ISSN 1004-4140
CN 11-3017/P

基于深度学习的低剂量CT成像算法研究进展

韩泽芳, 上官宏, 张雄, 韩兴隆, 桂志国, 崔学英, 张鹏程

韩泽芳, 上官宏, 张雄, 等. 基于深度学习的低剂量CT成像算法研究进展[J]. CT理论与应用研究, 2022, 31(1): 117-134. DOI: 10.15953/j.1004-4140.2022.31.01.14.
引用本文: 韩泽芳, 上官宏, 张雄, 等. 基于深度学习的低剂量CT成像算法研究进展[J]. CT理论与应用研究, 2022, 31(1): 117-134. DOI: 10.15953/j.1004-4140.2022.31.01.14.
HAN Z F, SHANGGUAN H, ZHANG X, et al. Advances in research on low-dose CT imaging algorithm based on deep learning[J]. CT Theory and Applications, 2022, 31(1): 117-134. DOI: 10.15953/j.1004-4140.2022.31.01.14. (in Chinese).
Citation: HAN Z F, SHANGGUAN H, ZHANG X, et al. Advances in research on low-dose CT imaging algorithm based on deep learning[J]. CT Theory and Applications, 2022, 31(1): 117-134. DOI: 10.15953/j.1004-4140.2022.31.01.14. (in Chinese).

基于深度学习的低剂量CT成像算法研究进展

基金项目: 国家青年科学基金(低剂量CT图像伪影抑制中循环生成对抗训练模式研究(62001321));山西省高等学校科技创新项目(基于伪影抑制GAN网络的低剂量CT图像降噪方法研究(2019L0642));山西省自然科学基金(基于全变差正则项的低剂量CT图像的深度学习恢复算法研究(201901D111261))。
详细信息
    作者简介:

    韩泽芳: 女,太原科技大学硕士研究生,研究方向为医学图像处理,E-mail:18734857409@163.com

    上官宏: 女,太原科技大学电子信息工程学院副教授、硕士生导师,研究方向为模式识别、医学图像处理,E-mail:shangguan_hong@tyust.edu.cn

    张雄: 男,太原科技大学电子信息工程学院教授、硕士生导师,研究方向为模式识别、医学图像处理和视频目标跟踪,E-mail:zx@tyust.edu.cn

  • 中图分类号: O  242;R  814

Advances in Research on Low-dose CT Imaging Algorithm Based on Deep Learning

  • 摘要:

    计算机断层扫描成像(CT)技术具有成像速度快分辨率高的优点,广泛应用于医学临床诊断中。然而,提高剂量辐射会引发人体组织器官受损,降低剂量又会造成成像质量严重下降。为解决上述矛盾,在确保成像质量满足临床诊断需求的条件下,研究如何最大程度地降低X射线辐射对人体造成的伤害,已成为低剂量CT成像技术的研究热点。近年来,在人工智能领域深度学习方法快速发展,已广泛应用于图像处理、模式识别、信号处理等领域。与此同时,大数据驱动下的深度学习方法在LDCT成像领域的应用也有了长足的发展。本文从CT成像的过程、低剂量CT噪声建模以及成像算法的设计3方面,介绍近年来国内外低剂量CT成像算法的发展,尤其对深度学习领域的成像算法进行阐述与分析,并对LDCT图像成像领域未来的发展进行展望。

    Abstract:

    Computed tomography (CT) is widely used in clinical diagnosis because of its fast imaging speed and high resolution. However, higher doses of radiation will cause damages to human tissues and organs, while lower doses will lead to serious deterioration of imaging quality. In order to solve the above contradiction, researchers have focused on the low-dose CT imaging technology to study how to reduce the harm caused by radiation to the human body to the greatest extent under the condition of ensuring the imaging quality to meet the needs of clinical diagnosis. In recent years, deep learning has developed rapidly in the field of artificial intelligence, and has been widely used in image processing, pattern recognition, signal processing fields. Driven by big data, LDCT imaging algorithms based on deep learning have made great progress. This paper studies the development of low-dose CT imaging algorithms in recent years in terms of three aspects: the process of CT imaging, the noise modeling of low-dose CT, and the design of imaging algorithms. In particular, the imaging algorithms in the field of deep learning are systematically elaborated and analyzed. Finally, future developments in the field of LDCT image artifact suppression are also prospected.

