ISSN 1004-4140
CN 11-3017/P

地震资料宽频处理技术在天然气水合物矿体描述中的应用研究

王兆旗, 李林, 王彬, 王雪峰, 李立胜

王兆旗, 李林, 王彬, 王雪峰, 李立胜. 地震资料宽频处理技术在天然气水合物矿体描述中的应用研究[J]. CT理论与应用研究, 2021, 30(5): 547-554. DOI: 10.15953/j.1004-4140.2021.30.05.02
引用本文: 王兆旗, 李林, 王彬, 王雪峰, 李立胜. 地震资料宽频处理技术在天然气水合物矿体描述中的应用研究[J]. CT理论与应用研究, 2021, 30(5): 547-554. DOI: 10.15953/j.1004-4140.2021.30.05.02
WANG Zhaoqi, LI Lin, WANG Bin, WANG Xuefeng, LI Lisheng. Application of Broadband Seismic Data Processing Technology in the Description of Natural Gas Hydrate Ore Body[J]. CT Theory and Applications, 2021, 30(5): 547-554. DOI: 10.15953/j.1004-4140.2021.30.05.02
Citation: WANG Zhaoqi, LI Lin, WANG Bin, WANG Xuefeng, LI Lisheng. Application of Broadband Seismic Data Processing Technology in the Description of Natural Gas Hydrate Ore Body[J]. CT Theory and Applications, 2021, 30(5): 547-554. DOI: 10.15953/j.1004-4140.2021.30.05.02

地震资料宽频处理技术在天然气水合物矿体描述中的应用研究

基金项目: 

国家自然科学基金(面向海洋深水资料的全波场最小二乘偏移方法研究(41874164))。

详细信息
    作者简介:

    王兆旗*,男,中国石油杭州地质研究院高级工程师,主要从事地震资料处理及方法研究,E-mail:wangzq_hz@petrochina.com.cn。

  • 中图分类号: P315;P631

Application of Broadband Seismic Data Processing Technology in the Description of Natural Gas Hydrate Ore Body

  • 摘要: 针对天然气水合物钻探难以有效解决的矿体空间展布等难点,提出一套基于自适应鬼波压制技术的地震宽频处理技术,有效改善资料分辨率。首先采用上下行波场分离的鬼波压制技术实现对震源端和电缆端鬼波的压制;然后通过高精度网格层析反演速度建模技术获取高质量速度场,利用叠前深度偏移成像进一步提高水合物层成像精度。实践表明,相对于常规处理而言,宽频处理的水合物地震特征更清晰,细节信息更丰富,有利于天然气水合物矿体的准确描述。
    Abstract: A set of seismic data broadband processing technology based on adaptive ghost wave suppression is proposed to improve the resolution of data, which is difficult to be solved in natural gas hydrate (NGH) drilling. Firstly, ghost wave suppression technology based on upstream and downstream wave field separation is used to suppress the ghost wave of source and cable. Then the high quality velocity field is obtained by high precision grid tomography inversion velocity modeling technology while the imaging accuracy of hydrate layer is further improved by prestack depth migration imaging. The practice shows that compared with the conventional treatment, the broadband treatment provides clearer seismic characteristics and more detailed information, which is more conducive to the accurate description of the NGH ore body.
  • [1] 宋海斌, 江为为, 张岭. 海洋天然气水合物的地球物理研究(Ⅳ):双似海底反射[J]. 地球物理学进展, 2003, 18(3):497-502.

    SONG H B, JIANG W W, ZHANG L. Geophysical researches on marine gas hydrates (Ⅳ):Double bottom simulating reflections[J]. Progress in Geophysics, 2003, 18(3):497-502. (in Chinese).

    [2] 杨志力, 王彬, 李丽, 等. 南海西沙海域天然气水合物识别与分别预测[J]. 重庆科技学院学报(自然科学版):2019, 1(4):33-38. YANG Z L, WANG B, LI L, et al. Distinguishing and forecasting the distribution of gas hydrates in the sediments of Xisha Area, South China Sea[J]. Journal of Chongqing University of Science and Technology (Naural Sciences Edition), 2019, 1(4):33-38. (in Chinese).
    [3] 陈玺, 杨振, 文鹏飞, 等. 保幅Kirchhoff弯曲射线叠前时间偏移技术在天然气水合物三维地震资料处理中的应用[J]. 华南地震, 2019, 39(1):7-11.

    CHEN X, YANG Z, WEN P F, et al. Application of amplitude-preserving kirchhoff curved-ray pstm in gas hydrates 3D seismic data processing[J]. South China Journal of Seismology, 2019, 39(1):7-11. (in Chinese).

    [4] 王伟国, 舒虎, 邢涛, 等. 南海神狐海域天然气水合物叠后逆时偏移处理及效果[J]. 地球物理学进展,2014, 29(1):0400-0405.

    WANG W G, SHU H, XING T, et al. Natural gas hydrates post-stack reverse-time migration processing and effects in Shenhu area of South China sea[J]. Progress in Geophysics, 2014, 29(1):0400-0405. (in Chinese).

