ISSN 1004-4140
CN 11-3017/P

西北太平洋板块边缘俯冲特征:来自堪察加壳幔速度成像的约束

刘晏廷, 钟成城, 江国明, 赵大鹏

刘晏廷, 钟成城, 江国明, 等. 西北太平洋板块边缘俯冲特征:来自堪察加壳幔速度成像的约束[J]. CT理论与应用研究(中英文), 2024, 33(2): 135-148. DOI: 10.15953/j.ctta.2023.223.
引用本文: 刘晏廷, 钟成城, 江国明, 等. 西北太平洋板块边缘俯冲特征:来自堪察加壳幔速度成像的约束[J]. CT理论与应用研究(中英文), 2024, 33(2): 135-148. DOI: 10.15953/j.ctta.2023.223.
LIU Y T, ZHONG C C, JIANG G M, et al. Subduction Dynamics at the Northwestern Pacific Slab Edge: Constraints of Tomography in Kamchatka[J]. CT Theory and Applications, 2024, 33(2): 135-148. DOI: 10.15953/j.ctta.2023.223. (in Chinese).
Citation: LIU Y T, ZHONG C C, JIANG G M, et al. Subduction Dynamics at the Northwestern Pacific Slab Edge: Constraints of Tomography in Kamchatka[J]. CT Theory and Applications, 2024, 33(2): 135-148. DOI: 10.15953/j.ctta.2023.223. (in Chinese).

西北太平洋板块边缘俯冲特征:来自堪察加壳幔速度成像的约束

基金项目: 国家自然科学基金(西太平洋俯冲板块内橄榄石亚稳态楔的结构研究(40904021))。
详细信息
    作者简介:

    刘晏廷: 女,中国地质大学(北京)地球物理学专业硕士研究生,主要从事天然地震层析成像和深度学习的研究,E-mail:liuyanting@email.cugb.edu.cn

    通讯作者:

    江国明: 男,中国地质大学(北京)地球物理与信息技术学院教授、博士生导师,主要从事天然地震层析成像研究和教学工作,E-mail:jiang_guoming@cugb.edu.cn

  • 中图分类号: P  315.2

Subduction Dynamics at the Northwestern Pacific Slab Edge: Constraints of Tomography in Kamchatka

  • 摘要:

    堪察加半岛位于太平洋板块的西北边缘处。太平洋板块沿堪察加海沟俯冲进入地幔,而在板块边缘处,其俯冲特征是否有不同?本研究从IRIS网站下载76个固定台站记录到的来自2239个近震事件和75个远震事件的77141条P波到时数据,利用近震-远震联合层析成像方法(TOMOG3D)获得堪察加地区壳幔内的三维P波速度结构。成像结果显示,研究区域下方上地幔内存在非常明显的高速异常块体,且与深源地震的空间分布高度一致。分析认为,该高速异常体为俯冲的西太平洋板块,俯冲角度和深度沿堪察加海沟由北向南均逐渐增加。地幔过渡带和下地幔顶部存在明显的高速异常块体,可能是因为堪察加半岛下方的太平洋俯冲板块在边缘或深部发生岩石圈熔融或拆沉现象,该高速异常块体即为拆沉的岩石圈。本文的成像结果中还可清晰地观察到2个板块窗口。堪察加地区浅部火山前线下方出现大范围的低速异常,可能是由于俯冲板块脱水或流经板块窗口的地幔流热物质导致。

    Abstract:

    Kamchatka is located at the northwestern edge of the Pacific plate. The Pacific slab is subducting into the mantle along the Kamchatka trench. Are there any differences in subduction features near the edge? To answer this question, seismic tomography was applied to 77,141 P-wave arrival times of 2239 local earthquakes and 75 teleseismic events recorded at 76 permanent stations to study the three-dimensional velocity structure to a depth of 700 km below Kamchatka. A clear high-velocity anomaly was evident beneath the study region, which is consistent with the distribution of intermediate-depth and deep-focus earthquakes. This high-velocity anomaly was interpreted as the subducting Pacific slab with its subduction angle and depth gradually increasing from the north to south along the Kamchatka trench. Another high-velocity anomaly appeared in the mantle transition zone and the uppermost lower mantle, which may reflect a piece of detached oceanic lithosphere due to melting of the subducting slab near the slab edge. Two slab windows were also found, through which hot mantle materials flowed from the subslab to the upper-mantle wedge. Large-scale low-velocity anomalies exist under the volcanic front, which reflect hot and wet upwelling flow in the mantle wedge due to the slab dehydration.