  • 目前中国慢性阻塞性肺疾病(chronic obstructive pulmonary disease ,COPD)发病率较高,且进展迅速。根据WHO及王辰院士对COPD研究结果显示[12],近几年中国人群中约有1亿左右人口患有COPD,较10年前增加了约70%,同时预计全球COPD患病率将在未来40年继续上升,到2060年,每年可能有超过540万人死于COPD和相关疾病。中国大多数患者对COPD了解较少、肺功能检查的重要性及普及率偏低、诊断及治疗及时性差等原因导致患者因咳嗽、气短等临床症状就诊时已达到轻度COPD甚至重度COPD的诊断标准。目前临床诊断COPD主要依据为肺功能检查(pulmonary function test,PFT),且其为金标准,但此检查方法存在诸多缺陷[34],如对患者配合度要求高、肺代偿能力高等。可能因为多种因素导致疾病的诊断及轻、重度分级出现误差,使临床医师对疾病的个体化治疗方案出现错误,进而影响患者疾病的及时诊断,从而形成加重患者的疾病严重程度、经济负担及精神压力等不利结果。研究表明[5]部分患者CT体素评估肺功能严重程度相较于PFT具有较大的优势。另有学者[6]通过定量CT体素对COPD相关指标的研究得出此方法提供了COPD每种疾病成分的全面肺功能信息,可作为肺功能的成像生物标志物,进而指出基于体素定量CT测量COPD的准确性相对较高。因此,本研究拟通过基于体素的CT定量指标,分析COPD严重程度加重的危险因素,建立个体化预测重度COPD的列线图模型。

    回顾性收集自2020年5月至2021年9月在延安大学附属医院行双气相扫描及肺功能检查确诊的COPD患者,纳入标准:①符合2023年COPD诊疗指南解读[7]中的诊断标准;②肺功能检查结果准确、完整;③吸气及呼气双相图像完整。排除标准为:①呼吸配合欠佳,图像质量差;②肺内影响定量分析的病变,如肺癌、大片状实变或感染及肺不张等;③有肺部手术史,如肺切除、冠脉介入术后;④其他呼吸系统疾病如哮喘、肺结核、支气管扩张等;⑤心、肝、肾功能不全患者。最终符合条件的COPD患者118例。根据GOLD 2023 COPD报告[7]将患者分为轻度COPD组(GOLDⅠ、Ⅱ级):66例;重度COPD组(GOLD Ⅲ、Ⅳ级):52例。所有患者均签署知情同意书。

    CT扫描前告知患者扫描目的、方法及注意事项,训练患者深吸气及深呼气后屏气。采用UCT-760 128层螺旋CT(上海联影)进行全肺扫描,扫描参数:管电压120 KV,自适应动态管电流范围约30~40 mAs,符合国际CT低剂量指标[8],机架旋转一周的时间为0.5 s,螺距为0.5,矩阵为512×512。受检者取仰卧位,双手抱头,头先进。从肺尖至肺底行全肺扫描。双气相图像重建层厚为1 mm,重建间隔为0.625 mm,重建算法为骨算法。

