Study on the Value of Predicting Prostate Cancer in the Grey Zone of PSA by Use of PI-RADS v2.1 Combined with PSA-related Indicators
-
摘要: 目的:探讨建立前列腺影像报告及数据系统(PI-RADS v2.1)联合前列腺抗原(PSA)相关衍生物的Logistic模型对PSA灰区(4~10ng/mL)前列腺癌(PCa)的诊断价值。材料与方法:回顾性分析经病理证实的49例前列腺癌(PCa)和118例非癌患者的资料,包括年龄、tPSA、fPSA、PI-RADS v2.1评分、PSAD、fPSA/tPSA。对组间有统计学差异的指标进行Logistic回归分析,确定PCa独立预测指标,并分别联合PI-RADS v2.1评分建立Logistic回归预测模型。通过受试者工作特性曲线(ROC)评价各模型的诊断效能。结果:①年龄、tPSA、fPSA在PCa与非癌组间无统计学差异,fPSA/tPSA、PSAD、PI-RADS v2.1评分有统计学差异。②Logistic回归分析显示PI-RADS v2.1评分、PSAD、fPSA/tPSA为PCa独立预测因子;拟建立预测模型,A模型:Logit(P)=-10.82+2.32×PI-RADS v2.1+11.89×PSAD;B模型:Logit(P)=-6.13+2.19×PI-RADS v2.1-12.02×fPSA/tPSA。ROC曲线下面积分别为0.918和0.893,均高于单独使用PI-RADS v2.1评分,差异具有统计学意义。其中A模型敏感度0.843、特异度0.829,较单独使用PI-RADS v2.1评分(敏感度0.767、特异度0.801)诊断效能最佳。结论:PI-RADS v2.1评分联合PSA相关指标建立的Logistic模型在PSA灰区前列腺癌的诊断效能均优于单独运用PI-RADS v2.1评分,能够避免不必要的穿刺活检,对优化临床治疗策略具有较好的指导作用。
-
关键词:
- 前列腺癌 /
- Logistic回归模型 /
- PSA灰区
Abstract: Objective: We intend to investigate the diagnostic value of establishing the Logistic regression model based on Prostate Imaging Report and Data System (PI-RADS v2.1) combined with prostate specific antigen (PSA) which is applied in PSA gray area(4~10ng/mL) prostate cancer. Materials and Methods: We retrospectively analyzed the pathologically-certified clinical data of 49 cases with prostate cancer (PCa) and 118 non-cancer cases who underwent prostate biopsy, the data covered age, tPSA, fPSA, PI-RADS v2.1 evaluation, PSAD and fPSA/tPSA. We performed logistic regression analysis on the indicators with statistical difference between the groups, and obtained ascertained independent PCa predictors, furthermore we respectively established regression prediction model by combination with PI-RADS v2.1 evaluation. The diagnostic efficacy of each model was evaluated by the operating characteristic curve (ROC) of subjects. Results: (1) There was no significant statistical difference in age, tPSA and fPSA between the PCa and non-cancer patients. But evaluation of PI-RADS v2.1, fPSA/tPSA, and PSAD showed significant statistical differences. (2) Logistic regression analysis indicated that PI-RADS v2.1evaluation, PSAD, and fPSA/tPSA are independent predictors of PCa; we established prediction models A and B as follows;Model A: Logit (P)=-10.82+2.32×PI-RADS v2.1+11.89×PSAD; Model B: Logit (P)=-6.13+2.19×PI-RADS v2.1-12.02×fPSA/tPSA. The area under the ROC curve was respectively 0.918 and 0.893, both were higher than the PI-RADS v2.1 evaluation independently applied, and we found that the differences were statistically significant. The sensitivity of model A was 0.843 and the specificity was 0.829, which showed better diagnostic efficacy compared with the sensitivity and specificity we got when the PI-RADS v2.1 evaluation was independently used (sensitivity 0.767 and specificity 0.801).Conclusion: The Logistic model established by combing PI-RADS v2.1 evaluation with PSA-related indicators showed better diagnostic efficacy in PSA grey area prostate cancer than PI-RADS v2.1 applied independently, in this way unnecessary needle biopsy can be avoided, and would play a significant instructive role in optimizing clinical treatment strategies.-
Keywords:
- prostate cancer /
- logistic regression model /
- PSA grey zone
-
-
[1] 韩苏军, 张思维, 陈万青, 等. 中国前列腺癌发病现状和流行趋势分析[J]. 临床肿瘤学, 2013, 18(4):330-334. HAN S J, ZHANG S W, CHEN W Q, et al. Analysis of the status and trends of prostate cancer incidence in China[J]. Chinese Clinical Oncology, 2013, 18(4):330-334. (in Chinese).
[2] ROOBOL M J, KRANSE R, BANGMA C H, et a1.Screening for prostate cancer:Results of the Rotterdam section of the European randomized study of screening for prostate cancer[J]. European Urology, 2013, 64(4):530-539.
[3] SALIDO-GUADARRAMA A I, MORALES-MONTOR J G, RANGEL-ES-CAREO C, et a1.Urinary micro RNA-based signature improves accuracy of detection of clinically relevant prostate cancer within the prostate-specific antigen grey zone[J]. Molecular Medicine Reports, 2016, 13(6):4549-4560.