    [5] 薛花, 杜民, 文鹏飞, 等.南海神狐海域试采区天然气水合物精细速度建模方法[J]. 海洋地质前沿,2019, 35(7):8-17.

    XUE H, DU M, WEN P F, et al. Research and application of fine velocity modeling to gas hydrate testing development in the shenhu area of south China sea[J]. Marine Geology frontiers, 2019,35(7):8-17. (in Chinese).

    [6] 李洪建. 海洋宽频地震勘探方法与应用研究[D]. 长春:吉林大学, 2016. LI H J. Research and application of broadband marine seismic exploration[D]. Changchun:Jilin University, 2016. (in Chinese).
    [7] 张威, 韩立国, 李洪建, 等. 基于LSMR算法的斜缆数据鬼波压制方法[J]. 石油地球物理勘探, 2017, 52(3):434-441.

    ZHANG W, HAN L G, LI H J, et al. Deghosting of variable depth streamer data based on LSMR[J]. Oil Geophysical Prospecting, 2017, 52(3):434-441. (in Chinese).

    [8] 顾元, 文鹏飞, 张宝金, 等. 水平缆地震数据的鬼波压制方法及其应用[J]. 地球物理学进展, 2017, 32(4):1764-1772.

    GU Y, WEN P F, ZHANG B J, et al. Receiver deghosting method in τ-p domain and ins application to flat streamers premigration data[J]. Progress in Geophysics, 2017, 32(4):1764-1772. (in Chinese).

    [9]

    SOUBARA R. Deghosting by joint deconvolution of a migration and a mirror migration[C]//80th SEG Annual Meeting and Exhibition, Expanded Abstracts, 2010:3406-3410.

    [10]

    WANG P, RAY S, PENG C, et al. Premigration deghosting for marine streamer data using a bootstrap approach in tau-p domain[C]//2013, 75th EAGE Conference and Exhibition, Extended Abstract.

    [11]

    POOLE G. Premigration receiver deghosting and redatuming for variable depth streamer data[C]//SEG Technicak Program Expanded Abstracts, 2013, 32:4216-4220.

    [12]

    KING S, POOLE G. Hydrophone only receiver deghosting using avariable sea surfaced datum[C]//SEG Technical Program Expanded Abstracts, 2015, 34:4610-4614.

    [13]

    MASOOMZADEH H, HARDWICK A, BALDOCK S, et al. Redatuming and deghosting of variable depth streamer data[C]//SEG Technial Program Expanded Abstracts, 2015, 34:4520-4524.

    [14] 梁劲, 王宏斌, 郭依群, 等. 南海北部陆坡天然气水合物的地震速度研究[J]. 现代地质, 2006, 20(1):123-129.

    LIANG J, WANG H B, GUO Y Q, et al. Study of seismic velocity about gas hydrates in slope of the South China Sea[J]. Geoscience, 2006, 20(1):123-129. (in Chinese).

    [15]

    STORK C. Reflection tomography in the postmigrated domain[J]. Geophysics, 1992, 57:680-692.

    [16] 王兆旗, 庄锡进, 李立胜, 等. 非线性层析反演速度建模技术[J]. CT理论与应用研究, 2017, 26(5):543-553.

    DOI:10.15953/j.1004-4140.2017.26.05.02. WANG Z Q, ZHUANG X J, LI L S, et al. Non-linear tomography inversion technology for velocity modeling[J]. CT Theory and Applications, 2017, 26(5):543-553. DOI:10.15953/j.1004-4140. 2017.26.05.02. (in Chinese).

    [17] ETIENNE ROBEIN. 地震资料叠前偏移成像:方法、原理和优缺点分析[M]. 北京:石油工业出版社, 2012, (5):56-82.
    [18] 王兆旗, 叶月明, 庄锡进, 等. 层控网格层析速度建模技术在陆上盐丘区的应用[J]. 天然气地球科学, 2016, 27(11):2070-2076.

    WANG Z Q, YE Y M, ZHUANG X J, et al. Application of layer-constrained grid tomographic velocity modeling in onshore salt domes area[J]. Natural Gas Geoscience, 2016, 27(11):2070-2076.(in Chinese).

    [19]

    GONG T J, LIU M, GUO J Q, et al. A compensatory velocity model building method with DWT and grid-based tomography[C]//2017 CGS/SEG International Geophysical Conference, 2017, 944-947.

    [20] 龚跃华, 杨胜雄, 王宏斌, 等. 琼东南盆地天然气水合物成矿远景[J]. 吉林大学学报:地球科学版, 2018, 48(4):1030-1042.

    GONG Y H, YANG S X, WANG H B, et al. Prospect of gas hydrate resources in Qiong Dongnan Basin[J]. Journal of Jilin University:Earth Science Edition, 2018, 48(4):1030-1042. (in Chinese).

  • 期刊类型引用(0)

    其他类型引用(3)

计量
  • 文章访问数:  359
  • HTML全文浏览量:  12
  • PDF下载量:  43
  • 被引次数: 3
出版历程
  • 收稿日期:  2021-06-16
  • 网络出版日期:  2021-09-22

目录

    /

    返回文章
    返回
    x 关闭 永久关闭