ISSN 1004-4140
CN 11-3017/P

孔间距对地震CT探测岩溶的影响模拟研究

李卫卫, 熊鑫, 蒙爱军

李卫卫, 熊鑫, 蒙爱军. 孔间距对地震CT探测岩溶的影响模拟研究[J]. CT理论与应用研究, 2022, 31(1): 33-45. DOI: 10.15953/j.1004-4140.2022.31.01.04.
引用本文: 李卫卫, 熊鑫, 蒙爱军. 孔间距对地震CT探测岩溶的影响模拟研究[J]. CT理论与应用研究, 2022, 31(1): 33-45. DOI: 10.15953/j.1004-4140.2022.31.01.04.
LI W W, XIONG X, MENG A J. Simulation study on the influence of the distance between two boreholes on seismic CT in Karst detection[J]. CT Theory and Applications, 2022, 31(1): 33-45. DOI: 10.15953/j.1004-4140.2022.31.01.04. (in Chinese).
Citation: LI W W, XIONG X, MENG A J. Simulation study on the influence of the distance between two boreholes on seismic CT in Karst detection[J]. CT Theory and Applications, 2022, 31(1): 33-45. DOI: 10.15953/j.1004-4140.2022.31.01.04. (in Chinese).

孔间距对地震CT探测岩溶的影响模拟研究

详细信息
    作者简介:

    李卫卫: 男,浙江华东建设工程有限公司高级工程师,研究方向为地下工程勘察,E-mail:li_ww@hdec.com

    蒙爱军: 男,浙江省工程物探勘察设计院有限公司高级工程师,研究方向为工程物探,E-mail:maj_0012021@126.com

  • 中图分类号: P  631.3

Simulation Study on the Influence of the Distance between Two Boreholes on Seismic CT in Karst Detection

  • 摘要:

    随着对地下空间开发的日趋增加,地下空间的施工与利用安全问题越来越受到广泛关注,地下发育的岩溶对于地下空间的开发会造成诸多安全隐患,对人民的生产生活也会造成很多影响。跨孔地震CT技术已经广泛应用于岩石破碎带、溶洞等探测,为地下空间的开发利用及施工安全提供了重要的技术支撑。为了进一步研究该技术的成像精度,本文对影响跨孔地震波初至CT成像精度的3个因素(孔间距、岩溶尺寸及水平间距)开展了正反演研究。研究结果表明:当孔深为20 m、孔间距为20 m时,该技术对直径为2.5 m单个岩溶的成像效果与其水平位置有关,而当孔间距缩小到15 m、10 m时,该技术对尺寸大些、岩溶水平间距大些的岩溶能很好地反演成像;对于多个岩溶水平或垂直排列时,当孔间距为10 m时,该技术能准确探明直径为1.5 m的岩溶。因此,在实际工作中,为了能准确探测到直径为1.5~2.5 m的岩溶,建议钻孔间距小于15 m。

    Abstract:

    With the increasing development of underground space, the safety of underground space construction and utilization has drawn widespread attention. The development of underground karst will not only cause many hidden safety hazards to the utilization of underground space, but also affect people's normal life. Cross-hole seismic CT technology has been widely used in the detection of rock fracture zones, karst caves, etc., which has provided important technical support for the development and utilization of underground space and construction safety. In order to further study the imaging accuracy of this technology, this paper has carried out forward and inversion research on the three factors (the distance between two boreholes, karst size and horizontal spacing) that affect the accuracy of cross-hole seismic wave first arrival CT imaging. The results of the study show that: when the hole depth is 20 m and the distance between two boreholes is 20 m, the imaging result of this technique on a single karst with a diameter of 2.5 m is related to its horizontal position, and when the distance between two boreholes is reduced to 15 m and 10 m, the technique can successfully construct the karsts with large sizes and large horizontal spacing; when multiple karsts are set horizontally or vertically, this technology can accurately detect karsts with a diameter of 1.5 m when the distance between two boreholes is 10 m. Therefore, in practical applications, it is recommended that the borehole spacing should be less than 15 meters in order to accurately detect karsts with a diameter of 1.5~2.5 m.

