ISSN 1004-4140
CN 11-3017/P

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于同步辐射X射线CT的无烟煤样孔隙分布表征

王润花 王海鹏 李建莉 王晋庥 李琨杰 Y. S. Yang

王润花, 王海鹏, 李建莉, 王晋庥, 李琨杰, Y. S. Yang. 基于同步辐射X射线CT的无烟煤样孔隙分布表征[J]. CT理论与应用研究, 2021, 30(6): 691-700. doi: 10.15953/j.1004-4140.2021.30.06.04
引用本文: 王润花, 王海鹏, 李建莉, 王晋庥, 李琨杰, Y. S. Yang. 基于同步辐射X射线CT的无烟煤样孔隙分布表征[J]. CT理论与应用研究, 2021, 30(6): 691-700. doi: 10.15953/j.1004-4140.2021.30.06.04
WANG Runhua, WANG Haipeng, LI Jianli, WANG Jinxiu, LI Kunjie, Y. S. Yang. Characterization of Pore Distribution of the Anthracite Coal Sample Based on Synchrotron Radiation X-ray CT[J]. CT Theory and Applications, 2021, 30(6): 691-700. doi: 10.15953/j.1004-4140.2021.30.06.04
Citation: WANG Runhua, WANG Haipeng, LI Jianli, WANG Jinxiu, LI Kunjie, Y. S. Yang. Characterization of Pore Distribution of the Anthracite Coal Sample Based on Synchrotron Radiation X-ray CT[J]. CT Theory and Applications, 2021, 30(6): 691-700. doi: 10.15953/j.1004-4140.2021.30.06.04

基于同步辐射X射线CT的无烟煤样孔隙分布表征

doi: 10.15953/j.1004-4140.2021.30.06.04
基金项目: 

国家自然科学基金(于同步辐射CT的煤直接液化残渣物理结构可视化表征(21206087))。

详细信息
    作者简介:

    王润花,女,山西大学理论物理研究所凝聚态物理专业硕士研究生,主要从事微焦点CT和材料多尺度结构研究,E-mail:17835063219@163.com;王海鹏*,男,山西大学物理电子工程学院副教授,硕士生导师,主要从事定量CT、统计物理、数值计算等方面的研究,E-mail:whp@sxu.edu.cn;Y.S.Yang*,男,澳大利亚联邦科学工业研究组织研究员,博士生导师,主要从事统计物理、材料科学、非破坏性物质微观结构表征及性能模拟等方面的研究,E-mail:sam.yang@csiro.au。

  • 中图分类号: O242;TP391.41

Characterization of Pore Distribution of the Anthracite Coal Sample Based on Synchrotron Radiation X-ray CT

  • 摘要: 本文利用同步辐射X射线对一沁水盆地无烟煤样在24 keV的能量下进行了成像,并重构得到其CT切片。分别采用数字地形模型(DTM)和数据约束模型(DCM)对样品的CT切片进行分析。研究结果表明,对本文所用煤样,DTM计算得到的煤样孔隙率与真密度和视相对密度实验法测得孔隙率较为接近,但利用DTM确定的阈值进行阈值分割提取到的样品孔隙率与DTM计算所得孔隙率之间偏差较大。DCM计算得到的孔隙率与DTM计算得到的孔隙率及实验测试结果均较为接近。DCM模型考虑了样品CT成像过程中的部分体积效应,得到小于CT体元的孔隙分布信息,在一定程度上拓展了CT成像技术的表征尺度。DCM计算结果显示,煤样中孔隙更多与煤基质和矿物组分以部分占据CT体元的形式存在。

     

  • [1] ZHANG R, LIU S M, HE L L, et al. Characterizing anisotropic pore structure and its impact on gas storage and transport in coalbed methane and shale gas reservoirs[J]. Energy & Fuels, 2020, 34(3):3161-3172.
    [2] ZHANG N, ZHAO F F, GUO P Y, et al. Nanoscale pore structure characterization and permeability of mudrocks and fine-grained sandstones in coal reservoirs by scanning electron microscopy, mercury intrusion porosimetry, and low-field nuclear magnetic resonance[J]. Geofluids, 2018, 2018:1-20.
    [3] FAN N, WANG J R, DENG C B, et al. Quantitative characterization of coal microstructure and visualization seepage of macropores using CT-based 3D reconstruction[J]. Journal of Natural Gas Science and Engineering, 2020, 81:103384.
    [4] ZHANG G L, RANJITH P G, PERERA M A S, et al. Characterization of coal porosity and permeability evolution by demineralisation using image processing techniques:A micro-computed tomography study[J]. Journal of Natural Gas Science and Engineering, 2018, 56:384-396.
    [5] ZHAO Y X, SUN Y F, LIU S M, et al. Pore structure characterization of coal by synchrotron radiation nano-CT[J]. Fuel, 2017, 215:102-110.
    [6] ZOU J P, CHEN W Z, YANG D S, et al. Fractal characteristics of the anisotropic microstructure and pore distribution of low-rank coal[J]. American Association of Petroleum Geologists Bulletin, 2019, 103(6):1297-1319.
    [7] TAUD H, MARTINEZ-ANGELES R, PARROT J F, et al. Porosity estimation method by X-ray computed tomography[J]. Journal of Petroleum Science and Engineering, 2005, 47(3/4):209-217.
    [8] WU H, YAO Y B, ZHOU Y F, et al. Analyses of representative elementary volume for coal using X-ray μ-CT and FIB-SEM and its application in permeability predication model[J]. Fuel, 2019, 254:115563.
    [9] ZHANG L, CHEN S, ZHANG C, et al. The characterization of bituminous coal microstructure and permeability by liquid nitrogen fracturing based on μ CT technology[J]. Fuel, 2019, 262:116635.
    [10] 宋党育, 何凯凯, 吉小峰, 等. 基于CT扫描的煤中孔裂隙精细表征[J]. 天然气工业, 2018, 38(3):41-49.

