ISSN 1004-4140
CN 11-3017/P

宝石能谱CT及机器学习算法在判断胃癌浆膜浸润中的初步应用

诗涔, 张欢, 潘自来, 严福华, 李超, 张素, 杜联军

诗涔, 张欢, 潘自来, 严福华, 李超, 张素, 杜联军. 宝石能谱CT及机器学习算法在判断胃癌浆膜浸润中的初步应用[J]. CT理论与应用研究, 2016, 25(5): 515-522. DOI: 10.15953/j.1004-4140.2016.25.05.02
引用本文: 诗涔, 张欢, 潘自来, 严福华, 李超, 张素, 杜联军. 宝石能谱CT及机器学习算法在判断胃癌浆膜浸润中的初步应用[J]. CT理论与应用研究, 2016, 25(5): 515-522. DOI: 10.15953/j.1004-4140.2016.25.05.02
SHI Cen, ZHANG Huan, PAN Zi-lai, YAN Fu-hua, LI Chao, ZHANG Su, DU Lian-jun. The Preliminary Study of Spectral CT and Machine Learning Method in Identifying Serosa Invasion of Gastric Cancer[J]. CT Theory and Applications, 2016, 25(5): 515-522. DOI: 10.15953/j.1004-4140.2016.25.05.02
Citation: SHI Cen, ZHANG Huan, PAN Zi-lai, YAN Fu-hua, LI Chao, ZHANG Su, DU Lian-jun. The Preliminary Study of Spectral CT and Machine Learning Method in Identifying Serosa Invasion of Gastric Cancer[J]. CT Theory and Applications, 2016, 25(5): 515-522. DOI: 10.15953/j.1004-4140.2016.25.05.02

宝石能谱CT及机器学习算法在判断胃癌浆膜浸润中的初步应用

基金项目: 

上海科委医学引导项目(134119a5900);国家自然基金(U1532107;81272746);上海交通大学医工交叉基金(YG2014MS53)。

详细信息
    作者简介:

    诗涔(1990-),女,苏州大学附属第一医院放射科住院医师,主要从事胃肠道肿瘤方面研究,Tel:15151539374,E-mail:shicen1990@126.com;杜联军*(1973-),上海交通大学医学院附属瑞金医院放射科副主任医师,Tel:13601745690,E-mail:ljd10788@rjh.com.cn。

  • 中图分类号: TP391;TP301.6

The Preliminary Study of Spectral CT and Machine Learning Method in Identifying Serosa Invasion of Gastric Cancer

  • 摘要: 目的:探讨宝石能谱CT及机器学习算法在判断胃癌浆膜浸润中的价值。方法:回顾性分析在我院行宝石能谱CT双期GSI增强检查的胃癌患者24例,其中p T2 8例,p T3 4例,p T4 12例。12例患者(p T4)归为浆膜阳性组(组A);12例(T2和T3)归为浆膜阴性组(组B)。采用独立样本t检验或卡方检验比较两组患者的临床信息(如性别、年龄等)。此外,所有图像利用GE AW4.4工作站进行后处理,分别得出两组病灶双期能谱信息,随后采用SVM-RFE算法对两组能谱信息进行分析。结果:两组患者的临床信息中,肿瘤长径和短径在两组间有统计学差异(P均<0.05)。SVM-RFE算法的准确率为87.5%-94.4%。SVM-RFE的输出结果为门脉期脂肪(钙)、门脉期尿酸(钙)、动脉期钙(碘)、门脉期水(钙)、门脉期碘(水)。结论:肿瘤大小和门脉期脂肪(钙)、门脉期尿酸(钙)、动脉期钙(碘)、门脉期水(钙)及门脉期碘(水)特征值可用于辅助判定胃癌是否浸润浆膜层。
    Abstract: Objective: To evaluate the value of spectral CT and machine learning method in identifying serosa invasion of gastric cancer. Method: Total of 24 cases of gastric cancer who underwent dual-phasic scans(arterial phase(AP) and portal phase(PP)) with GSI mode on high-definition computed tomography were retrospectively enrolled in our study, including 8 patients in p T2, 4 patients in p T3, and 12 patients in p T4. 12 patients(p T4 patients) were classified as serosa positive group, and 12 patients(p T2 and p T3 patients) were classified as serosa negative group. The clinical information(e.g. sex, age) of these two groups were compared by using independent sample t test or chi square test. In addition, GE AW4.4 workstation was used for image post-processing, and the dual phase spectrum information of these two groups was obtained. Support Vector Machine Recursive Feature Elimination(SVM-RFE) algorithm was used to analyze the spectrum information of these two groups. Results: Among the clinical information, only tumor long axis and short axis had statistically significant difference between two groups(all P < 0.05). The accuracies of SVM-RFE were 87.5%~94.4%. The output features of SVM-RFE were fat(calcium)(PP), uricacid(calcium)(PP), calcium(iodine)(AP), water(calcium)(PP), and iodine(water)(PP). Conclusion: Tumor size, fat(calcium)(PP), uricacid(calcium)(PP), calcium(iodine)(AP), water(calcium)(PP), and iodine(water)(PP) were helpful for the diagnosis of gastric cancer serosa invasion.
  • 期刊类型引用(1)

    1. 徐晓东,车春霞,衣海燕. 宝石能谱CT对胃癌区域淋巴结转移诊断的临床价值. 中国农村卫生. 2019(03): 37+39 . 百度学术

    其他类型引用(2)

计量
  • 文章访问数:  578
  • HTML全文浏览量:  3
  • PDF下载量:  5
  • 被引次数: 3
出版历程
  • 收稿日期:  2016-04-19
  • 网络出版日期:  2022-12-04
  • 发布日期:  2016-10-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