  • 图  1   跨孔地震CT观测系统示意图

    Figure  1.   Schematic diagram of the source receiver geometry for a cross-hole seismic CT

    图  2   模型1正反演结果(L=10 m, D=2.5 m)

    Figure  2.   The forward and inversion results of the first model

    图  7   模型6正反演结果(L=5 m, D=2.5 m)

    Figure  7.   The forward and inversion results of the sixth model

    图  3   模型2正反演结果(L=14 m, D=2.5 m)

    Figure  3.   The forward and inversion results of the second model

    图  4   模型3正反演结果(L=11 m, D=2.5 m)

    Figure  4.   The forward and inversion results of the third model

    图  5   模型4正反演结果(L=10 m, D=2.5 m)

    Figure  5.   The forward and inversion results of the fourth model

    图  6   模型5正反演结果(L=8 m, D=2.5 m)

    Figure  6.   The forward and inversion results of the fifth model

    图  8   模型7正反演结果(L=5 m, D=2.5 m)

    Figure  8.   The forward and inversion results of the seventh model

    图  9   模型8正反演结果(L=12 m, D=2 m)

    Figure  9.   The forward and inversion results of the eighth model

    图  10   模型9正反演结果(L=10 m, D=2 m)

    Figure  10.   The forward and inversion results of the nineth model

    图  11   模型10正反演结果(L=12 m, D=2 m)

    Figure  11.   The forward and inversion results of the tenth model

    图  12   模型11正反演结果(L=10 m, D=2 m)

    Figure  12.   The forward and inversion results of the eleventh model

    图  13   模型12正反演结果(L=5 m, D=2 m)

    Figure  13.   The forward and inversion results of the twelfth model

    图  14   模型13正反演结果(L=6 m, D=2 m)

    Figure  14.   The forward and inversion results of the thirteenth model

    图  15   模型14正反演结果(L=3.5 m, D=2.5 m)

    Figure  15.   The forward and inversion results of the fourteenth model

    图  16   模型15正反演结果(L=3.5 m, D=2.5 m)

    Figure  16.   The forward and inversion results of the fifteenth model

    图  17   模型16正反演结果(L=3 m, D=2.5 m)

    Figure  17.   The forward and inversion results of the sixteenth model

    图  18   模型17正反演结果(L=3 m, D=2 m)

    Figure  18.   The forward and inversion results of the seventeenth model

    图  19   模型18正反演结果(L=3 m, D=2 m)

    Figure  19.   The forward and inversion results of the eighteenth model

    图  20   模型19正反演结果(L=3 m, D=2 m)

    Figure  20.   The forward and inversion results of the nineteenth model

    图  21   模型20正反演结果(L=3 m, D=1.5 m)

    Figure  21.   The forward and inversion results of the twentieth model

    图  22   模型21正反演结果(H=3 m,D=2.5 m)

    Figure  22.   The forward and inversion results of the twenty-first model

    图  23   模型22正反演结果(H=3 m,D=2.5 m)

    Figure  23.   The forward and inversion results of the twenty-second model

    图  24   模型23正反演结果(H=5 m,D=2.5 m)

    Figure  24.   The forward and inversion results of the twenty-third model

    图  25   模型24正反演结果(H=3 m,D=2.5 m)

    Figure  25.   The forward and inversion results of the twenty-fourth model

    图  26   模型25正反演结果(H=5 m,D=2.5 m)

    Figure  26.   The forward and inversion results of the twenty-fifth model

  • [1] 彭柏兴, 舒倩, 罗玮. 岳阳市地下空间开发利用的工程地质问题研究[J]. 工程地质学报, 2019,27(S1): 9−16.

    PENG B X, SHU Q, LUO W. Research on the engineering geological problems of underground space developments in Yueyang city[J]. Journal of Engineering Geology, 2019, 27(S1): 9−16. (in Chinese).

    [2] 杨洋, 程光华, 苏晶文. 地下空间开发对城市地质调查的新要求[J]. 地下空间与工程学报, 2019, 15(2): 319-325.

    YANG Y, CHENG G H, SU J W, New requirements for the development of underground space in urban geological survey[J]. Chinese Journal of Underground Space and Engineering, 2019, 15(2): 319-325. (in Chinese).