    所得图像以Dicom格式导入“数字肺”测试平台(Dexin-FACT“数字肺”工作站,陕西西安)进行图像配准,“数字肺”平台为量化分析COPD的软件。采用基于体素定量检测方法[911],吸气相CT值 > −950 HU,呼气相 CT 值≤−856 HU 的像素占全肺容积的百分比(the percentage of the area of functional small airway disease,fSAD%)为小气道病变区,标记为黄色区;吸气相≤−950 HU,呼气相≤−856 HU 的像素占全肺容积的百分比(the percentage of the area ofemphysema,Emph%)为肺气肿区,标记为红色区;吸气相 > −950 HU,呼气相 > −856 HU 的像素占全肺容积的百分比为正常区,标记为绿色区。(图1 a ~ c)。

    图  1  双气相配准图
    注:图1a~c.男59岁,COPD患者,GOLD II级,双气相配准流程图。图a.吸气相CT;图b.呼气相CT图;图c.呼气相与吸气相配准图。 黄色区为小气道病变区,红色区代表肺气肿区,绿色为正常区。
    Figure  1.  Two-gas phase registration diagram

    取坐位测定肺功能,测量参数包括第1秒用力呼气容积(FEV1)的实测值与预计值的比值(FEV1%pred)、FEV1与用力肺活量(FVC)的比值(FEV1/FVC)等指标。

    采用SPSS 20.0和R软件进行数据统计,采用R软件、GraphPad prism 9.2.0 进行图像绘制。计量资料用$ \bar x \pm s$表示,若符合正态分布的计量资料,使用独立样本t检验比较轻重度COPD组间的差异。将差异有统计学意义的指标纳入多因素logistic回归分析,确定重度COPD组的的独立危险因素。在R软件构建预测重度COPD组的诺模图。采用受试者工作特征曲线(receiver operating characteristic curve,ROC)曲线下面积(area under the curve,AUC),Bootstrap 重复抽样绘制校准曲线,以及Hosmer-Lemeshow拟合优度检验等方法以评估诺模图的预测效能。以P<0.05为差异有统计学意义。

    两组间年龄及体重指数无统计学意义(P>0.05),两组间吸烟指数、肺功能指标(FVC、FEV1%、FEV1/FVC%)及基于体素的双气相配准CT定量指标(Normal%、Emph%、fSAD%)均有统计学意义(均P<0.05),其中,吸烟指数重度COPD组明显高于轻度COPD组;Emph%、fSAD%重度COPD组高于轻度COPD组,Normal%重度COPD组低于轻度COPD组。(表1

    表  1  一般情况
    Table  1.  General situation
    变量 轻度COPD组 重度COPD组 t/Z P
    年龄 64.95±8.54 63.02±9.61 1.155 0.25
    BMI 23.39±3.23 21.99±3.14 1.719 0.091
    吸烟指数 619.77±629.31 1202.13±849.72 −4.138 0.000
    FVC 2.96±0.90 2.05±0.55 6.574 0.000
    FEV1%pred 66.93±17.91 32.4±8.10 13.953 0.000
    FEV1/FVC% 60.73±12.47 47.03±15.01 5.411 0.000
    Normal(%) 37.71±15.13 28.71±14.24 −3.499 0.000
    Empha(%) 17.75±9.83 24.49±12.31 −2.959
    0.003
    fSAD(%) 30.73±9.96 35.08±6.83 −2.802 0.006
    注:Normal(%)为正常肺组织占全肺体积的百分比;fSAD%为小气道病变占全肺体积的百分比;Emph%为肺气肿病变占全肺体积的百分比。
    下载: 导出CSV 
    | 显示表格

