ISSN 1004-4140
CN 11-3017/P

人工智能辅助规培医师对不同大小肺实性结节检出效能的初步研究

孙婷婷, 汪琼, 谢梅, 范鸿禹, 张清, 伍建林

孙婷婷, 汪琼, 谢梅, 范鸿禹, 张清, 伍建林. 人工智能辅助规培医师对不同大小肺实性结节检出效能的初步研究[J]. CT理论与应用研究, 2020, 29(4): 465-472. DOI: 10.15953/j.1004-4140.2020.29.04.09
引用本文: 孙婷婷, 汪琼, 谢梅, 范鸿禹, 张清, 伍建林. 人工智能辅助规培医师对不同大小肺实性结节检出效能的初步研究[J]. CT理论与应用研究, 2020, 29(4): 465-472. DOI: 10.15953/j.1004-4140.2020.29.04.09
SUN Tingting, WANG Qiong, XIE Mei, FAN Hongyu, ZHANG Qing, WU Jianlin. Detection Efficiency of Residents Assisted by Artificial Intelligence for Pulmonary Solid Nodules with Different Sizes: A Preliminary Study[J]. CT Theory and Applications, 2020, 29(4): 465-472. DOI: 10.15953/j.1004-4140.2020.29.04.09
Citation: SUN Tingting, WANG Qiong, XIE Mei, FAN Hongyu, ZHANG Qing, WU Jianlin. Detection Efficiency of Residents Assisted by Artificial Intelligence for Pulmonary Solid Nodules with Different Sizes: A Preliminary Study[J]. CT Theory and Applications, 2020, 29(4): 465-472. DOI: 10.15953/j.1004-4140.2020.29.04.09

人工智能辅助规培医师对不同大小肺实性结节检出效能的初步研究

基金项目: 

大连市领军人才科技项目基金(2015E12SF120)

详细信息
    作者简介:

    孙婷婷(1995-),女,大连医科大学在读硕士研究生,研究方向胸部疾病诊断,Tel:17671672840,E-mail:17671672840@163.com;伍建林*(1962-),男,大连大学附属中山医院主任医师,教授,主要从事心胸影像诊断及脑功能系列研究,E-mail:cjr.wujianlin@vip.163.com。

  • 中图分类号: R734.2;R814.42

Detection Efficiency of Residents Assisted by Artificial Intelligence for Pulmonary Solid Nodules with Different Sizes: A Preliminary Study