    [3] 荣耀, 吴江鹏, 阳栋, 等. 城市地下空间开发利用关键地质影响因素分析[J]. 桂林理工大学学报, 2018,38(2): 250−255. doi: 10.3969/j.issn.1674-9057.2018.02.010

    RONG Y, WU J P, YANG D, et al. Analysis of key geological influencing factors in urban underground space development and utilization[J]. Journal of Guilin University of Technology, 2018, 38(2): 250−255. (in Chinese). doi: 10.3969/j.issn.1674-9057.2018.02.010

    [4] 鲁长春, 赵伟, 李永国. 浅谈分离式隧道岩溶处置方案[J]. 水电站设计, 2019,35(2): 39−41.

    LU C C, ZHAO W, LI Y G. Primary discussions on Karst disposal of separated tunnels[J]. Design of Hydroelectric Power Station, 2019, 35(2): 39−41. (in Chinese).

    [5] 李俊杰, 张红纲, 何建设, 等. 综合物探技术在方解石隧洞段涌水预报中的应用[J]. 地球物理学进展, 2019,34(2): 737−744. doi: 10.6038/pg2019CC0101

    LI J J, ZHANG H G, HE J S, et al. Application of comprehensive geophysical prospecting technology in prediction of water burst in a calcite tunnel[J]. Progress in Geophysics, 2019, 34(2): 737−744. (in Chinese). doi: 10.6038/pg2019CC0101

    [6] 郭书兰, 阎长虹, 俞良晨, 等. 无锡地铁 4 号线某区段地基岩溶发育特征, 地质灾害及其防治[J]. 工程地质学报, 2019, 27(S1): 179-184.

    GUO S L, YAN C H, YU L C, et al. The characteristics, causes of geological disasters and prevention of shallow covered Karst at a tunnel section of the Wuxi metro, Jiangsu Province, China[J]. Journal of Engineering Geology, 2019, 27(S1): 179-184. (in Chinese).

    [7] 黄健民, 邓雄文, 胡让全. 广州金沙洲岩溶区地下水位变化与地面塌陷及地面沉降关系探讨[J]. 中国地质, 2015,42(1): 300−308. doi: 10.3969/j.issn.1000-3657.2015.01.024

    HUANG J M, DENG X W, HU R Q. The relationship between groundwater and ground collapse and land subsidence in Jinshazhou, Guangzhou city[J]. Geology in China, 2015, 42(1): 300−308. (in Chinese). doi: 10.3969/j.issn.1000-3657.2015.01.024

    [8] 廖祥东, 杨连旗, 黄锐, 等. 钟祥市某治理区岩溶地面塌陷监测与评价分析[J]. 资源环境与工程, 2019, 32(S): 48-54.

    LIAO X D, YANG L Q, HUANG R, et al. Monitoring and evaluation of Karst ground collapse in a management area of Zhongxiang city[J]. Resources Environment & Engineering, 2019, 32(S): 48-54. (in Chinese).

    [9] 苗庆库, 李燕. 弹性波 CT 在岩溶勘察中的应用[J]. 铁道建筑技术, 2008,(S1): 535−536.

    MIAO Q K, LI Y. Application of elastic wave CT in Karst survey[J]. Railway Construction Technology, 2008, (S1): 535−536. (in Chinese).

    [10] 麦华山, 覃建波. 弹性波CT法在岩溶地区电厂选址中的应用[J]. 中国水运, 2014, 14(12): 311-312, 320.

    MAI H S, QIN J B. Application of elastic wave CT method in site selection of power plant in Karst area[J]. China Water Transport, 2014, 14(12): 311-312, 320. (in Chinese).

    [11] 谈顺佳, 张华, 王瑞雪. 井间地震 CT 技术在岩溶勘察中的应用[J]. CT 理论与应用研究, 2013, 22(3): 439-446.

    TAN S J, ZHANG H, WANG R X. The cross-well seismic computerized tomography technology and it’s application in the cavern survey[J]. CT Theory and Applications, 2013, 22(3): 439-446. (in Chinese).

