ISSN 1004-4140
CN 11-3017/P

综合物探方法在高压架空线路下方采空区探测中的应用

车传强, 陈波, 谢明佐, 燕宝峰, 王琼, 张捷, 万文宣

车传强, 陈波, 谢明佐, 等. 综合物探方法在高压架空线路下方采空区探测中的应用[J]. CT理论与应用研究, 2022, 31(1): 23-31. DOI: 10.15953/j.1004-4140.2022.31.01.03.
引用本文: 车传强, 陈波, 谢明佐, 等. 综合物探方法在高压架空线路下方采空区探测中的应用[J]. CT理论与应用研究, 2022, 31(1): 23-31. DOI: 10.15953/j.1004-4140.2022.31.01.03.
CHE C C, CHEN B, XIE M Z, et al. Application of integrated geophysics method in goaf detection under high voltage overhead lines[J]. CT Theory and Applications, 2022, 31(1): 23-31. DOI: 10.15953/j.1004-4140.2022.31.01.03. (in Chinese).
Citation: CHE C C, CHEN B, XIE M Z, et al. Application of integrated geophysics method in goaf detection under high voltage overhead lines[J]. CT Theory and Applications, 2022, 31(1): 23-31. DOI: 10.15953/j.1004-4140.2022.31.01.03. (in Chinese).

综合物探方法在高压架空线路下方采空区探测中的应用

详细信息
    作者简介:

    车传强: 男,内蒙古电力科学研究院教授级高级工程师,主要从事高压电气试验方面研究,E-mail:15335577550@126.com

    陈波: 男,内蒙古电力科学研究院高级工程师,主要从事高压电气试验方面研究,E-mail:chenbo0472@163.com

  • 中图分类号: P  631

Application of Integrated Geophysics Method in Goaf Detection Under High Voltage Overhead Lines

  • 摘要:

    利用物探方法准确高效地探测输电线路下方采空区的位置和范围对电网安全、稳定地运行具有十分重要的意义。根据采空区的地球物理性质,常使用电阻率法、电磁法、地震法等对其进行探测,但是,由于工区的干扰以及物探资料解释的多解性,单一的探测方法常常难以取得理想的效果。本文综合利用电测深法和浅层地震反射方法对高压架空线路下方采空区进行探测,研究表明电阻率法和地震法互相验证和补充,有效减少单一物探方法解释时的多解性,提高探测的分辨率和解释成果的可靠程度,为圈定采空区提供有效的依据。

    Abstract:

    It is very important for the safe and stable operation of power grid to detect the location and scope of mined-out area under transmission line accurately and efficiently by comprehensive geophysical method. According to the geophysical properties of goaf, resistivity method, electromagnetic method and seismic method are often used to detect goaf, but due to the actual interference and geophysical multi-solution, a single geophysical exploration method is often difficult to achieve ideal results. In this paper, the symmetrical quadrupole section resistivity method and shallow seismic reflection method are used to detect the mined-out area under the high-voltage overhead line. The study shows that the resistivity method and seismic method are mutually validated and complementary, which effectively reduces the multi-resolution of single geophysical method interpretation, and improves the detection resolution and the reliability of interpretation results. It provides an effective basis for delineating goaf.

  • 图  1   地表受采空区影响出现塌陷

    Figure  1.   Surface subsidence caused by goaf

    图  2   电阻率四极测深工作装置示意图(图中A、B为供电电极,M、N为测量电极)

    Figure  2.   Schematic diagram of resistivity quadrupole sounding working device (A and B are power supply electrodes, M and N are measuring electrodes)

    图  3   工区物探测线布置示意图

    Figure  3.   Schematic diagram of geophysical survey line layout

    图  4   D220-1线电剖面视电阻率断面等值线图

    Figure  4.   Cross section of apparent resistivity of D220-1 line profile

    图  5   D220-2线电测深电阻率断面等值线图

    Figure  5.   Cross section of apparent resistivity of D220-2 line profile

    图  6   D220-3线电测深电阻率断面等值线图

    Figure  6.   Cross section of apparent resistivity of D220-3 line profile

    图  8   D500-3线电测深电阻率断面等值线图

    Figure  8.   Cross section of apparent resistivity of D500-3 line profile

    图  7   D500-2线电测深视电阻率断面等值线图

    Figure  7.   Cross section of apparent resistivity of D500-2 line profile

    图  9   D500-4线电测深电阻率断面等值线图

    Figure  9.   Cross section of apparent resistivity of D500-4 line profile

    图  10   J1线叠加剖面解释示意图

    Figure  10.   Sketch map of J1 line stacking section interpretation

    图  11   J8线叠加剖面解释示意图

    Figure  11.   Sketch map of J8 line stacking section interpretation

    图  12   J9线叠加剖面解释示意图

    Figure  12.   Sketch map of J9 line stacking section interpretation

    图  13   J10线叠加剖面解释示意图

    Figure  13.   Sketch map of J10 line stacking section interpretation

    图  14   工区综合解释成果图

    Figure  14.   Comprehensive interpretation result map

  • [1] 张俊英, 王翰锋, 张彬, 等. 煤矿采空区勘查与安全隐患综合治理技术[J]. 煤炭科学技术, 2013,41(10): 76−80.

