Clinical Value of Applying Dual-energy CT Radio-mics Model to Evaluate Serosal Invasion of Advanced Gastric Cancer after Neoadjuvant Chemotherapy Treatment
-
摘要: 目的:探讨基于碘图(IM)的双能CT影像组学模型在新辅助化疗(NAC)后局部进展期胃癌(LAGC)浆膜浸润的术前再分期中的诊断效能。方法:对155例(训练组110例,测试组45例)术前经过标准NAC治疗的LAGC患者进行回顾性研究。所有CT图像由两名放射科医生分析,并进行人工分类。半自动勾画感兴趣区体积(VOI),在IM和120kVp图像上分别从每个病变中提取了1226个影像组学特征。采用Spearman相关分析和最小绝对收缩选择算子(LASSO)惩罚Logistic回归过滤不稳定及冗余特征,从而筛选出重要特征。通过多因素Logistic回归分析,分别得到了基于120kVp选择的特征和120kVp结合IM选择的特征建立的两个预测模型(120kVp和IM-120kVp)。结果:两种影像组学模型(IM-120kVp AUC:训练组,0.953,测试组,0.879;120kVp AUC:训练组,0.940,测试组,0.831)在训练和测试组中均显示出较高的预测准确度和效能。所有模型在测试组的诊断准确率(IM-120kVp:84.4%,120kVp:80.0%)均高于人工分类(68.9%)。IM-120kVp模型在训练(P<0.001)和测试组中的诊断效能(P=0.034)均优于人工分类。结论:基于双能CT的影像组学模型在NAC治疗后LAGC术前再分期鉴别浆膜侵犯方面表现出令人信服的诊断效能。Abstract: Objective: We intend to evaluate the diagnostic efficacy of dual-energy CT radio-mics model based on Iodine Map (IM) in the application of preoperative re-staging of serosal invasion in locally advanced gastric cancer (LAGC) after neoadjuvant chemotherapy (NAC) treatment. Methods: A retrospective study was conducted on 155 patients with LAGC who were treated with standard NAC before operation (including 110 cases in training group and 45 cases in testing group). Two radiologists analyzed all the CT images and carried out the classification. After the semi-automatic drawing of region of interest volume (VOI), we extracted 1226 imaging features from each lesion based respectively on IM and 120kVp images. We adopted Spearman related analysis, Least Absolute Shrinkage and Selection Operator (LASSO) to punish Logistic regression in order to acquire important feature by getting rid of unstable and redundant features. Through multi-factor Logistic regression analysis, we established two prediction models (120kVp and IM-120kVp) based on the features selected respectively by 120kVp and 120kVp combined with IM. Results: Two radio-mics models both showed great prediction accuracy and efficiency in training and testing groups (IM-120kVp: AUC: training group, 0.953, testing group, 0.879; 120kVp: AUC: training group, 0.940, testing group, 0.831). The diagnostic accuracy of both models in the testing group (IM-120kVp: 84.4%, 120kVp: 80.0%) were higher than manual classification (68.9%). The diagnostic efficacy of IM-120kVp model was better than manual classification both in training (P<0.001) and testing groups (P=0.034). Conclusion: The radio-mics model based on dual-energy CT shows convincing diagnostic efficacy in differentiating serosal invasion in preoperative re-staging for LAGC patients after NAC treatment.
-
Keywords:
- dual-energy CT /
- radiomics /
- locally advanced gastric cancer
-
-
[1] BRAY F, FERLAY J, SOERJOMATARAM I, et al. Global cancer statistics 2018:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA:A Cancer Journal for Clinicians, 2018, 68(6):394-424. DOI: 10.3322/caac.21492.
[2] POH A R, O'DONOGHUE R J, ERNST M, et al. Mouse models for gastric cancer:Matching models to biological questions[J]. Journal of Gastroenterology and Hepatology, 2016, 31(7):1257-1272. DOI: 10.1111/jgh.13297.
[3] YCHOU M, BOIGE V, PIGNON J P, et al. Perioperative chemotherapy compared with surgery alone for resectable gastroesophageal adenocarcinoma:An FNCLCC and FFCD multicenter phase Ⅲ trial[J]. Journal of Clinical Oncology, 2011, 29(13):1715-1721. DOI: 10.1200/jco.2010.33.0597.
[4] VAN HAGEN P, HULSHOF M, VAN LANSCHOT J, et al. Preoperative Chemoradiotherapy for Esophageal or Junctional Cancer[J]. The New England Journal of Medicine, 2012, 366:11. DOI: 10.1056/NEJMoa1112088.
[5] SIEWERT J R, BÖTTCHER K, STEIN H J, et al. Relevant prognostic factors in gastric cancer ten-year results of the german gastric cancer study[J]. Annals of Surgery, 1998, 228(4):449-461. DOI: 10.1097/00000658-199810000-00002.