  • 图  1   堪察加半岛地形与地震台站分布

    蓝色方块为台站,白色和红色三角形分别代表死火山和活火山;字母S和K分别代表舍维留奇火山和克柳切夫火山。

    Figure  1.   Topography of the Kamchatka Peninsula and distribution of seismic stations (blue squares)

    图  2   堪察加地区近震分布

    色棒代表震源深度。

    Figure  2.   Distribution of local earthquakes in Kamchatka

    图  3   远震事件分布

    图中的黑色三角形代表研究区域的中心位置,黑色正方形代表远震事件,同心圆圈层旁边的数字代表圆圈上的点到中心点的距离。

    Figure  3.   Distribution of teleseismic events used in the current study

    图  4   横向网格间隔为1°×1°的检测板测试结果

    Figure  4.   Results of a checkerboard test with a lateral grid interval of 1°×1°

    图  5   不同深度上射线数分布

    色棒颜色表示射线数的以10为底的对数。

    Figure  5.   Count of rays at different depths

    图  6   阻尼系数折中曲线

    最佳阻尼系数为30。

    Figure  6.   Trade-off curve for selecting the optimal damping parameter

    图  7   堪察加地区壳幔速度异常水平剖面图

    色棒表示速度异常(%),红色代表低速异常,蓝色则代表高速异常。

    Figure  7.   Map views of P-wave velocity anomalies at different depths below Kamchatka

    图  8   剖线位置分布

    Figure  8.   Distribution of profile lines

    图  9   堪察加壳幔速度异常纵向剖面图(剖线AA′–HH′,位置见图8)

    剖面图中白色圆圈表示剖线附近的地震;红色和蓝色分别表示低速和高速异常(见色棒);图中3条虚线从上至下分别代表33 km处的莫霍面,410 km和660 km深度处速度不连续面。

    Figure  9.   Vertical cross-sections of velocity anomalies along the profiles (AA′–HH′) shown in Fig.8

    图  10   堪察加壳幔速度异常纵向剖面图(剖线II′-NN′,位置见图8)

    剖面图上白色圆圈用来表示剖线附近相关的地震事件;红色区域和蓝色区域分别表示剖面图上的低速和高速异常区域(见色棒);图上3条虚线从上至下分别代表33 km处的莫霍面,410 km和660 km深度处速度不连续面。

    Figure  10.   Vertical cross-sections of velocity anomalies along the profiles (II′–NN′) shown in Fig.8

    图  11   两种不同速度模型的可恢复测试结果

    (a)和(b)为两种不同的输入模型,(c)和(d)为对应的输出模型。4个剖面结果均沿剖线AA′(见图8)。

    Figure  11.   Results of two restoring resolution tests

    图  12   堪察加地区下方太平洋俯冲板块三维透视图[14]

    Figure  12.   Three-dimensional perspective of the subducting Pacific slab beneath Kamchatka[14]

  • [1] 臧绍先, 宁杰远. 西太平洋俯冲带的研究及其动力学意义[J]. 地球物理学报, 1996, 39(2): 188−202. DOI: 10.3321/j.issn:0001-5733.1996.02.006.

    ZANG S X, NING J Y. Study on the subduction zone in Western Pacific and its implication for the geodynamics[J]. Chinese Journal of Geophysics, 1996, 39(2): 188−202. DOI: 10.3321/j.issn:0001-5733.1996.02.006. (in Chinese).

    [2]

    HONTHAAS C, BELLON H, KEPEZHINSKAS P K, et al. New 40K-40Ar dates for the Cretaceous-Quaternary magmatism of northern Kamchatka (Russie)[J]. Comptes Rendus-Academie des Sciences, Serie II: Sciences de la Terre et des Planetes, 1995, 320: 197-204.

