• 中国科技核心期刊
ISSN 1004-4140
CN 11-3017/P

基于剂量模拟人的腹部CT扫描辐射剂量分布研究

倪晓龙, 周凤云, 施政, 马永忠, 程晓光

倪晓龙, 周凤云, 施政, 等. 基于剂量模拟人的腹部CT扫描辐射剂量分布研究[J]. CT理论与应用研究(中英文), 2024, 33(6): 808-814. DOI: 10.15953/j.ctta.2024.087.
引用本文: 倪晓龙, 周凤云, 施政, 等. 基于剂量模拟人的腹部CT扫描辐射剂量分布研究[J]. CT理论与应用研究(中英文), 2024, 33(6): 808-814. DOI: 10.15953/j.ctta.2024.087.
NI X L, ZHOU F Y, SHI Z, et al. Study on the Radiation Dose Distribution of Abdominal CT Scans Based on Dose Simulation Humans[J]. CT Theory and Applications, 2024, 33(6): 808-814. DOI: 10.15953/j.ctta.2024.087. (in Chinese).
Citation: NI X L, ZHOU F Y, SHI Z, et al. Study on the Radiation Dose Distribution of Abdominal CT Scans Based on Dose Simulation Humans[J]. CT Theory and Applications, 2024, 33(6): 808-814. DOI: 10.15953/j.ctta.2024.087. (in Chinese).

基于剂量模拟人的腹部CT扫描辐射剂量分布研究

基金项目: 北京市医院管理中心临床医学发展专项(ZYLX202107);北京市高层次公共卫生技术人才建设项目((肌骨影像)学科带头人-01-20)。
详细信息
    作者简介:

    倪晓龙: 男,首都医科大学附属北京积水潭放射科初级技师,主要研究方向为X线普放,E-mail:84072066@qq.com

    通讯作者:

    马永忠: 北京市疾病预防控制中心放射卫生防护所主任医师,主要研究方向为辐射防护,E-mail:myz0905@126.com

    程晓光: 首都医科大学附属北京积水潭医院主任医师,主要研究方向为骨科放射,E-mail:xiao65@263.net

  • 中图分类号: R  814;R  144

Study on the Radiation Dose Distribution of Abdominal CT Scans Based on Dose Simulation Humans

  • 摘要:

    目的:本研究旨在通过利用剂量模拟人系统性地测量和分析腹部CT扫描在腹部以及体表关注部位的辐射剂量分布,并提供相关数据,以便评估患者的辐射风险并制定个性化的辐射保护策略。方法:本研究使用剂量模拟人模拟常规临床腹部CT扫描过程,选取剂量模拟人42个组织检测点和8个体表位点分别指代躯干部位主要器官和体表主要关注部位;使用RGD-3B热释光测量仪测量人体躯干部主要脏器及体表关键部位的受照剂量水平。结果:根据剂量模拟人实验数据分析,胃部受照剂量最大,为15.9 mGy,其次是肾脏和胰腺部位,分别为15.7 mGy和14.4 mGy。肾上腺、胆囊和肝左叶的受照剂量分别为14.3、13.2和12.9 mGy。除上述器官外,其余部位的受照剂量均小于6.9 mGy;体表关注部位的受照剂量测量结果显示左侧眼晶状体受照剂量为0.017 mGy,右侧眼晶状体为0.029 mGy;甲状腺部位的受照剂量左右侧分别为0.062 mGy和0.057 mGy;乳腺部位左侧和右侧的受照剂量分别为1.71 mGy和1.58 mGy;左右侧性腺部位的受照剂量分别为0.145 mGy和0.090 mGy;乳腺下缘作为CT扫描时临近皮肤的入射部位,显示出皮肤入射剂量水平为1~2 mGy。结论:在腹部CT扫描过程中,胃部、肾脏和胰腺的辐射剂量最高;尽管体表敏感部位的受照剂量较低,但甲状腺、性腺和晶状体等部位的辐射量仍高于其他体表组织。这些结论提示工作人员在特定高剂量区域可能仍需进一步防护,以减少潜在的辐射危害。

    Abstract:

