Experimental Design of Effect of Grinding Media on Three-Dimensional Morphology of Products Based on Micro-CT
-
摘要:
本文设计研究球形和六棱柱形研磨介质对煤炭破碎产物三维形貌特征影响的实验,具体过程包括不同时间批次煤炭破碎和筛分,基于高分辨三维X射线显微成像系统的粗粒级煤炭无损检测以及基于Dragonfly三维数据分析软件的完整颗粒分割提取和三维形貌特征参数计算等环节。结果显示:在球磨机转速率较低的前提下,钢球和钢锻的总表面积或总质量相同时,钢球作用下物料的初始粒级破碎速率略高于钢锻,且-1 mm细粒级产率最高。研磨作用促使粗粒级物料的体积和表面积降低,3种研磨条件下表面积最大的钢锻对样品的“磨剥”作用最为明显,颗粒球形度最高。
Abstract:Grinding experiments of coal are designed to study the influence of spherical and cylindrical media on the three-dimensional morphology characteristics of grinding products. Details of experiments consist of coal grinding, screening of grinding produces, non-destructive testing of coarse-grained coal based on high-resolution three-dimensional X-ray microscopic imaging system, and particle segmentation extraction and three-dimensional morphology feature parameter calculation based on the Dragonfly software. For the low rotation rate condition of the ball mill, if the total surface area or total mass of grinding media is the same, breakage rate of the top size particles ground by the grinding ball is higher than that of the cylindrical media. Moreover, the yield of −1 mm fines yielded by the ball is the highest. The grinding effect reduces the volume and surface area of coarse materials. For the three grinding conditions, the steel cylindrical media with the largest surface area has a more significant “grinding and stripping” effect on coal and the highest particle sphericity.
-
Keywords:
- mirco-CT /
- analysis of three-dimensional data /
- grinding /
- experimental design
-
-
表 1 原煤及不同破碎条件下颗粒的体积、表面积和球形度
Table 1 Volume, surface area, and degree of sphericity of raw coal and particles under various grinding conditions
样品 代表性颗粒编号 体积/mm3 表面积/mm2 球形度 原煤 50.20 18.00 0.6029 钢球60 s a 45.27 14.15 0.6268 钢球120 s b 35.73 12.26 0.7205 等质量钢锻60 s c 43.58 13.79 0.6408 等质量钢锻120 s d 31.73 11.26 0.7546 等表面积钢锻60 s e 47.58 15.13 0.6304 等表面积钢锻120 s f 38.73 13.05 0.6973 注:体积、表面积和球形度均为统计后的平均数据。 -
[1] 张宇新, 谢卫宁, 姜海迪, 等. 可磨性指数对煤炭混合破碎过程影响的实验研究[J]. 煤炭学报, 2022, 47(5): 2088−2095. ZHANG Y X, XIE W N, JIANG H D, et al. Experimental investigation on the influence of hardgrove grindability index on the heterogeneous grinding of coal mixture[J]. Journal of China Coal Society, 2022, 47(5): 2088−2095. (in Chinese).
[2] 袁程方, 徐涛, 吴江岳恩, 等. 纳米复合瓷球在钨矿石细磨中磨矿特性研究[J]. 有色金属(选矿部分), 2022, 4: 86−91. YUAN C F, XU T, WUJIANG Y E, et al. Study on grinding characteristics of nano-composite ceramic in fine grinding of tungsten ore[J]. Nonferrous Metals (Mineral Processing Section), 2022, 4: 86−91. (in Chinese).
[3] 王润花, 王海鹏, 李建莉, 等. 基于同步辐射X射线CT的无烟煤样孔隙分布特征[J]. CT理论与应用研究, 2021, 30(6): 691−700. DOI: 10.15953/j.1004-4140.2021.30.06.04. WANG R H, WANG H P, LI J L, et al. Characterization of pore distribution of the anthracite coal sample based on synchrotron radiation X-ray CT[J]. CT Theory and applications, 2021, 30(6): 691−700. DOI: 10.15953/j.1004-4140.2021.30.06.04. (in Chinese).
[4] 谢广元, 张文军, 彭耀丽, 等. 科研成果转化实验对创新能力培养的探索[J]. 实验室研究与探索, 2015, 34(12): 174−178. DOI: 10.3969/j.issn.1006-7167.2015.12.043. XIE G Y, ZHANG W J, PENG Y L, et al. Exploration and practice of the cultivation of innovative ability by experiments of transferring scientific research achievements[J]. Research and Explorationin Laboratory, 2015, 34(12): 174−178. DOI: 10.3969/j.issn.1006-7167.2015.12.043. (in Chinese).