    通过多因素Logistic回归分析发现,吸烟指数、fSAD%、Emph%及Normal%是重度COPD的独立风险因素。(表2图2

    表  2  多因素logistic回归分析结果
    Table  2.  Results of multivariate logistic regression analysis
    变量 B SE Wals P OR 95%CI
    年龄 0.026 0.036 0.514 0.473 1.026 0.957~1.100
    BMI −0.086 0.097 0.795 0.373 0.917 0.759~1.109
    吸烟指数 0.001 0.001 4.207 0.04 1.001 1.000~1.002
    Normal(%) 0.305 0.139 4.774 0.029 1.356 1.032~1.783
    Empha(%) 0.394 0.17 5.336 0.021 1.482 1.061~2.070
    fSAD(%) 0.226 0.105 4.665 0.031 1.253 1.021~1.538
    注:Normal(%)为正常肺组织占全肺体积的百分比;fSAD%为小气道病变占全肺体积的百分比;Emph%为肺气肿病变占全肺体积的百分比。B为各自变量不同分类水平在模型中的系数;SE为标准误差;Wals为检验每个自变量的系数是否显著;P为统计值;OR为优势比;95%cl为95%置信区间。
    下载: 导出CSV 
    | 显示表格
    图  2  预测重度COPD患者的Nomogram图
    Figure  2.  Nomogram plot for predicting severe COPD

    本研究基于上述4项危险因素,建立预测重度COPD的风险模型。根据本研究绘制的列线图中各变量对应的分值,影响患者死亡风险权重从高至低的因素依次为:Normal%、Emph%、fSAD%和吸烟指数(图3)。

    图  3  nomogram的校正曲线
    Figure  3.  Correction curve of the nomogram

    校准图显示,模型校准曲线与标准曲线接近,提示模型的校准能力好,反映模型预测重度COPD风险与实际风险一致程度高。(图3

    将各危险因素CT定量指标行ROC曲线分析,得出Logistic regression model、吸烟指数、fSAD%、Emph%及Normal%可以鉴别轻度及重度COPD(P<0.01)(表3图4)。曲线下面积由高到低依次为:吸烟指数、Normal%、fSAD%、Emph%,具体截断值、灵敏度、特异度及95%可信区间见表3

    表  3  重度COPD组危险因素、logistic模型的ROC预测价值
    Table  3.  Risk factors in the severe COPD group and the predictive values of logistic models for ROC
    变量 截断值 AUC 95%CI 敏感度 特异度 P
    吸烟指数 0.379 0.722 0.631~0.813 0.712 0.667 0.000
    Normal% 0.365 0.688 0.590~0.786 0.788 0.577 0.000
    Empha% 0.352 0.659 0.557~0.761 0.519 0.833 0.003
    fSAD% 0.343 0.669 0.571~0.766 0.904 0.439 0.002
    Logistic regression model 0.461 0.786 0.704~0.867 0.673 0.788 0.000
    注:Normal(%)为正常肺组织占全肺体积的百分比;fSAD%为小气道病变占全肺体积的百分比;Emph%为肺气肿病变占全肺体积的百分比。
    下载: 导出CSV 
    | 显示表格
    图  4  筛选出的变量预测患者重度COPD风险的ROC曲线
    Figure  4.  ROC curves of the screened variables predicting the risk of severe COPD in patients

    最新版慢性阻塞性肺疾病全球倡议(global initiative for chronic obstructive lung disease,GOLD)2021版于2020年11月发布,其对COPD定义无明显变化,即以持续的呼吸道症状和气流受限为特征、具有病因复杂、危险因素较多及相互影响、病因分析困难性等特点、可预防及治疗的疾病[1213]。COPD为最常见的气道疾病,同时也是中国在近10年国家计划中重点防治的疾病。基于中国实际情况及国内外研究进展,肺功能虽为诊断的最佳依据,但其存在较多缺陷,如对患者配合度要求高、肺代偿能力高对轻度COPD诊断效能偏低、大多数病变位于肺上叶即使重度COPD仍有可能检查结果正常[14],因此肺功能一定程度上无法区分COPD的严重程度,进而对病情的准确评估存在一定缺陷,从而影响临床医师对疾病诊断及治疗方法的精准选择。随着影像设备、扫描技术(如低剂量扫描)及人工智能的迅速发展,研究表明[15]高分辨CT扫描结合人工智能通过对肺气肿指数、肺气肿分布区域、小气道病变等进行分析,一定程度上可以辅助临床医师对COPD严重程度的诊断。同时最新指南中提出部分低收入地区肺功能检查并非为COPD诊断的常规检查,进一步强调了CT检查的重要性。