    Objective: This study aimed to systematically measure and analyze the radiation dose distribution in the abdomen and specific areas of interest on the body surface during abdominal CT scans using a dose simulation phantom, providing relevant data to assess patient radiation risks and to develop personalized radiation protection strategies. Methods: The study simulated routine clinical abdominal CT using a dose simulation phantom. Forty-two tissue detection points and eight surface points on the phantom were selected to represent major organs in the trunk and key areas of concern on the body surface. RGD-3B thermoluminescence was used to measure the dose level of the main organs and key parts of the body surface. Results: Experimental data from the dose simulation phantom were analyzed and indicated that the stomach received the highest radiation dose at 15.9 mGy, followed by the kidneys and pancreas, at 15.7 mGy and 14.4 mGy, respectively. The doses for the adrenal glands, gallbladder, and left lobe of the liver were 14.3, 13.2, and 12.9 mGy, respectively. All other areas received doses < 6.9 mGy. Surface area dose measurements showed that the left and right eye lens received a dose of 0.017 and 0.029 mGy, respectively. The dose for the thyroid was 0.062 mGy and 0.057 mGy on the left and right sides, respectively. The doses to the left and right breasts were 1.71 mGy and 1.58 mGy, respectively. The gonads received doses of 0.145 mGy and 0.090 mGy on the left and right sides, respectively. The skin entry dose at the lower edge of the breast, which is near the skin during CT scans, was between 1 and 2 mGy. Conclusion: During abdominal CT, the stomach, kidneys, and pancreas received the highest radiation doses. Although the radiation dose of sensitive areas on the body surface is lower, that in the thyroid, gonads, and lens remain higher than that in other surface tissues. These findings suggest that workers may need further protection in specific high-dose areas to reduce potential radiation hazards.

  • 图  1   成年女性剂量模拟人外形

    Figure  1.   Adult female dose simulates human appearance

    图  2   剂量模拟人21~34层对应解剖范围及第21层组织剂量点编号图像

    Figure  2.   Dose simulation of human layer 21~34 corresponding anatomical range and layer 21 tissue dose point number image.

    图  3   CT扫描体表关注部位的吸收剂量水平及其分布状况

    Figure  3.   The absorption dose levels and their distribution in the regions of interest on the body surface during CT scans

    表  1   CT扫描人体躯干部位主要脏器的受照剂量分布水平

    Table  1   Distribution of radiation dose levels to major visceral organs in the human trunk during CT scans

    序号 编号 模体内TLD探
    测位置对应的
    组织器官
    吸收剂量
    /mGy
    序号 编号 模体内TLD探
    测位置对应的
    组织器官
    吸收剂量
    /mGy
    1 2108 肝左叶 12.924 22 2927 右髂内、外动静脉 0.878
    2 2109 肝左叶 12.502 23 2929 左髂内外动脉 0.866
    3 2213 15.007 24 3028 右髂外动静脉,盲肠 0.590
    4 2312 胰体 14.410 25 3036 右卵巢 0.512
    5 2320 肾上腺 14.320 26 3037 直肠 0.507
    6 2409 胆囊 13.206 27 3126 膀胱 0.355
    7 2419 左肾 15.716 28 3132 右卵巢 0.330
    8 2503 横结肠 5.168 29 3133 子宫底 0.334
    9 2513 降结肠 6.928 30 3134 左卵巢 0.305
    10 2610 升结肠 3.160 31 3142 直肠 0.315
    11 2620 左肾 3.734 32 3225 膀胱 0.220
    12 2712 回肠 2.120 33 3230 子宫体 0.212
    13 2714 下腔静脉 2.144 34 3236 直肠 0.211
    14 2715 髂总动脉 2.196 35 3327 右闭孔神经 0.109
    15 2716 输尿管 2.108 36 3328 左闭孔神经 0.117
    16 2717 空肠 1.718 37 3334 膀胱 0.140
    17 2804 小肠 1.309 38 3340 直肠 0.143
    18 2823 右髂总动静脉 1.230 39 3413 右股动、静脉 0.079
    19 2824 左髂总动静脉 1.310 40 3418 左股动、静脉 0.079
    20 2907 小肠 0.886 41 3438 尿道 0.087
    21 2909 乙状结肠 0.904 42 3444 直肠 0.090
    注:表中编码对应组织层编号和在该层的组织关注位点编号,如“2108”,表示仿真模体的第21层第08号位点。
    下载: 导出CSV
  • [1] 张智, 汤淳清, 杨柯, 等. 安徽三所医院胸部CT检查的辐射剂量调查[J]. 影像研究与医学应用, 2022, 6(13): 19−21, 24. DOI: 10.3969/j.issn.2096-3807.2022.13.007.