[4] CHEN R, SJOBERG D D, HUANG Y, et al. Prostate specific antigen and prostate cancer in Chinese men undergoing initial prostate biopsies compared with western cohorts[J]. Journal of Urology, 2017, 197(1):90-96.
[5] 康振, 张配配, 李拔森, 等. 前列腺影像报告与数据系统对前列腺特异性抗原灰区前列腺癌的诊断价值[J]. 重庆医学, 2017, 46(22):3050-3052 , 3056. KANG Z, ZHANG P P, LI B S, et al. Diagnostic value of prostate image report and data system (PIRADS version 2) in prostate cancer with grey zone of prostate specific antigen[J]. Chongqing Medicine, 2017, 46(22):3050-3052, 3056. (in Chinese).
[6] BARRETT T, RAJESH A, ROSENKRANTZ A B, et al. PI -RADS version 2.1:One small step for prostate MRI[J]. Clinical Radiology, 2019, 74:841-852.
[7] DRAISMA G, ETZIONI R, TSODIKOV A, et al. Lead time and overdiagnosis in prostate-specific antigen screening:Importance of methods and context[J]. National Cancer Institute, 2009, 101(6):374-383.
[8] 马文斌, 郭顺华, 过新民, 等.MRI联合PSAD对前列腺癌和前列腺增生的诊断价值[J].中国实用医药, 2017, 12(6):35-37. MA W B, GUO S H, GUO X M, et al. Diagnostic value of MRI combined with PSAD in prostate cancer and benign prostatic hyperplasia[J]. China Practical Medical, 2017, 12(6):35-37. (in Chinese).
[9] BARUAH S K, DAS N, BARUAH S J, et al. Combining prostate-specific antigen parameters with prostate imaging reporting and data system score Version 2.0 to improve its diagnostic accuracy[J]. World Journal of Oncology, 2019, 10(6):218-225.
[10] LIU B, PAN T J.Role of PSA-related variables in improving positive ratio of biopsy of prostate cancer within serum PSA gray zone[J]. Urologia, 2015, 81(3):173-176.
[11] VARGAS H A, HOTKER A M, GOLDMAN D A, et al.Updated prostate imaging reporting and data system(PIRADS v2) recommendations for the detection of clinically significant prostate cancer using multiparametric MRI:Critical evaluation using whole-mount pathology as standard of reference[J]. European Radiology, 2016, 26(6):1606-1612.
[12] CASH H, GUNZEL K, MAXEINER A, et al. Men with a negative real-time MRI/ultrasound-usion guided targeted biopsy but prostate cancer detection on TRUS-guided random biopsy-what are the reasons for targeted biopsy failure?[J]. The British Journal of Urology International, 2016, 118(1):35-43.
[13] WOO S, SUB C H, KIM S Y, et al. Diagnostic performance of prostate imaging reporting and data system version 2 for detection of prostate cancer:A systematic review and diagnostic meta-analysis[J].European Urology, 2017, 72(2):177-188.
[14] LIU C, LIU S L, WANG Z X, et al. Using the prostate imaging reporting and data system version (PI-RADS v2) to detect prostate cancer can provent unnecessary biopsies and invasive treatment[J]. Asian Journal Andrology, 2018, 20(5):459-464.
[15] 潘俊, 谢旻君, 胡萍, 等. 联合联合PSAD及MRI建立PSA 4~10ng/mL患者前列腺穿刺活检阳性风险分层[J]. 临床泌尿外科杂志, 2019, 34(4):289-292. PAN J, XIE M J, HU P, et al. Risk stratification of prostate biopsy by combining PSAD and MRI among men with PSA 4~10ng/mL[J]. Journal of Clinical Urology, 2019, 34(4):289-292. (in Chinese).
[16] 梁震, 朱军, 康家旗, 等. 双参数磁共振PI-RADS联合PSA相关指标在首次前列腺穿刺活检中的诊断价值[J]. 中华泌尿外科杂志, 2019, 40(10):768-773. LIANG Z, ZHU J, KANG J Q, et al. Diagnostic value of biparameter magnetic resonance imaging of PI-RADS and PSA related markers in first prostate biopsy[J]. Chinese Journal Urology, 2019, 40(10):768-773. (in Chinese).
-
期刊类型引用(4)
1. 张元飞. 动态增强磁共振成像联合弥散加权成像对前列腺癌的诊断效能. 实用临床医药杂志. 2024(24): 26-30 . 百度学术
2. 殷帅涛,王嘉南,蒋召强,王向阳,姬彤宇,单磊. PI-RADS v2.1评分联合前列腺特异性抗原衍生指标对灰区前列腺癌的诊断价值. 中华实用诊断与治疗杂志. 2023(04): 372-376 . 百度学术
3. 李媛媛,张显利. f-PSA/t-PSA联合基于PI-RADS v2评分的多参数MRI在前列腺癌中的诊断价值. 临床医学研究与实践. 2022(28): 119-122+136 . 百度学术
4. 孙东方,姚伟根,刘洁,鲁鹏聪,康聪. 基于PI-RADS联合PSA及衍生物构建前列腺癌定量评分体系的研究. 现代实用医学. 2022(12): 1564-1566 . 百度学术
其他类型引用(2)
计量
- 文章访问数:
- HTML全文浏览量:
- PDF下载量:
- 被引次数: 6