  • 摘要: 目的:探讨人工智能(AI)辅助检测软件对低年资规培医生提高肺实性结节检出效能的临床应用价值。方法:收集200例经CT证实有肺实性结节的CT影像,由2名8年影像诊断工作的主治医师结合AI (SCHOLAR,infervision)共同阅片确定肺实性结节数量,分歧时由第3名从事影像诊断15年以上主任医师会诊,最终确定“金标准”。先由低年资规培医师对上述CT图像独立进行肺结节检测(方法A),2周洗脱期后在AI软件辅助下再进行上述CT图像肺结节检测(方法B)。将方法A和方法B标注结果分别与“金标准”比较,记录真阳结节数、假阳结节数,采用SPSS 20.0数据统计软件比较两组间检测灵敏度、假阳性率差异,P<0.05为差异有统计学意义。结果:与方法A相比,方法B灵敏度明显增加,总的实性结节灵敏度提高65%,而假阳性率降低25%,差异有统计学意义(P<0.05);应用AI辅助软件对检测4组不同大小(D≤4 mm、4 mm <D≤6 mm、6 mm <D≤8 mm、D> 8 mm)肺实性结节的灵敏度均有提高,分别为78%、38%、27%和13.8%。方法A的FROC曲线上面积(AAC)为0.176,方法B为0.085 2,差异有统计学意义(P<0.05);方法A和方法B平均每例CT阅片时间分别为411.9 s和319.7 s。结论:AI辅助检测软件可明显提高低年资规培医师对CT上不同大小肺实性结节的检出效能,尤其对直径≤4 mm肺结节的检出更具优势。
    Abstract: Objective:To investigate the clinical application value of artificial intelligence(AI) assisted detection software for improving the detection efficiency of pulmonary solid nodules in inexperienced residents. Methods:A total of 200 CT images of pulmonary solid nodules confirmed by CT were collected. One senior radiologist with more than 8 years' experience read CT images based on the initial diagnosis of another senior radiologist with similar experience and a final decision was subsequently conducted by deputy chief radiologist with more than 15 years' experience to determine the ground truth solid lung nodules. One resident read the images without AI software(method A) and the same resident read CT images with AI software(method B) after two weeks' washout period(method B). The results of methods A and B were compared with the gold standard nodules. The number of true positive nodules and the number of false positive nodules were recorded. The difference between detection sensitivity and false positive rate between the two groups was analyzed by SPSS 20.0. The difference was statistically significant(P < 0.05). Results:Compared with method A, the sensitivity of method B increased significantly, the sensitivity of total solid nodules increased by 65%, and the false positive rate decreased by 25%, the difference was statistically significant(P < 0.05); The sensitivity of the four groups of different sizes(D ≤ 4 mm, 4 mm < D ≤ 6 mm, 6 mm < D ≤ 8 mm, D > 8 mm) for lung solid nodules was improved by AI assisted software, and the increase rate was 78%,38%, 27% and 13.8%, respectively. The area on the FROC curve of method A(AAC) was 0.176, the method B was 0.0852, and the difference was statistically significant(P < 0.05). The average reading time of the two methods A and B was 411.9 seconds and 319.7 seconds respectively. Conclusion:AI assisted software can significantly improve the detection efficiency of inexperienced residents for different sizes of lung solid nodules in CT, especially for the detection of lung solid nodules ≤ 4 mm in diameter.
  • 期刊类型引用(8)

    1. 许金卫,张鑫,陈震. 非结核分枝杆菌肺病与继发性肺结核的CT表现分析. 新发传染病电子杂志. 2020(02): 113-117 . 百度学术
    2. 李旭文,陆良其,巫楠楠. 支气管内膜结核CT平扫影像征象分析. 影像研究与医学应用. 2020(21): 53-55 . 百度学术
    3. 徐有学,范俊飞,李荣标. 支气管结核的影像诊断. 现代医用影像学. 2020(12): 2278-2280 . 百度学术
    4. 刘兵,郭大可,曹淑丽. 多层螺旋CT增强检查对支气管内膜结核及肺癌病变管壁长度的评价. 临床和实验医学杂志. 2019(01): 111-113 . 百度学术
    5. 吴文岩,张新芝. 多层螺旋CT对于肝结核的诊断价值分析. 世界最新医学信息文摘. 2019(73): 208+210 . 百度学术
    6. 薛映月,邵清,蔡满满. 超声弹性应变率值在鉴别乳腺炎与乳腺癌中的应用分析. CT理论与应用研究. 2018(03): 379-385 . 本站查看
    7. 叶涛生,张培泽,曾旋,李敏,何俊梅,唐怡敏,张娇红. 经支气管镜治疗淋巴结瘘型支气管结核的效果分析. 新发传染病电子杂志. 2018(04): 202-205 . 百度学术
    8. 唐甦,薛琴. CT与支气管镜活检病理组织学在支气管结核诊断中的应用价值研究. 中国CT和MRI杂志. 2017(09): 70-73 . 百度学术

    其他类型引用(2)

计量
  • 文章访问数:  363
  • HTML全文浏览量:  6
  • PDF下载量:  10
  • 被引次数: 10
出版历程
  • 收稿日期:  2019-12-10
  • 网络出版日期:  2021-11-10

目录

    /

    返回文章
    返回
    x 关闭 永久关闭