    ZhANG Z, TANG C Q, YANG K, et al. Radiation dose investigation of chest CT examination in three hospitals in Anhui province[J]. Imaging Research and Medical Application, 2022, 6(13): 19−21, 24. DOI: 10.3969/j.issn.2096-3807.2022.13.007. (in Chinese).

    [2]

    United Nations Scientific Committee on the Effects of Atomic Radiation. UNSCEAR 2020 report to the general assembly with scientific annexes. Evaluation of medical exposure to ionizing radiation[R]. New York: United Nations, 2020.

    [3] 张玉珩, 陈英民, 陈睿, 等. 仿真儿童体模头部CT检查剂量及屏蔽防护效果研究[J]. 中国辐射卫生, 2020, 29(1): 21−25.

    ZHANG Y H, CHEN Y M, CHEN R, et al. Study on CT dose and shielding effect of simulated body model head of children[J]. Chinese Journal of Radiation Health, 2020, 29(1): 21−25. (in Chinese).

    [4] 赵小爱, 徐丽, 金秀花. 个人剂量监测中异常结果的调查与分析[J]. 中国辐射卫生, 2021, 30(5): 587−591.

    ZHAO X A, XU L, JIN X H. Investigation and analysis of abnormal results in individual dose monitoring[J]. Chinese Journal of Radiation Health, 2021, 30(5): 587−591. (in Chinese).

    [5] 杜翔, 徐小三, 杨春勇, 等. 江苏省CT扫描检查中受检者剂量调查与分析[J]. 江苏预防医学, 2021, 32(3): 290−292, 295.

    DU X, XU X S, YANG C Y, et al. Investigation and analysis of patient dose during CT scan in Jiangsu province[J]. Jiangsu Preventive Medicine, 2021, 32(3): 290−292, 295. (in Chinese).

    [6] 赵徵鑫, 王海华, 钱前, 等. 探究4种临床CT扫描方式对受检者辐射剂量的影响及胸部扫描辐射场的空间分布[J]. 中国辐射卫生, 2022, 31(4): 437−442.

    ZHAO Z X, WANG H H, QIAN Q, et al. To explore the effect of 4 kinds of clinical CT scanning methods on the radiation dose of subjects and the spatial distribution of radiation field in chest scanning[J]. Chinese Journal of Radiation Health, 2022, 31(4): 437−442. (in Chinese).

    [7] 杨世芳. 探讨低剂量对比剂和低X线辐射量CT尿路成像的可行性[J]. 现代医用影像学, 2019, 28(10): 2257−2258. DOI: 10.3969/j.issn.1006-7035.2019.10.041.

    YANG S F. Study on the feasibility of low dose contrast agent and low X-ray radiation amount CT urography[J]. Journal of Modern Medical Imaging, 2019, 28(10): 2257−2258. DOI: 10.3969/j.issn.1006-7035.2019.10.041. (in Chinese).

    [8] 杨红云, 李海亮, 杨淑慧, 等. 五种头颅CT扫描方式受检者眼晶体受照剂量的测量及比较[J]. 中国辐射卫生, 2019, 28(2): 148−151, 154.

    YANG H Y, LI H L, YANG S H, et al. Measurement and comparison of eye lens exposure dose of subjects with five head CT scanning methods[J]. Chinese Journal of Radiation Health, 2019, 28(2): 148−151, 154. (in Chinese).

    [9]

    DELIN C, SILVER S, BASSINT C, et al. Ionizing radiation doses during lower limb torsion and anteversion measurements by EOS stereoradiography and computed tomography[J]. European Journal of Radiology, 2014, 83(2): 371−377. DOI: 10.1016/j.ejrad.2013.10.026.

    [10] 肖丹. 辐射剂量与放射源在线监测管理平台[R]. 哈尔滨, 黑龙江省科学院技术物理研究所, 2019-07-26.

    XIAO D. Online monitoring and management platform for radiation dose and radioactive source[R]. Haerbin, Institute of Technical Physics, Heilongjiang Academy of Sciences, 2019-07-26. (in Chinese).