[6] WANG H H, HUANG J Y, WANG Z N, et al. Macroscopic serosal classification as a prognostic index in radically resected stage pt3-pt4b gastric cancer[J]. Annals of Surgical Oncology, 2016, 23(1):149-155. DOI: 10.1245/s10434-015-4656-3.
[7] CHIAO-YUN C, WU D, KANG W, et al. Dynamic contrast-enhanced ultrasound of gastric cancer correlation with gastric cancer on computed tomography[J]. Radiology, 2007, 242(11):472-482. DOI: 10.1148/radiol.2422051557.
[8] ZHENG Z, YU Y, LU M, et al. Double contrast-enhanced ultrasonography for the preoperative evaluation of gastric cancer:A comparison to endoscopic ultrasonography with respect to histopathology[J]. American Journal of Surgery, 2011, 202(5):605-611. DOI:10.1016/j. amjsurg.2010.09.033.
[9] WANG J Y, HSIEH J S, HUANG Y S, et al. Endoscopic ultrasonography for preoperative locoregional staging and assessment of resectability in gastric cancer[J]. Clinical Imaging, 1998, 22(5):355-359. DOI: 10.1016/S0899-7071(98)00033-3.
[10] AHN H S, LEE H J, YOO M W, et al. Diagnostic accuracy of T and N stages with endoscopy, stomach protocol CT, and endoscopic ultrasonography in early gastric cancer[J]. Journal of Surgical Oncology, 2009, 99(1):20-27. DOI: 10.1002/jso.21170.
[11] PARK S R, LEE J S, KIM C G, et al. Endoscopic ultrasound and computed tomography in restaging and predicting prognosis after neoadjuvant chemotherapy in patients with locally advanced gastric cancer[J]. Cancer, 2008, 112(11):2368-2376. DOI: 10.1002/cncr.23483.
[12] YOSHIKAWA T, TANABE K, NISHIKAWA K, et al. Accuracy of CT staging of locally advanced gastric cancer after neoadjuvant chemotherapy:Cohort evaluation within a randomized phase Ⅱ study[J]. Annals of Surgical Oncology, 2014, 21(S3):S385-389. DOI: 10.1245/s10434-014-3615-8.
[13] GRASER A, JOHNSON T R, CHANDARANA H, et al. Dual energy CT:Preliminary observations and potential clinical applications in the abdomen[J]. European Radiology, 2009,19(1):13-23. DOI: 10.1007/s00330-008-1122-7.
[14] CHEN X, XU Y, DUAN J, et al. Correlation of iodine uptake and perfusion parameters between dual-energy CT imaging and first-pass dual-input perfusion CT in lung cancer[J]. Medicine (Baltimore), 2017, 96(28):e7479. DOI: 10.1097/MD.0000000000007479.
[15] MARCON J, GRASER A, HORST D, et al. Papillary vs clear cell renal cell carcinoma. Differentiation and grading by iodine concentration using DECT-Correlation with microvascular density[J]. European Radiology, 2020, 30:1-10. DOI:10.1007/s00330-019- 06298-2.
[16] SATO K, MOROHASHI H, TSUSHIMA F, et al. Dual energy CT is useful for the prediction of mesenteric and lateral pelvic lymph node metastasis in rectal cancer[J]. Molecular and Clinical Oncology, 2019, 10(6):625-630. DOI: 10.3892/mco.2019.1834.
[17] TANG L, LI Z Y, LI Z W, et al. Evaluating the response of gastric carcinomas to neoadjuvant chemotherapy using iodine concentration on spectral CT:A comparison with pathological regression[J]. Clinical Radiology, 2015, 70(11):1198-204. DOI: 10.1016/j.crad.2015.06.083.
[18] AVANZO M, STANCANELLO J, EL NAQA I. Beyond imaging:The promise of radiomics[J]. Physicia Medica, 2017, 38:122-139. DOI: 10.1016/j.ejmp.2017.05.071.
[19] HUANG Y Q, LIANG C H, HE L, et al. Development and validation of a radiomics nomogram for preoperative prediction of lymph node metastasis in colorectal cancer[J]. Journal of Clinical Oncology, 2016, 34(18):2157-2164. DOI: 10.1200/JCO.2015.65.9128.
[20] XU X, ZHANG H L, LIU Q P, et al. Radiomic analysis of contrast-enhanced CT predicts microvascular invasion and outcome in hepatocellular carcinoma[J]. Journal of Hepatology, 2019, 70(6):1133-1144. DOI: 10.1016/j.jhep.2019.02.023.
[21] XU X, ZHANG H L, LIU Q P. Texture analysis in cerebral gliomas:A review of the literature[J]. American Journal of Neuroradiology, 2019, 40(6):928-934. DOI: 10.3174/ajnr.A6075.
