ISSN 1004-4140
CN 11-3017/P

基于梯度特征聚类分析的大尺寸物体CT图像环状伪影校正方法

刘必成, 易茜, 宗春光, 许艳伟, 李亮

刘必成, 易茜, 宗春光, 等. 基于梯度特征聚类分析的大尺寸物体CT图像环状伪影校正方法[J]. CT理论与应用研究(中英文), 2024, 33(6): 781-789. DOI: 10.15953/j.ctta.2024.153.
引用本文: 刘必成, 易茜, 宗春光, 等. 基于梯度特征聚类分析的大尺寸物体CT图像环状伪影校正方法[J]. CT理论与应用研究(中英文), 2024, 33(6): 781-789. DOI: 10.15953/j.ctta.2024.153.
LIU B C, YI X, ZONG C G, et al. Ring-artifact Correction Method for Large-size Object CT Images Based on Gradient Featured Cluster Analysis[J]. CT Theory and Applications, 2024, 33(6): 781-789. DOI: 10.15953/j.ctta.2024.153. (in Chinese).
Citation: LIU B C, YI X, ZONG C G, et al. Ring-artifact Correction Method for Large-size Object CT Images Based on Gradient Featured Cluster Analysis[J]. CT Theory and Applications, 2024, 33(6): 781-789. DOI: 10.15953/j.ctta.2024.153. (in Chinese).

基于梯度特征聚类分析的大尺寸物体CT图像环状伪影校正方法

详细信息
    通讯作者:

    刘必成: 男,粒子物理与原子核物理专业博士,同方威视技术股份有限公司工程师,主要从事安检领域辐射成像技术研究,E-mail:liubicheng@nuctech.com

  • 中图分类号: O  242;TP  391.41

Ring-artifact Correction Method for Large-size Object CT Images Based on Gradient Featured Cluster Analysis

  • 摘要:

    针对CT扫描系统的环形伪影,本文提出一种基于图像梯度特征聚类分析的Hough变换的环状伪影校正方法。利用极坐标图像梯度特征进行聚类分析,对重建图像数据分类初筛,将重组数据采用Hough变换直线检测并映射找出原图像中的伪影数据,进而插值消除极坐标图像的直线伪影,达到重建图像环形伪影消除的目的。模拟和实测图像的测试结果表明,采用图像梯度特征提取后,检测出有效伪影直线的数量大幅提升,重建图像中的环状伪影、弧形伪影及中心区的团状伪影都得到有效去除,且大大减少传统Hough变换法误检测直线的现象。

    Abstract:

    In this paper, a Hough transform method based on image gradient featured extraction is proposed to eliminate the ring artifacts of CT scanning system. Firstly, we use the gradient featured cluster analysis of the polar coordinate image to preliminary select the reconstructed image data. Then the Hough transform is adopted to detect the lines of the recombined data. When the artifacts in the original image are mapped out, the linear artifacts in the polar coordinate image are eliminated by interpolation. Then we can purposefully eliminate the ring artifacts in the reconstructed image. Simulation and experimental results show that with the image gradient featured cluster analysis, the effective number of detected artifact lines is greatly increased, the ring artifacts, arc artifacts and cluster artifacts in the central area of the reconstructed images are effectively removed, and the erroneous detection of lines by traditional Hough transform method is greatly reduced.

  • 图  1   重建图像从(a)笛卡尔坐标系转化为(b)极坐标

    Figure  1.   Reconstructed images in (a) Cartesian coordinate and (b) polar coordinate

    图  2   (a)无环形伪影和(b)含环形伪影图像的梯度分布

    Figure  2.   Gradient distribution of images (a) without ring artifacts and (b) with ring artifacts

    图  3   图像梯度值聚类分布

    Figure  3.   Clustering distribution of image gradient values

    图  4   重组前后的极坐标系图像

    Figure  4.   The images in polar coordinate before and after reorganization

    图  5   算法处理流程

    Figure  5.   The flow of algorithm processing

    图  6   环形伪影消除结果对比

    注:(a)(e)无伪影和噪声的图像,(b)(f)添加环形伪影和噪声的图像,(c)(g)基于传统Hough变换法的环形伪影消除图像,(d)(h)基于图像梯度聚类分析的环形伪影消除图像。两行分别对应极坐标系(a)~(d)和笛卡尔坐标系(e)~(h)的图像。

