Study on Predicting and Evaluating Clinical Classification of COVID-19 Pneumonia by Artificial Intelligence CT Quantitative Analysis
-
摘要: 目的:评价人工智能CT定量分析预测并评估COVID-19肺炎临床分型的相关性。方法:回顾性分析齐齐哈尔第一医院发热门诊收治2020年2月1日至2021年1月20日COVID-19确诊患者46例的临床及CT影像资料。比较人工智能(AI)定量分析中病灶累及全肺感染体积、磨玻璃密度体积(GGO体积)和实性密度体积(SO体积)与临床分型的相关性。结果:普通型26例、重型16例和危重型4例,临床表现以发热、咳嗽、乏力症状为主。重型和危重型更常见于年龄较大患者。3种临床分型肺部病变的CT表现均以GGO为主;普通型的全肺感染体积、GGO体积、SO体积比重型/危重型患者小,Spearman等级相关性分析显示全肺感染体积、GGO体积、SO体积均与临床分型具有显著相关(0.86、0.87和0.84)。结论:人工智能CT定量指标分析(感染体积、GGO体积、SO体积)与COVID-19肺炎临床分型具有较好的相关性。Abstract: Objective: To evaluate the correlation of CT artificial intelligence quantitative analysis in prediction and evaluation of clinical classification of COVID-19 pneumonia. Methods: The clinical and CT imaging data of 46 patients with COVID-19 treated in the hospital from February 1st, 2019 to January 20th, 2021 was retrospectively analyzed. We compared the correlation between the total lung infection volume, grinding glass density volume (GGO volume), solid density volume (SO volume) and clinical classification when artificial intelligence (AI) quantitative analysis was applied. Results: Among the 26 cases of common type, 16 cases of severe type and 4 cases of critical type, the main clinical manifestations were fever, cough and fatigue. Severe and critical types were more common in elder patients. The CT manifestations of three clinical types of pulmonary lesions were mainly GGO; total lung infection volume, GGO volume, SO volume in common type were smaller than that in patients of severe/critical type. Spearman grade correlation analysis showed significant correlation between total lung infection volume, GGO volume, and SO volume with clinical classification (0.86, 0.87, 0.84). Conclusion: The artificial intelligence CT quantitative index analysis (infection volume, GGO volume, SO volume) holds much correlation with clinical classification of COVID-19 pneumonia.
-
Keywords:
- new coronavirus pneumonia /
- CT /
- artificial intelligence /
- clinical classification
-
-
[1] 新型冠状病毒肺炎防控专家组. 新型冠状病毒肺炎防控专家组新型冠状病毒肺炎流行病学特征的最新认识[J]. 中华流行病学杂志, 2020, 41(2):139-144. DOI:10.3760/cma.j.issn.0254-6450. 2020.02.002..
[2] SHI X, CAI Y T, CAI X, et al. Management and implementation strategies of pre-screening triage in children during coronavirus disease 2019 pandemic in Guangzhou, China[J]. World Journal of Clinical Cases, 2021, 9(12):2731-2738.
[3] 邓芷晴, 张笑春, 李一荣, 等. 胸部CT筛查在新型冠状病毒肺炎暴发早期的价值[J]. 中华放射学杂志, 2020, 54(5):430-434. DENG Z Q, ZHANG X C, LI Y R, et al. Value of chest CT screening in the early COVID-19 outbreak[J]. Chinese Journal of Radiology, 2020, 54(5):430-434. (in Chinese).
[4] KHAN M, MEHRAN M T, HAQ Z U, et al. Applications of artificial intelligence in COVID-19 pandemic:A comprehensive review[J]. Expert Systems with Applications, 2021, 185:115695. DOI: 10.1016/j.eswa.2021.115695.
[5] SHI H, HAN X, JIANG N, et al. Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China:A descriptive study[J]. Lancet Infectious Diseases, 2020, 20(4):425-434.