[5] 胡慧敏, 张其武. 球磨调控非金属矿物反应活性实现重金属环境净化及资源再生利用[J]. 金属矿山, 2020, 10: 82−91. HU H M, ZHANG Q W. Research on ball-milling regulating the reactivity of non-metallic minerals torealize environmental purification of heavy metals and resource recycling[J]. Metal Mine, 2020, 10: 82−91. (in Chinese).
[6] 陆哲, 夏柳荫, BRIAN H, 等. 球磨介质及尺寸对铜锌矿矿浆化学性质及矿物表面化学性质的影响[J]. 中国有色金属学报, 2017, 27(8): 1701−1707. LU Z, XIA L Y, BRIAN H, et al. Influence of ball mill medium and size on properties of copper-zinc ore pulp and mineral surface[J]. The Chinese Journal of Nonferrous Metals, 2017, 27(8): 1701−1707. (in Chinese).
[7] 吕鹏飞, 赵文杰, 刘锋. 基于微焦点CT技术的孔隙尺度多相渗流实验系统开发[J]. 实验室研究与探索, 2022, 41(6): 11−15. LV P F, ZHAO W J, LIU F. Development of pore-scale multiphase flow experiment system in porous media based on micro-CT imaging technique[J]. Research and Exploration in Laboratory, 2022, 41(6): 11−15. (in Chinese).
[8] 王旭东, 肖庆飞, 张谦, 等. 球磨机细磨阶段钢锻与钢球磨矿效果对比[J]. 黄金科学技术, 2020, 28(5): 771-777. WANG X D, XIAO Q F, ZHANG Q, et al. Comparison of grinding effect between steel section and steelball during fine grinding stage of ball mill[J]. Gold Science and Technology, 2020, 28(5): 771-777. (in Chinese).
[9] 马帅, 肖庆飞, 张谦, 等. 钢球配比及充填率的对比试验研究[J]. 有色金属(选矿部分), 2022, 5: 64−68. MA S, XIAO Q F, ZHANG Q, et al. Comparative experimental study on the ratio and filling rate of steel ball[J]. Nonferrous Metals (Mineral Processing Section), 2022, 5: 64−68. (in Chinese).
[10] 聂梦宇, 韩跃新, 李艳军. 磨矿介质对闪锌矿浮选行为的影响研究[J]. 金属矿石, 2019, 2: 163−167. NIE M Y, HAN Y X, LI Y J. Effects of grinding media on the flotation behaviors of sphalerite[J]. Metal Mine, 2019, 2: 163−167. (in Chinese).
[11] XIE W N, HE Y Q, SHI F N, et al. Comparison of energy efficiency between E and MPS type vertical spindle pulverizer based on the experimental and industrial sampling tests[J]. Fuel, 2017, 130: 174−181.
[12] 秦芹, 吴时国. 南海北部白云凹陷深水油气区的重-震数据处理与分析[J]. CT理论与应用研究, 2017, 26(6): 695−706. DOI: 10.15953/j.1004-4140.2017.26.06.05. QIN Q, WU S G. The analysis and gravity-seismic imaging in the Baiyun sag deep-water hydrocarbon area in the Northern South China Sea[J]. CT Theory and Applications, 2017, 26(6): 695−706. DOI: 10.15953/j.1004-4140.2017.26.06.05. (in Chinese).
[13] ZHANG K Z, WANG S L, WANG L, et al. 3D visualization of tectonic coal microstructure and quantitative characterization on topological connectivity of pore-fracture networks by micro-CT[J]. Journal of Petroleum Science and Engineering, 2022, 208: 109675. DOI: 10.1016/j.petrol.2021.109675.
[14] JIA Q F, LIU D M, CAI Y D, et al. Nano-CT measurement of pore-fracture evolution and diffusion transport induced by fracturing in medium-high rank coal[J]. Journal of Natural Gas Science and Engineering, 2022, 106: 104769. DOI: 10.1016/j.jngse.2022.104769.
[15] 乔鹏刚, 魏交统, 潘晋孝. 基于多能谱CT与NC-POCS重建算法的泡沫铝孔隙率计算[J]. CT理论与应用研究, 2021, 30(1): 71−80. DOI: 10.15953/j.1004-4140.2021.30.01.07. QIAO P G, WEI J T, PAN J X. Calculation of aluminum foam porosity based on multi-spectrum CT and NC-POCS reconstruction algorithm[J]. CT Theory and Applications, 2021, 30(1): 71−80. DOI: 10.15953/j.1004-4140.2021.30.01.07. (in Chinese).
[16] LIN Y B, QIN Y, MA D M, et al. Pore structure, adsorptivity and influencing factors of high-volatile bituminous coal rich in inertinite[J]. Fuel, 2021, 293: 120418. DOI: 10.1016/j.fuel.2021.120418.