    SONG D Y, HE K K, JI X F, et al. Fine characterization of pores and fractures in coal based on a CT scan[J]. Natural Gas Industry, 2018, 38(3):41-49. (in Chinese).
    [11] MAO L T, SHI P, TU H, et al. Porosity analysis based on CT images of coal under uniaxial loading[J]. Advances in Computed Tomography, 2012, 1(2):5-10.
    [12] 王刚, 杨鑫祥, 张孝强, 等. 基于DTM阈值分割法的孔裂隙煤岩体瓦斯渗流数值模拟[J]. 岩石力学与工程学报, 2016, 35(1):119-129.

    WANG G, YANG X X, ZHANG X Q, et al. Numerical simulation of gas flow in pores and fissures of coal based on segmentation of DTM threshold[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(1):119-129. (in Chinese).
    [13] PAN J N, ZHANG Z Z, LI M, et al. Characteristics of multi-scale pore structure of coal and its influence on permeability[J]. Natural Gas Industry B, 2019, 6(4):357-365.
    [14] YANG S. A data-constrained non-linear optimisation approach to a data-constrained model for compositional microstructure prediction[C]//2nd International Conference on Materials, Mechatronics and Automation (ICMMA 2012). China:Nanching, Information Engineering Research Institute, 2012:198-205.
    [15] YANG Y S, LIU K Y, MAYO S, et al. A data-constrained modeling approach to sandstone microstructure characterisation[J]. Journal of Petroleum Science & Engineering, 2013, 105(3):76-83.
    [16] XAVIER M S, YANG S, COMET C, et al. Nondestructive quantitative characterisation of material phases in metal additive manufacturing using multi-energy synchrotron X-rays micro tomog raphy[J]. International Journal of Advanced Manufacturing Technology, 2020, 106:1-15.
    [17] 张旭芳, 王海鹏, 李君, 等. 基于微焦点CT与数据约束模型的古代家猪牙齿显微结构研究[J]. CT理论与应用研究, 2020, 29(6):677-685.

    DOI:10.15953/j.1004-4140.2020.29.06.05. ZHANG X F, WANG H P, LI J, et al. Study on the microstructure of ancient pig teeth based on micro-CT and data-constrained modeling[J]. CT Theory and Applications, 2020, 29(6):677-685. DOI:10.15953/j.1004-4140.2020.29.06.05. (in Chinese).
    [18] GUREYEV T E, NESTERETS Y, TERNOVSKI D, et al. Toolbox for advanced X-ray image processing[J]. Proceedings of SPIE-The International Society for optical Engineering, 2011, 8141:371-413.
    [19] 白娟娟, 杨玉双, 王海鹏. X射线断层扫描投影图像背景不一致的校准[J]. CT理论与应用研究, 2016, 25(6):661-670.

    DOI:10.15953/j.1004-4140.2016.25.06.06. BAI J J, YANG Y S, WANG H P. Spatial registration of X-ray CT projection images[J]. CT Theory and Applications, 2016, 25(6):661-670. DOI:10.15953/j.1004-4140.2016.25.06.06. (in Chinese).
    [20] PAGANIN D, MAYO S C, GUREYEV T E, et al. Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object[J]. Journal of Microscopy, 2002, 206(Pt1):33-40.
    [21] 刘新兵. 我国若干煤中矿物质的研究[J]. 中国矿业大学学报, 1994, 23(4):109-114.

    LIU X B. The mineral matter characteristristics of some chinese coal[J]. Journal of China University of Mining & Technology, 1994, 23(4):109-114. (in Chinese).
    [22] 徐荣声. 煤中矿物质在热转化过程中的演化行为[D]. 北京:中国矿业大学, 2016. XU R S. Behavior of minerals in coal during the procrsses of thermal transformat[D]. Beijing:China University of Mining and Technology, 2016. (in Chinese).
    [23] 李文, 白进. 煤的灰化学[M]. 北京:科学出版社, 2013. LI W, BAI J. Chemistry of ash from coal[M]. Beijing:Science Press, 2013. (in Chinese).
    [24] ZSCHORNACK G. Handbook of X-ray data[M]. Springer Berlin Heidelberg, 2007.
    [25] YANG Y S, TULLOH A, CHU C, et al. DCM-A software platform for advanced 3D materials modelling, characterisation and visualization[Z]. CSIRO Data Access Portal, 2015.
    [26] COLIN R, WARD. Analysis, origin and significance of mineral matter in coal:an updated review[J]. International Journal of Coal Geology, 2016, 165:1-27.
  • 加载中
计量
  • 文章访问数:  177
  • HTML全文浏览量:  10
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-23
  • 网络出版日期:  2021-11-04

目录

    /

    返回文章
    返回