[22] CUNNINGHAM D, ALLUM W H, STENNING S P, et al. Perioperative Chemotherapy versus Surgery Alone for Resectable Gastroesophageal Cancer[J]. The New England Journal of Medicine, 2006, 355(1):11-20. DOI: 10.1056/NEJMoa055531.
[23] SANO T, AIKO T. New Japanese classifications and treatment guidelines for gastric cancer:Revision concepts and major revised points[J]. Gastric Cancer. 2011, 14(2):97-100. DOI:10.1007/s10120-011-0040-6. PMID:21573921.
[24] Japanese Gastric Cancer Association. Japanese gastric cancer treatment guidelines 2014(ver. 4)[J]. Gastric Cancer 2017, 20:1-19. https://doi.org/10.1007/s10120-016-0622-4.
[25] AMIN M B, GREENE F L, EDGE S B, et al. The Eighth Edition AJCC Cancer Staging Manual:Continuing to build a bridge from a population-based to a more "personalized" approach to cancer staging[J]. CA:A Cancer Journal for Clinicians, 2017, 67(2):93-99. DOI: 10.3322/caac.21388.
[26] GAO X, ZHANG Y, YUAN F, et al. Locally advanced gastric cancer:Total iodine uptake to predict the response of primary lesion to neoadjuvant chemotherapy[J]. Journal of Cancer Research and Clinical Oncology, 2018, 144(11):2207-2218. DOI: 10.1007/s00432-018-2728-z.
[27] ALBRECHT M H, TROMMER J, WICHMANN J L, et al. Comprehensive comparison of virtual monoenergetic and linearly blended reconstruction techniques in third-generation dual-source dual-energy computed tomography angiography of the thorax and abdomen[J]. Investigative Radiology, 2016, 51(9):582-590. DOI: 10.1097/RLI.0000000000000272.
[28] SOFUE K, ITOH T, TAKAHASHI S, et al. Quantification of cisplatin using a modified 3-material decomposition algorithm at third-generation dual-source dual-energy computed tomography:An experimental study[J]. Investigative Radiology, 2018, 53(11):673-680. DOI: 10.1097/RLI.0000000000000491.
[29] HABERMANN C R, WEISS F, RIECKEN R, et al. Preoperative staging of gastric adenocarcinoma:Comparison of helical CT and endoscopic US[J]. Radiology, 2004, 230:465-471. DOI: 10.1148/radiol.2302020828.
[30] HASEGAWA S, YOSHIKAWA T, SHIRAI J, et al. A prospective validation study to diagnose serosal invasion and nodal metastases of gastric cancer by multidetector-row CT[J]. Annals of Surgical Oncology, 2013, 20(6):2016-2022. DOI: 10.1245/s10434-012-2817-1.
[31] WELS MG, LADES F, MUEHLBERG A, et al. General purpose radiomics for multi-modal clinical research[DB/OL]. Proceedings Volume 10950, Medical Imaging 2019. https://doi.org/10.1117/12.2511856.
[32] ZWANENBURG A, LEGER S, VALLIÈRESM, LÖCK S. Image biomarker standardization initiative[J]. ArXiv Prepr arXiv:161207003. 2019. DOI: 10.17195/candat.2016.08.1.
[33] HUANG Y, LIU Z, HE L, et al. Radiomics signature:A potential biomarker for the prediction of disease-free survival in early-stage (I or Ⅱ) non-small cell lung cancer[J]. Radiology, 2016, 281(3):947-957. DOI: 10.1148/radiol.2016152234.
[34] KIYABU M, LEICHMAN L, CHANDRASOMA. Effects of preoperative chemotherapy on gastric adenocarcinomas:A morphologic study of 25 cases[J]. Cancer, 1992, 70:2239-2245. DOI: 10.1002/1097-0142(19921101).
[35] KIM T U, KIM S, LEE J W, et al. MDCT features in the differentiation of T4a gastric cancer from less-advanced gastric cancer:Significance of the hyperattenuating serosa sign[J]. The British Journal of Radiology, 2013, 86(1029):20130290. DOI: 10.1259/bjr.20130290.
[36] LIU S, SHI H, JI C, et al. Preoperative CT texture analysis of gastric cancer:Correlations with postoperative TNM staging[J]. Clinical Radiology, 2018, 73(8):756. e1-756, e9. DOI: 10.1016/j.crad.2018.03.005.
[37] AGRAWAL M D, KULKARNI N M, HAHN P F, et al. Oncologic applications of dual energy CT in the abdomen[J]. Radiographics a Review Publication of the Radiological Society of North America Inc, 2014, 34(3):589. DOI: 10.1148/rg.343135041.