[17] YOSHIYA M K, YUSUKE N K, NUMAZAWA Y, et al. Migration of inert materials during coking of molded coal[J]. Chemical Engineering Journal Advances, 2023, 16: 100526. DOI: 10.1016/j.ceja.2023.100526.
[18] SHI F N. Comparison of grinding media- cylpebs versus balls[J]. Minerals Engineering, 2004, 17(11/12): 1259−1268.
[19] IPEK H. The effects of grinding media shape on breakage rate[J]. Minerals Engineering, 2006, 19(1): 91−93. DOI: 10.1016/j.mineng.2005.05.009.
[20] IPEK H. Effect of grinding media shapes on breakage parameters[J]. Particle & Particle Systems Characterization, 2007, 24(24): 229−235.
[21] 徐今冬, 余超, 陈晓锋, 等. 不同磨矿介质对细粒磁铁矿磨矿效果的影响[J/OL]. 有色金属科学与工程, 2023, 14(4): 561-568. XU J D, YU C, CHEN X F, et al. Influence of different grinding media on grinding effect of fine-grained magnetite[J]. Nonferrous Metals Science and Engineering, 2023, 14(4): 561-568. (in Chinese).
[22] 童佳琪, 方鑫, 吴志强, 等. 六棱柱作细磨介质下磨矿能耗与粒度分布特征[J]. 有色金属科学与工程, 2019, 10(3): 86−91. TONG J Q, FANG X, WU Z Q, et al. Grinding energy consumption and particle size distribution characteristics of Hexagon as a fine grinding medium[J]. Nonferrous Metals Science and Engineering, 2019, 10(3): 86−91. (in Chinese).
[23] SUN L L, ZHANG C, WANG G, et al. Research on the evolution of pore and fracture structures duringspontaneous combustion of coal based on CT 3D reconstruction[J]. Energy, 2022, 260: 125033.
[24] LIU P, NIE B S, ZHAO Z D, et al. Characterization of ultrasonic induced damage on multi-scale pore/fracture in coal using gas sorption and μ-CT 3D reconstruction[J]. Fuel, 2023, 332(2): 126178.
[25] 朱凯然, 王波, 武晓朦, 等. 原位岩土CT及其关键技术探讨[J]. CT理论与应用研究, 2019, 28(6): 641−652. DOI: 10.15953/j.1004-4140.2019.28.06.01. ZHU K R, WANG B, WU X M, et al. In-situ geotechnical CT and its key technologies[J]. CT Theory and Applications, 2019, 28(6): 641−652. DOI: 10.15953/j.1004-4140.2019.28.06.01. (in Chinese).
[26] 徐宏祥, 卓启明, 王建兵, 等. 矿物选浮中颗粒与气泡黏附效率实验观测装置开发与教学应用[J]. 实验技术与管理, 2022, 39(1): 103−107. XU H X, ZHUO Q M, WANG J B, et al. Development and teaching application of experimental observation device for particle and bubble adhesion efficiency in mineral flotation[J]. Experimental Technology and Management, 2022, 39(1): 103−107. (in Chinese).
[27] 朱学帅, 张晨瑜, 杨小娟, 等. 退役动力锂离子电池正、负极材料浮选回收实验设计[J]. 实验技术与管理, 2022, 39(3): 66−69. ZHU X S, ZHANG C Y, YANG X J, et al. Experimental design on flotation recovery of cathode and anode materials from spent power lithium-ion batteries[J]. Experimental Technology and Management, 2022, 39(3): 66−69. (in Chinese).
[28] 张开仲. 构造煤微观结构精细定量表征及瓦斯分形输运特性研究[D]. 徐州: 中国矿业大学, 2020. [29] ZANG J, LIU J L, HE J B, et al. Characterization of the pore structure in Chinese anthracite coalusing FIB-SEM tomography and deep learning-based segmentation[J]. Energy, 2023, 282: 128686. DOI: 10.1016/j.energy.2023.128686.
-
期刊类型引用(4)
1. 尹振琪,吴俊峰,朱石柱. 人工智能辅助诊断系统结合低剂量CT在肺小结节筛查中的应用进展. 影像研究与医学应用. 2024(24): 7-9 . 百度学术
2. 王璟琛,柴军. 人工智能体积密度法判断肺亚实性结节的浸润性研究. CT理论与应用研究. 2023(02): 241-248 . 本站查看
3. 王和良,苏良宝,蔡少辉,杜丽珠. 人工智能辅助诊断系统在肺结节CT检测中的应用分析. 中国医疗器械信息. 2023(05): 91-93+161 . 百度学术
4. 苏寅晨,张晓琴. 人工智能在肺结节检测及诊断中的应用进展. 内蒙古医学杂志. 2023(04): 506-508 . 百度学术
其他类型引用(1)