991.tb06724.x.
[18] ZHAO D, HASEGAWA A, HORIUCHI S. Tomographic imaging of P and S wave velocity structure beneath northeastern Japan[J]. Journal of Geophysical Research, 1992, 97(B13): 19909. DOI: 10.1029/92JB00603.
[19] ENGDAHL E R. Application of an improved algorithm to high precision relocation of ISC test events[J]. Physics of the Earth and Planetary Interiors, 2006, 158(1): 14-18. https://doi.org/10.1016/j.pepi.2006.03.007.
[20] LEVIN V, PARK J, BRANDON M, et al. Crust and upper mantle of Kamchatka from teleseismic receiver functions[J]. Tectonophysics, 2002, 358(1/4): 233−265. DOI: 10.1016/S0040-1951(02)00426-2.
[21] EGORUSHKIN I I, KOULAKOV I YU, SHAPIRO N M, et al. Structure of the upper crust beneath the Klyuchevskoy group of volcanoes revealed from ambient noise tomography[J]. Russian Geology and Geophysics, 2021, 62(1): 68−82. DOI: 10.2113/RGG20204238.
[22] JIANG G, ZHAO D, ZHANG G. Detection of metastable olivine wedge in the western pacific slab and its geodynamic implications[J]. Physics of the Earth and Planetary Interiors, 2015, 238: 1−7. DOI:10.1016/ j.pepi.2014.10.008.
[23] DAVAILLE A, LEES M. Thermal modeling of subducted plates: Tear and hotspot at the Kamchatka corner[J]. Earth and Planetary Science Letters, 2004, 226: 293−304. DOI: 10.1016/j.jpgl.2004.07.024.
[24] FRANK W B, SHAPIRO N M, GUSEV A A. Progressive reactivation of the volcanic plumbing system beneath Tolbachik volcano (Kamchatka, Russia) revealed by long-period seismicity[J]. Earth and Planetary Science Letters, 2018, 493: 47−56. DOI: 10.1016/j.jpgl.2018.04.018.
[25] FLEROV G B, CHURIKOVA T G, GORDEYCHIK B N, et al. The ziminy sopki Volcanic Massif: Geology and mineralogy of rocks (the Klyuchevskoy Volcanic Group, Kamchatka)[J]. Earth Science, 2019, 44(4): 19−34.
[26] WESSEL P, LUIS J. The GMT/MATLAB toolbox[J]. Geochemistry, Geophysics, Geosystems, 2017, 18: 811−823. DOI: 10.1002/2016GC006723.
-
期刊类型引用(3)
1. 张明辉,徐涛,田小波,唐国彬,刘震,白志明. 虚拟震源地震探测方法及其应用. 地球与行星物理论评(中英文). 2025(02): 215-224 . 百度学术
2. 郭云飞,雷建设,关鹏虎. 海南岛及邻区中小地震重定位. CT理论与应用研究(中英文). 2025(02): 191-204 . 百度学术
3. 夏心茹,江国明,赵大鹏. 郯庐断裂中南段地壳速度结构与地震活动性研究. CT理论与应用研究(中英文). 2025(02): 163-174 . 百度学术
其他类型引用(0)