[38] JIANG C, YANG P, LEI J, et al. the application of iodine quantitative information obtained by dual-source dual-energy computed tomography on chemoradiotherapy effect monitoring for cervical cancer:A preliminary study[J]. Journal of Computer Assisted Tomography, 2017, 41(5):737-745. DOI: 10.1097/RCT.0000000000000603.
[39] BAXA J, MATOUSKOVA T, KRAKOROVA G, et al. Dual-phase dual-energy CT in patients treated with erlotinib for advanced non-small cell lung cancer:Possible benefits of iodine quantification in response assessment[J]. European Radiology, 2016, 26(8):2828-2836. DOI:10.1007/s00330- 015-4092-6.
[40] ZHANG L, TONG Y, ZHANG X, et al. Arsenic sulfide combined with JQ1, chemotherapy agents, or celecoxib inhibit gastric and colon cancer cell growth[J]. Drug Design Development and Therapy, 2015, 9:5851-5862. DOI: 10.2147/DDDT.S92943.
[41] Giganti F, Antunes S, Salerno A, et al. Gastric cancer:Texture analysis from multidetector computed tomography as a potential preoperative prognostic biomarker[J]. European Radiology, 2017, 27(5):1831-1839. DOI: 10.1007/s00330-016-4540-y.
[42] CHENG N, HSIEH C, LIAO C, et al. Prognostic value of tumor heterogeneity and SUVmax of pretreatment 18F-FDG PET/CT for salivary gland carcinoma with high-risk histology[J]. Clinical Nuclear Medicine, 2019, 44(5):351-358. DOI: 10.1097/RLU.0000000000002530.
[43] BURRELL R, MCGRANAHAN N, BARTEK J, et al. The causes and consequences of genetic heterogeneity in cancer evolution[J]. Nature, 2013, 501(7467):338-345. DOI: 10.1038/nature12625.
[44] BROCK C, HUANG S. Non-genetic heterogeneity:A mutation-independent driving force for the somatic evolution of tumours[J]. Nature Reviews Genetics, 2009, 10(5):336-342.
[45] YANG F, YOUNG P, GRIGSBY P. Predictive value of standardized intratumoral metabolic heterogeneity in locally advanced cervical cancer treated with chemoradiation[J]. International Journal of Gynecological Cancer Official Journal of the International Gynecological Cancer Society, 2016, 26(4):777.
-
期刊类型引用(9)
1. 颜颖,魏巍,宋丽君,管文敏,张婷婷,孙婧,安冉,杨正汉,魏璇,王振常. 人工智能辅助诊断软件探究新型冠状病毒肺炎核酸转阴后的肺部CT表现及其与入院时临床分型的关系. 临床和实验医学杂志. 2024(04): 337-340 . 百度学术
2. 刘瑞,武婷婷,勾少波,薛瑞红,贾燕茹,柴军. 不同时期新型冠状病毒感染胸部CT磨玻璃影的临床意义探讨. CT理论与应用研究. 2023(03): 339-346 . 本站查看
3. 谷辛稼,陈一民. 基于U-Net的COVID-19病灶医学影像ZMINet分割模型. 计算机应用与软件. 2023(08): 235-243 . 百度学术
4. 张凯,柴军,刘瑞,赵建华,王璟琛. 人工智能定量分析新型冠状病毒感染不同病毒变异株CT特征. CT理论与应用研究. 2023(05): 595-602 . 本站查看
5. 刘瑞,武婷婷,勾少波,薛瑞红,贾燕茹,柴军. 新型冠状病毒感染不同毒株的CT表现演变与临床转归的相关性分析. CT理论与应用研究. 2023(05): 627-635 . 本站查看
6. 郝琪,刘晓燕,张妍,李兴鹏,张怡梦,刘梦珂,张晓杰,李玲,郭佳,杜常月,孙莹,霍萌,张明霞,刘薇,段永利,段淑红,王仁贵. 胸部薄层CT平扫对于重型新型冠状病毒感染的诊断价值. CT理论与应用研究. 2023(05): 675-683 . 本站查看
7. 张海平,吴晓华,赵田瑞,贺毅,杨正汉. 急性肺动脉栓塞继发肺梗死CT特征分析. CT理论与应用研究. 2022(02): 227-235 . 本站查看
8. 王亮,王鹏,侯晓圆,张俊修,李绍旦,杨明会. 重型和危重型新型冠状病毒肺炎病机特点探析. 山东中医药大学学报. 2022(05): 587-592 . 百度学术
9. 肖仕刚. 疫情管控事急从权“闭环管理”之应急法治回顾再检视. 贵州工程应用技术学院学报. 2022(04): 58-66 . 百度学术
其他类型引用(2)
计量
- 文章访问数: 464
- HTML全文浏览量: 59
- PDF下载量: 45
- 被引次数: 11