    Figure  6.   Comparison of ring artifact elimination results

    图  7   集装箱/车辆CT检查系统

    Figure  7.   Cargo/Vehicle CT inspection system

    图  8   风机叶片和集装箱图像的检测结果

    注:(a)(d)极坐标变换图,(b)(e)Hough变换直线标记结果,(c)(f)基于图像梯度特征提取后Hough变换直线标记结果。

    Figure  8.   Detection results of images of fan blade and container

    图  9   风机叶片和集装箱货物在传统Hough变换法(a)(c)和基于图像梯度特征提取的Hough变换法(b)(d)下环形伪影消除效果

    Figure  9.   The ring artifacts elimination effects of fan blade and contaner under traditional Hough transform method (a) (c) and Hough transform method based on image gradient feature extraction (b) (d)

  • [1] 李新斌, 张丽, 陈志强, 等. 行包货物实时验放CT智能解决方案[J]. CT理论与应用研究, 2022, 31(5): 597−615. DOI: 10.15953/j.ctta.2022.124.

    LI X B, ZHANG L, CHEN Z Q, et al. CT intelligent solution for real-time inspection and release of baggage and cargo[J]. CT Theory and Applications, 2022, 31(5): 597−615. DOI: 10.15953/j.ctta.2022.124. (in Chinese).

    [2] 黄清萍, 金鑫, 许晓飞, 等. X射线衍射技术在安检领域的研究进展[J]. CT理论与应用研究, 2023, 32(6): 843−856. DOI: 10.15953/j.ctta.2023.158.

    HUANG Q P, JIN X, XU X F, et al. Research progress of X-ray diffraction technology in security inspection[J]. CT Theory and Applications, 2023, 32(6): 843−856. DOI: 10.15953/j.ctta.2023.158. (in Chinese).

    [3]

    LI L, ZHAO T, CHEN Z. First dual MeV energy X-ray CT for container inspection: Design, algorithm, and preliminary experimental results[J]. IEEE Access, 2018, 6: 45534−45542. DOI: 10.1109/ACCESS.2018.2864800.

    [4] 李俊江, 胡少兴, 李保磊, 等. CT图像环状伪影校正方法[J]. 北京航空航天大学学报, 2007, 33(11): 1378−1382. DOI: 10.3969/j.issn.1001-5965.2007.11.028.

    LI J J, HU S X, LI B L, et al. Ring artifact correction for industrial CT images[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(11): 1378−1382. DOI: 10.3969/j.issn.1001-5965.2007.11.028. (in Chinese).

    [5] 王钰, 黄苏红, 蔡玉芳. 工业CT图像环形伪影校正[J]. 光学精密工程, 2010, 18(5): 1226−1233.

    WANG J, HUANG S H, CAI Y F. Ring artifact correction for ICT images[J]. Optics and Precision Engineering, 2010, 18(5): 1226−1233. (in Chinese).

    [6] 朱险峰, 何希儒. CT环形伪影原因分析与处理[J]. 牡丹江医学院学报, 2001, 22(2): 56−57. DOI: 10.3969/j.issn.1001-7550.2001.02.055.
    [7]

    Van NIEUWENHOVE V, de BEENHOUWER J, de CARLO F, et al. Dynamic intensity normalization using eigen flat fields in X-ray imaging[J]. Optics Express, 2015, 23(21): 27975−27989. DOI: 10.1364/OE.23.027975.

    [8]

    ANAS E M A, LEE S Y, HASAN M K. Classification of ring artifacts for their effective removal using type adaptive correction schemes[J]. Computers in Biology and Medicine, 2011, 41(6): 390−401. DOI: 10.1016/j.compbiomed.2011.03.018.

    [9]

    ANAS E M A, LEE S Y, HASAN M K. Removal of ring artifacts in CT imaging through detection and correction of stripes in the sonogram[J]. Physics in Medicine & Biology, 2010, 55: 6911−6930.