    ZHANG J Y, WANG H F, ZHANG B, et al. Comprehensive management technology of coal mine goaf exploration and safety hazards[J]. Coal Science and Technology, 2013, 41(10): 76−80. (in Chinese).

    [2] 曹新款. 采空区高压输电线路铁塔地基稳定性评价[J]. 煤炭工程, 2018,50(5): 50−52.

    CAO X K. Stability evaluation of iron tower foundation of high voltage transmission line in goaf[J]. Coal engineering, 2018, 50(5): 50−52. (in Chinese).

    [3] 杨勇, 陈清通. 综合物探方法在房采采空区勘查中的应用研究[J]. 中国煤炭, 2017,43(8): 47−51. doi: 10.3969/j.issn.1006-530X.2017.08.012

    CHEN Y, CHEN Q T. Research on the application of comprehensive geophysical prospecting method in the exploration of mined out areas[J]. China Coal, 2017, 43(8): 47−51. (in Chinese). doi: 10.3969/j.issn.1006-530X.2017.08.012

    [4] 王东伟, 刘亚文, 李玉辉, 等. 高密度电法在煤矿采空区探测中的研究与应用[J]. 中国煤炭, 2014,40(6): 38−40. doi: 10.3969/j.issn.1006-530X.2014.06.010

    WANG D W, LIU Y W, LI Y H, et al. Research and application of high density electrical method in goaf detection of coal mine[J]. China Coal, 2014, 40(6): 38−40. (in Chinese). doi: 10.3969/j.issn.1006-530X.2014.06.010

    [5] 李宏杰. 浅层地震和瞬变电磁法在采空区探测中的应用研究[J]. 煤矿开采, 2013,18(1): 17−19, 27. doi: 10.3969/j.issn.1006-6225.2013.01.006

    LI H J. Application of shallow seismic and transient electromagnetic method in goaf exploration[J]. Coal Mining, 2013, 18(1): 17−19, 27. (in Chinese). doi: 10.3969/j.issn.1006-6225.2013.01.006

    [6] 戴前伟, 侯智超, 柴新朝. 瞬变电磁法及 EH-4 在钼矿采空区探测中的应用[J]. 地球物理学进展, 2013,28(3): 1541−1546. doi: 10.6038/pg20130350

    DAI Q W, HOU Z C, CHAI X C. Plication of TEM and EH-4 in the exploration of goaf of molybdenum mine[J]. Geophysical Progress, 2013, 28(3): 1541−1546. (in Chinese). doi: 10.6038/pg20130350

    [7]

    ZHAO J. The application of transient electromagnetic method in the detection of water accumulation in coal mining area[J]. World Nonferrous Metals, 2017.

    [8]

    LIANG R U, ZHONG W, ZHU Y, et al. The application of precise processing technique for transient electromagnetic data to detection of goaf in coal mine[J]. Geophysical & Geochemical Exploration, 2012, 20(6).

    [9] 乌力吉门都. 官板乌素煤矿 6 煤层大采高下围岩类型评价[J]. 山东工业技术, 2017,(16): 95, 157.

    WU L J M D. Evaluation of surrounding rock type under large mining height of No. 6 Coal Seam in guanbanwusu coal mine[J]. Shandong Industrial Technology, 2017, (16): 95, 157. (in Chinese).

    [10] 刘斌, 关民全. 地震反射波在煤层赋存情况及煤层特殊地质现象中的特征[J]. 西部探矿工程, 2013,25(11): 128−131. doi: 10.3969/j.issn.1004-5716.2013.11.041

    LIU B, GUAN M Q. Characteristics of seismic reflection wave in coal seam occurrence and special geological phenomena[J]. Western Exploration Engineering, 2013, 25(11): 128−131. (in Chinese). doi: 10.3969/j.issn.1004-5716.2013.11.041

    [11] 杜琦伟. 煤层反射波的地震响应特征[J]. 山西建筑, 2015,41(21): 66−67. doi: 10.3969/j.issn.1009-6825.2015.21.037