    [3]

    BRAITSEVA O A, MELEKESTSEV I V, PONOMAREVA V V, et al. Ages of calderas, large explosive craters and active volcanoes in the Kurile–Kamchatka region. Russia[J]. Bull Volcanol, 1995, 57: 383−402.

    [4] 冯梅, 安美建. 基于面波频散的三维横波速度方位各向异性层析成像方法[J]. CT理论与应用研究, 2020, 29(4): 381−397. DOI: 10.15953/j.1004-4140.2020.29.04.01.

    FENG M, AN M J. Method on 3D tomography of S-wave velocity azimuthal anisotropy by using surface-wave dispersion curves[J]. CT Theory and Applications, 2020, 29(4): 381−397. DOI: 10.15953/j.1004-4140.2020.29.04.01. (in Chinese).

    [5]

    KOULAKOV I. Seismic tomography of Kamchatka volcanoes[J]. Russian Geology and Geophysics, 2022, 63(11): 1207−1244. DOI: 10.2113/RGG20214380.

    [6]

    KOULAKOV I, SHAPIRO N M, SENS-SCHÖNFELDER C, et al. Mantle and crustal sources of magmatic activity of Klyuchevskoy and surrounding volcanoes in Kamchatka inferred from earthquake tomography[J]. Journal of Geophysical Research: Solid Earth, 2020, 125: e2020JB020097. DOI: 10.1029/2020JB020097.

    [7]

    KOULAKOV I, DOBRETSOV N, BUSHENKOVA N, et al. Slab shape in subduction zones beneath the Kurile-Kamchatka and Aleutian arcs based on regional tomography results[J]. Russian Geology and Geophysics, 2011, 52: 650−667. DOI: 10.1016/j.rgg.2011.05.008.

    [8]

    FAN J, ZHAO D. Subslab heterogeneity and giant megathrust earthquakes[J]. Nature Geoscience, 2021, 14: 349−353. DOI: 10.1038/s41561-021-00728-x.

    [9]

    ZHAO L, LIU X, ZHAO D, et al. Mapping the pacific slab edge and toroidal mantle flow beneath Kamchatka[J]. Journal of Geophysical Research: Solid Earth, 2021, 126: e2021JB022518. DOI: 10.1029/2021JB022518.

    [10]

    GREEN R G, SENS-SCHÖNFELDER C, SHAPIRO N, et al. Magmatic and sedimentary structure beneath the klyuchevskoy volcanic group, kamchatka, from ambient noise tomography[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(3): 280−392.

    [11]

    SLAVINA L B, PIVOVAROVA N B. Three-dimensional velocity models of focal zones and refinement of hypocenter parameters[J]. Physics of the Earth and Planetary Interiors, 1992, 75(1/3): 77−88.

    [12]

    GORBATOV A, KOSTOGLODOV V, SUÁREZ G, et al. Seismicity and structure of the Kamchatka Subduction Zone[J]. Journal of Geophysical Research: Solid Earth, 1997, 102(B8): 17883−17898. DOI: 10.1029/96JB03491.

    [13]

    GORBATOV A, FUKAO Y, WIDIYANTORO S. et al. Seismic evidence for a mantle plume oceanwards of the Kamchatka-Aleutian trench junction[J]. Geophysical Journal International, 2001, 146: 282−288. DOI: 10.1046/j.0956-540x.2001.01439.x.

    [14]

    JIANG G, ZHAO D, ZHANG G. Seismic tomography of the Pacific slab edge under Kamchatka[J]. Tectonophysics, 2009, 465: 190−203. DOI: 10.1016/j.tecto.2008.11.019.

    [15]

    ZHAO D, HASEGAWA A, KANAMORI H. Deep structure of Japan subduction zone as derived from local, regional, and teleseismic events[J]. Journal of Geophysical Research: Solid Earth, 1994, 99(B11): 22313−22329. DOI: 10.1029/94JB01149.