    [12] 杨永龙, 褚金桥, 吴迪帆, 等. 跨孔地震 CT 技术在工程勘察中的应用[J]. 工程地球物理学报, 2021,18(2): 178−185. doi: 10.3969/j.issn.1672-7940.2021.02.004

    YANG Y L, CHU J Q, WU D F, et al. Application of cross-hole seismic CT method in engineering investigation[J]. Chinese Journal Engineering Geophysics, 2021, 18(2): 178−185. (in Chinese). doi: 10.3969/j.issn.1672-7940.2021.02.004

    [13] 郭书兰, 阎长虹, 苑小辉, 等. 无锡地铁某区段岩溶发育特征及其控制因素分析[J]. 工程勘察, 2019,3: 72−78.

    GUO S L, YAN C H, YUAN X H, et al. The characteristics and controlling factors of Karst in a section of Wuxi metro[J]. Geotechnical Investigation & Surveying, 2019, 3: 72−78. (in Chinese).

    [14] 段成龙, 阎长虹, 许宝田, 等. 跨孔地震CT技术在地铁工程施工溶洞探测方面的应用[J]. 地质论评, 2013, 59(6): 1242-1248.

    DUAN C L, YAN C H, XU B T, et al. The application of cross-hole seismic CT method in the Karst cave exploration of metro engineering construction[J]. Geological Review, 2013, 59(6): 1242-1248. (in Chinese).

    [15] 朱文仲, 赵志忠. 弹性波CT技术几个重要问题的研究[J]. 工程地球物理学报, 2008,5(2): 173−180. doi: 10.3969/j.issn.1672-7940.2008.02.008

    ZHU W Z, ZHAO Z Z. Study on some important problems of elastic wave computerized tomography[J]. Chinese Journal of Engineering Geophysics, 2008, 5(2): 173−180. (in Chinese). doi: 10.3969/j.issn.1672-7940.2008.02.008

    [16] 石振明, 卢崔灿, 刘鎏, 等. 基于程函方程反演的跨孔地震岩溶探测数值模拟研究[J]. 工程地质学报, 2020,28(5): 1069−1075.

    SHI Z M, LU C C, LIU L, et al. Numerical simulation of cross-hole seismic Karst detection based on eikonal equation inversion[J]. Journal of Engineering Geology, 2020, 28(5): 1069−1075. (in Chinese).

    [17] 潘纪顺, 刘宇锋, 李长征, 等. 堤防 CT 成像的数值模拟研究[J]. 人民黄河, 2021,43(3): 47−51. doi: 10.3969/j.issn.1000-1379.2021.03.009

    PAN J S, LIU Y F, LI C Z, et al. Study of numerical simulation on embankment tomography[J]. Yellow River, 2021, 43(3): 47−51. (in Chinese). doi: 10.3969/j.issn.1000-1379.2021.03.009

    [18] 韩佩恩, 张学强. 改进 Moser方法二维初至波走时层析成像正演研究[J]. CT 理论与应用研究, 2018, 27(1): 9-17. DOI: 10.15953/j.1004-4140.2018.27.01.02.

    HAN P E, ZHANG X Q, Forward modeling of 2D first arrival traveltime tomography using Moser method[J]. CT Theory and Applications, 2018, 27(1): 9-17. DOI:10.15953/j.1004-4140.2018.27.01.02. (in Chinese).

    [19]

    MOSER T J. Shortest path calculation of seismic rays[J]. Geophysics, 1991, 41(1): 99−112.

    [20]

    VIDALE J E. Finite-difference calculation of traveltimes in three dimensions[J]. Geophysics, 1990, 55(5): 521−526. doi: 10.1190/1.1442863

    [21]

    ASAKAWA E, KAWANAKA T. Seismic ray tracing using linear travel-time interpolation[J]. Geophysical Prospecting, 1993, 41(1): 99−111. doi: 10.1111/j.1365-2478.1993.tb00567.x

    [22]

    GILBERT P. Iterative methods for the three-dimensional reconstruction of an object from projections[J]. Journal of Theoretical Biology, 1972, 36(1): 105−117. doi: 10.1016/0022-5193(72)90180-4

图(52)
计量
  • 文章访问数:  477
  • HTML全文浏览量:  225
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-13
  • 网络出版日期:  2021-11-25
  • 刊出日期:  2022-01-31

目录

    /

    返回文章
    返回
    x 关闭 永久关闭