    [11] 王亮, 彭勇, 刘怡, 等. 医院级CT辐射剂量及诊断剂量水平研究[J]. 辐射防护, 2019, 39(6): 517−521.

    WANG L, PENG Y, LIU Y, et al. Study on radiation dose and diagnostic dose level of hospital-grade CT[J]. Radiation Protection, 2019, 39(6): 517−521. (in Chinese).

    [12]

    EEDO M, MORI S, KANDATSU S, et al. Development and performance evaluation of the second model 256-detector row CT[J]. Radiological Physics and Technology, 2008, 1(1): 20−26. DOI: 10.1007/s12194-007-0004-z.

    [13]

    HIGASHIGAITO K, BECKER A S, SPERNGEL K, et al. Automatic radiation dose monitoring for CT of trauma patients with different protocols: Feasibility and accuracy[J]. Clinical Radiology, 2016, 71(9): 905−911. DOI: 10.1016/j.crad.2016.04.023.

    [14]

    COUSINS C, MILLER D L, BERNARDI G, et al. ICRP publication 120: Radiological protection in cardiology[J]. Annals of the ICRP, 2013, 42(1): 1−125. DOI: 10.1016/j.icrp.2012.09.001.

    [15]

    MIYAZAKI S , HILL C. General tissue reactions and implications for radiation protection[J]. Annals of the ICRP, 2015, 44(S1): 76-83. DOI: 10.1177/0146645314560689.

    [16] 井赛, 张谷敏, 孙旭, 等. CT辐射剂量检测仿真人体模的研制[J]. 医疗卫生装备, 2017, 38(11): 31−34.

    JING S, ZHANG G M, SUN X, et al. Development of simulated human body model for CT radiation dose detection[J]. Medical & Health Equipment, 2017, 38(11): 31−34. (in Chinese).

    [17]

    GRAJO J R, SAHANI D V. Dual-energy CT of the abdomen and pelvis: Radiation dose considerations[J]. Journal of the American College of Radiology, 2018, 15(8): 1128−1132. DOI: 10.1016/j.jacr.2017.08.012.

    [18]

    ASCENTI G, MAZZIOTEI S, MILET A O, et al. Dual-source dual-energy CT evaluation of complex cystic renal masses[J]. American Journal of Roentgenology, 2012, 199(5): 1026−1034. DOI: 10.2214/AJR.11.7711.

    [19]

    SHUMAN W P, GREEN D E, BUSEY J M, et al. Dual-energy liver CT: Effect of monochromatic imaging on lesion detection, conspicuity, and contrast-to-noise ratio of hypervascular lesions on late arterial phase[J]. American Journal of Roentgenology, 2014, 203(3): 601−606. DOI: 10.2214/AJR.13.11337.

    [20] 王策, 周凤云, 轩艳姣, 等. 患者双下肢X射线一次性曝光中性腺受照剂量测量与分析[J]. CT理论与应用研究(中英文), 2024, 33(5): 627−632. DOI: 10.15953/j.ctta.2023.171.

    WANG C, ZHOU F Y, XUAN Y J, et al. Measurement and analysis of gonadal irradiation dose during singe-shot X-ray exposure of both lower limbs[J]. CT Theory and Applications, 2024, 33(5): 627−632. DOI: 10.15953/j.ctta.2023.171. (in Chinese).

  • 期刊类型引用(1)

    1. 黄晓颖,李霞敏,郭方凯,王鹏朝,单春辉,暴云锋. 低剂量CT灌注联合双能扫描在胰腺神经内分泌肿瘤中的应用. CT理论与应用研究(中英文). 2025(03): 369-375 . 百度学术

    其他类型引用(0)

图(3)  /  表(1)
计量
  • 文章访问数:  233
  • HTML全文浏览量:  28
  • PDF下载量:  28
  • 被引次数: 1
出版历程
  • 收稿日期:  2024-06-06
  • 修回日期:  2024-08-19
  • 录用日期:  2024-08-21
  • 网络出版日期:  2024-10-07
  • 刊出日期:  2024-11-04

目录

    Corresponding author: CHENG Xiaoguang, xiao65@263.net

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    /

    返回文章
    返回
    x 关闭 永久关闭