    DU Q W. Seismic response characteristics of coal seam reflection wave[J]. Shanxi Jianshe, 2015, 41(21): 66−67. (in Chinese). doi: 10.3969/j.issn.1009-6825.2015.21.037

    [12] 王善勋, 杨文锋, 张卫敏, 等. 瞬变电磁法在煤矿采空区探测中的应用研究[J]. 工程地球物理学报, 2012,9(4): 400−405. doi: 10.3969/j.issn.1672-7940.2012.04.006

    WANG S X, YANG W F, ZHANG W M, et al. Research on the application of transient electromagnetic method in coal mine goaf detection[J]. Journal of Engineering Geophysics, 2012, 9(4): 400−405. (in Chinese). doi: 10.3969/j.issn.1672-7940.2012.04.006

    [13] 李坤鹏, 邵军. 综合勘探方法在石膏矿采空区勘查中的应用[J]. 资源信息与工程, 2018,33(3): 47−48. doi: 10.3969/j.issn.2095-5391.2018.03.022

    LI K P, SHAO J. Application of comprehensive exploration method in exploration of gypsum mine goaf[J]. Resource Information and Engineering, 2018, 33(3): 47−48. (in Chinese). doi: 10.3969/j.issn.2095-5391.2018.03.022

    [14] 薛国强, 潘冬明, 于景邨. 煤矿采空区地球物理探测应用综述[J]. 地球物理学进展, 2018, 33(5): 1-11.

    XUE G Q, PAN D M, YU J C. Review of geophysical exploration application in coal mine goaf[J]. Progress in Geophysics, 2018, 33(5): 1-11. (in Chinese).

    [15] 李启成, 郭雷. 视电阻率法与视比值参数法的理论与实践[J]. 地球物理学进展, 34(1): 326-330.

    LI Q C, GUO L. Theory and practice of apparent resistivity method and apparent ratio parameter method[J]. Progress in Geophysics, 34(1): 326-330. (in Chinese).

    [16] 唐汉平. 复杂地震地质条件下煤矿采空区三维地震勘探技术[J]. 中国煤炭, 2013,39(12): 35−37, 87. doi: 10.3969/j.issn.1006-530X.2013.12.010

    TANG H P. 3D seismic exploration technology of coal mine goaf under complex seismic geological conditions[J]. China Coal, 2013, 39(12): 35−37, 87. (in Chinese). doi: 10.3969/j.issn.1006-530X.2013.12.010

    [17]

    ROBSON A G, KING R C, HOLFORD S P. 3D seismic analysis of gravity-driven and basement influenced normal fault growth in the deepwater Otway Basin, Australia[J]. Journal of Structural Geology, 2016: 89.

    [18]

    The seismic reflection method and some of its constraints[J]. Handbook of Geophysical Exploration: Seismic Exploration, 2007, 37: 7-109.

    [19]

    CHEN Z Q, YANG H F, WANG J B, et al. Application of high-precision 3D seismic technology to shale gas exploration: A case study of the large Jiaoshiba shale gas field in the Sichuan Basin[J]. Natural Gas Industry B, 2016, 3(2): 117-128.

    [20] 董功, 平德, 张凤岭, 等. Sun Blade 2500工作站常见故障及处理方法[J]. 物探装备, 2011,21(1): 43−47. doi: 10.3969/j.issn.1671-0657.2011.01.012

    DONG G, PING D, ZHANG F L, et al. Sun blade 2500 workstation common faults and solutions[J]. Geophysical Equipment, 2011, 21(1): 43−47. (in Chinese). doi: 10.3969/j.issn.1671-0657.2011.01.012

    [21] 孙林. 高密度电阻率法与浅层地震在探测煤田采空区中的应用[J]. 物探与化探, 2012,36(S1): 88−91.

    SUN L. Application of high density resistivity method and shallow seismic in detecting Goaf in coalfield[J]. Geophysical and Geochemical Exploration, 2012, 36(S1): 88−91. (in Chinese).

    [22] 薛良方, 郭璟鑫. 综合物探法在采空区探测中的应用[J]. 中国石油和化工标准与质量, 2018,38(13): 112−113. doi: 10.3969/j.issn.1673-4076.2018.13.055

    XUE L F, GUO J X. Application of comprehensive geophysical method in goaf detection[J]. China Petroleum and Chemical Industry Standards and Quality, 2018, 38(13): 112−113. (in Chinese). doi: 10.3969/j.issn.1673-4076.2018.13.055

图(14)
计量
  • 文章访问数:  1011
  • HTML全文浏览量:  203
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-02
  • 网络出版日期:  2021-11-05
  • 刊出日期:  2022-01-31

目录

    /

    返回文章
    返回
    x 关闭 永久关闭