[6] 陈麦林, 刘玉良, 齐丽萍, 等. 新冠肺炎疫情期间肺结节影像网络公益图文问诊特点分析[J]. CT理论与应用研究, 2020, 29(6):643-650. DOI:10.15953/j.1004-4140.2020.29.06.02. CHEN M L, LIU Y L, QI L P, et al. Imaging characteristics of pulmonary nodules on public network image consultation during the outbreak of new coronavirus pneumonia[J]. CT Theory and Applications, 2020, 29(6):643-650. DOI:10.15953/j.1004-4140.2020.29.06.02. (in Chinese).
[7] 中华人民共和国国家卫生健康委员会. 新型冠状病毒肺炎诊疗方案(试行第八版)[J]. 中华临床感染病杂志, 2020, 13(5):321-328. [8] 陈钊, 王荣福. CT在新型冠状病毒肺炎诊断与鉴别诊断中的应用价值[J]. CT理论与应用研究, 2020, 29(3):273-279. DOI:10.15953/j.1004-4140.2020.29.03.02. CHEN Z, WANG R F. Application of CT in the diagnosis and differential diagnosis of novel coronavirus pneumonia[J]. CT Theory and Applications, 2020, 29(3):273-279. DOI:10.15953/j.1004-4140.2020.29.03.02. (in Chinese).
[9] 曹玉坤, 韩小雨, 刘佳, 等. 人工智能辅助影像学在新型冠状病毒肺炎诊治中的研究进展[J]. 中华放射学杂志, 2021, 55(3):304-308. CAO Y K, HAN X Y, LIU J, et al. Research progress of artificial intelligence-aided medical image in the diagnosis and treatment of COVID-19[J]. Chinese Journal of Radiology, 2021, 55(3):304-308. (in Chinese).
[10] LI Q, GUAN X, WU P, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia[J]. The New England Journal of Medicine, 2020, 382(13):1199-1207.
[11] GUAN W J, NI Z Y, HU Y, et al. Clinical characteristics of coronavirus disease 2019 in China[J]. The New England Journal of Medicine, 2020, 382(18):1708-1720.
[12] BERNHEIM A, MEI X, HUANG M, et al. Chest CT findings in coronavirus disease-19(COVID-19):Relationship to duration of infection[J]. Radiology, 2020, 295(3):200463.
[13] HANSELL D M, BANKIER A A, MACMAHON H, et al. Fleischner society:Glossary of terms for thoracic imaging[J]. Radiology, 2008, 246(3):697-722.
[14] XU Z, SHI L, WANG Y, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome[J]. The Lancet, 2020, 8(4):420-422.
[15] 江凯, 龚红霞, 许磊磊, 等. 新型冠状病毒肺炎胸部CT表现特征[J]. 医学影像学杂志, 2021, 31(1):129-132. JIANG K, YU H X, XU L L, et al. The chest CT featwres of potients coronavirus disease 2019[J]. Journal of Medical Imaging, 2021, 31(1):129-132. (in Chinese).
[16] ANAND U, CABREROS C, MAL J, et al. Novel coronavirus disease 2019(COVID-19) pandemic:From transmission to control with an interdisciplinary vision[J]. Environmental Research, 2021, 197(11):111126.
-
期刊类型引用(3)
1. 颜颖,宋丽君,魏巍,魏璇,杨正汉,王振常. 新型冠状病毒肺炎患者临床转归与临床及影像指标的相关性研究. 临床和实验医学杂志. 2022(12): 1317-1321 . 百度学术
2. 宋丽君,颜颖,魏巍,魏璇,杨正汉,王振常. 新型冠状病毒肺炎患者核酸结果及临床分型与影像指标关系的研究. 临床和实验医学杂志. 2022(13): 1430-1433 . 百度学术
3. 李允,刘舒怡,郑劲平. 胸部影像人工智能在新型冠状病毒肺炎诊断中的应用及展望. 中华结核和呼吸杂志. 2022(12): 1255-1260 . 百度学术
其他类型引用(4)
计量
- 文章访问数: 254
- HTML全文浏览量: 18
- PDF下载量: 31
- 被引次数: 7