    [10]

    MÜNCH B, TRTIK P, MARONE F, et al. Stripe and ring artifact removal with combined wavelet—Fourier filtering[J]. Optics Express, 2009, 17: 8567−8591. DOI: 10.1364/OE.17.008567.

    [11] 马继明, 宋岩, 王群书, 等. X射线CT环形伪影去除方法[J]. 强激光与粒子束, 2014, 26(12): 124001. DOI: 10.11884/HPLPB201426.124001.

    MA J M, SONG Y, WANG Q S, et al. Ring artifact correction for X-ray computed tomography[J]. High Power Laser and Particle Beams, 2014, 26(12): 124001. DOI: 10.11884/HPLPB201426.124001. (in Chinese).

    [12]

    SIJBERS J, POSTNOV A. Reduction of ring artifacts in high resolution micro-CT reconstruction[J]. Physics in Medicine and Biology, 2004, 49: N247. DOI: 10.1088/0031-9155/49/14/N06.

    [13]

    WU H, LI J, WANG H. Removing ring artifacts in cone-beam CT via TV-stokes and unidirectional total variation model[J]. Medical physics, 2019, 46: 1719−1727. DOI: 10.1002/mp.13430.

    [14]

    LIANG X, ZHANG Z, NIU T, et al. Iterative image-domain ring artifact removal in cone-beam CT[J]. Physics in Medicine & Biology, 2017, 62: 5276−5292.

    [15]

    FANG W, LI L, CHEN Z. Removing ring artefacts for photon-counting detectors using neural networks in different domains[J]. IEEE Access, 2020, 99: 1−1.

    [16]

    CHANG S, CHEN X, DUAN J, et al. A CNN-based hybrid ring artifact reduction algorithm for CT images[J]. IEEE Transactions on Radiation and Plasma Medical Sciences, 2021, 5(2): 253−260. DOI: 10.1109/TRPMS.2020.2983391.

    [17]

    LIU Y, WEI C, XU Q. Detector shifting and deep learning based ring artifact correction method for low-dose CT[J]. Medical Physics, 2023, 50(7): 4308−4324. DOI: 10.1002/mp.16225.

    [18]

    ZHAO S, LI J, HUO Q. Removing ring artifacts in CBCT images via generative adversarial network[C]//International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2018: 1055-1059.

    [19]

    KORNILOV A, SAFONOV I, REIMERS I, et al. Deep neural networks for ring artifacts segmentation and corrections in fragments of CT images[C]//Conference of Open Innovations Association (FRUCT), IEEE, 2021: 181-193.

    [20]

    PALEO P, MIRONE A. Ring artifacts correction in compressed sensing tomographic reconstruction[J]. Journal of Synchrotron Radiation, 2015, 22(5): 1268−1278. DOI: 10.1107/S1600577515010176.

    [21]

    SALEHJAHROMI M, WANG Q, ZHANG Y, et al. A new iterative algorithm for ring artifact reduction in CT using ring total variation[J]. Medical Physics, 2019, 46(11): 4803−4815. DOI: 10.1002/mp.13762.

    [22]

    SELIM M, RASHED E A, ATIEA M A, et al. Sparsity-based method for ring artifact elimination in computed tomography[J]. PLOS ONE, 2022, 17(6).

    [23]

    WALSH D, RAFTERY A. Accurate and efficient curve detection in images: The importance sampling Hough transform[J]. Pattern Recognition, 2002, 35(7): 1421−1431. DOI: 10.1016/S0031-3203(01)00114-5.

    [24]

    WALSH D C I. The importance sampling Hough transform[C]//Advances in Imaging and Electron Physics, 2005, 138: 321-359.

    [25]

    FANG W, LI L, CHEN Z, et al. First commercial dual-energy MeV CT for container imaging: Experimental results[C]//The 6th International Conference on Image Formation in X-ray Computed Tomography, Regensburg, 2020.

图(9)
计量
  • 文章访问数:  202
  • HTML全文浏览量:  19
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-26
  • 修回日期:  2024-09-08
  • 录用日期:  2024-09-08
  • 网络出版日期:  2024-09-10
  • 刊出日期:  2024-11-04

目录

    /

    返回文章
    返回
    x 关闭 永久关闭