    [16]

    ZHAO D. Seismic imaging of northwest Pacific and East Asia: New insight into volcanism, seismogenesis, and geodynamics[J]. Earth-Science Reviews, 2021, 214: 103507. DOI: 10.1016/j.earscirev.2021.103507.

    [17]

    KENNETT B, ENGDAHL E. Traveltimes for global earthquake location and phase identification[J]. Geophysical Journal International, 1991, 105(2): 429−465. DOI: 10.1111/j.1365-246X.1991.tb06724.x.

    [18]

    ZHAO D, HASEGAWA A, HORIUCHI S. Tomographic imaging of P and S wave velocity structure beneath northeastern Japan[J]. Journal of Geophysical Research, 1992, 97(B13): 19909. DOI: 10.1029/92JB00603.

    [19]

    ENGDAHL E R. Application of an improved algorithm to high precision relocation of ISC test events[J]. Physics of the Earth and Planetary Interiors, 2006, 158(1): 14-18. https://doi.org/10.1016/j.pepi.2006.03.007.

    [20]

    LEVIN V, PARK J, BRANDON M, et al. Crust and upper mantle of Kamchatka from teleseismic receiver functions[J]. Tectonophysics, 2002, 358(1/4): 233−265. DOI: 10.1016/S0040-1951(02)00426-2.

    [21]

    EGORUSHKIN I I, KOULAKOV I YU, SHAPIRO N M, et al. Structure of the upper crust beneath the Klyuchevskoy group of volcanoes revealed from ambient noise tomography[J]. Russian Geology and Geophysics, 2021, 62(1): 68−82. DOI: 10.2113/RGG20204238.

    [22]

    JIANG G, ZHAO D, ZHANG G. Detection of metastable olivine wedge in the western pacific slab and its geodynamic implications[J]. Physics of the Earth and Planetary Interiors, 2015, 238: 1−7. DOI:10.1016/ j.pepi.2014.10.008.

    [23]

    DAVAILLE A, LEES M. Thermal modeling of subducted plates: Tear and hotspot at the Kamchatka corner[J]. Earth and Planetary Science Letters, 2004, 226: 293−304. DOI: 10.1016/j.jpgl.2004.07.024.

    [24]

    FRANK W B, SHAPIRO N M, GUSEV A A. Progressive reactivation of the volcanic plumbing system beneath Tolbachik volcano (Kamchatka, Russia) revealed by long-period seismicity[J]. Earth and Planetary Science Letters, 2018, 493: 47−56. DOI: 10.1016/j.jpgl.2018.04.018.

    [25]

    FLEROV G B, CHURIKOVA T G, GORDEYCHIK B N, et al. The ziminy sopki Volcanic Massif: Geology and mineralogy of rocks (the Klyuchevskoy Volcanic Group, Kamchatka)[J]. Earth Science, 2019, 44(4): 19−34.

    [26]

    WESSEL P, LUIS J. The GMT/MATLAB toolbox[J]. Geochemistry, Geophysics, Geosystems, 2017, 18: 811−823. DOI: 10.1002/2016GC006723.

  • 期刊类型引用(3)

    1. 张明辉,徐涛,田小波,唐国彬,刘震,白志明. 虚拟震源地震探测方法及其应用. 地球与行星物理论评(中英文). 2025(02): 215-224 . 百度学术
    2. 郭云飞,雷建设,关鹏虎. 海南岛及邻区中小地震重定位. CT理论与应用研究(中英文). 2025(02): 191-204 . 百度学术
    3. 夏心茹,江国明,赵大鹏. 郯庐断裂中南段地壳速度结构与地震活动性研究. CT理论与应用研究(中英文). 2025(02): 163-174 . 百度学术

    其他类型引用(0)

图(12)
计量
  • 文章访问数:  200
  • HTML全文浏览量:  44
  • PDF下载量:  41
  • 被引次数: 3
出版历程
  • 收稿日期:  2023-12-12
  • 修回日期:  2023-12-23
  • 录用日期:  2023-12-24
  • 网络出版日期:  2024-01-07
  • 刊出日期:  2024-03-06

目录

    /

    返回文章
    返回
    x 关闭 永久关闭