    研究发现[1116]基于体素CT定量指标对COPD的诊断及预后具有一定的临床价值,COPD的气流受限主要与肺气肿分布区域及严重程度、小气道病变有关。本研究发现基于体素双气相配准CT定量指标fSAD%,Emph%在轻度COPD组和重度COPD组之间存在显著差异,重度COPD组高于轻度COPD组。同时随着COPD严重程度增加,肺功能指标FVC、FEV1%pred和FEV1/FVC%均下降,提示fSAD%,Emph%可以反映COPD患者的肺损伤程度,即肺气肿和小气道病变区域越广,肺功能受损越严重。研究指出[17]小气道病变、肺气肿区域及分布范围与COPD严重程度及肺功能指标相关,与此研究结果相似。

    此外,作者发现重度COPD组吸烟指数高于轻度COPD组,与之对应重度COPD组fSAD%和Emph%高于轻度COPD组,表明吸烟程度加重肺损伤程度,这可能与吸入烟尘微颗粒物和气体增加了肺的负担有关,前文提及的2021年最新指南根据最近5年发表文章证实吸烟对COPD存在极大的影响。部分学者指出[1820] 肺气肿与吸烟关系密切,同时有COPD家族史的发病率增加3倍左右,基因机制可能miR155 HG可以通过调节miR128 5 p/BRD4轴,加重烟雾相关COPD中人肺微血管内皮细胞的凋亡和炎症,从而促进、加重COPD的病情。

    通过Logistic回归分析发现,吸烟指数及CT定量指标是重度COPD的独立风险因素。本研究将分析所得四项危险因素进行整合,建议预测重度COPD的列线图模型,经校准曲线验证,模型校准曲线与标准曲线接近,提示模型的校准能力好,反映模型预测重度COPD风险与实际风险一致程度高,绘制的列线表中C-index为0.786(95%CI:0.7040.867),灵敏度0.673,特异度0.788,AUC为0.786,当C-index越接近1表示区分度越好,即此模型具有较好的准确性和区分度,表明该列线图预测COPD严重程度的效能较好,为临床判断不同COPD分级的风险度提供客观依据。

    本研究表明,基于体素的CT定量指标可以作为评估疾病严重程度与长期随访的有效工具,再一定程度上可以定量监测疾病的发生发展。有研究[21]通过对慢阻肺合并肺结核患者的危险因素建立列线图模型得出此模型具有较好的预测效能,在一定程度上可预测慢阻肺合并肺结核患者。最近关于冠状病毒病 (COVID-19) 的文献研究[22]通过建立预测模型并构建了一个列线图来预测COVID-19 患者的住院生存率发现该模型具有良好的性能,可在临床上用于COVID-19 的管理。因此从不同角度验证了本文结论的可靠性。

    本研究存在一定的局限性:(1)样本量小,该预测模型还需要经多中心,更大样本量的研究进一步验证。(2)预测变量局限,还需进一步纳入更为全面的实验室指标及CT定量指标。例如,有研究表明[23]气道壁的厚度与肺功能的分级有明显相关性,即在不同分级中气道壁厚度逐渐增加。未来也需要以此为中心进行深入研究。

    综上所述,基于CT体素的定量指标可预测COPD严重程度,通过CT定量指标和吸烟指数建立预测COPD严重程度的列线图模型具有良好的诊断效能。

  • 图  1   低剂量CT成像算法分类

    Figure  1.   Classification of low dose CT imaging algorithms

    图  2   基于深度学习的CT重建算法分类

    Figure  2.   Classification of Deep Learning-based CT Reconstruction Algorithms

    图  3   基于深度学习的LDCT图像后处理算法分类

    Figure  3.   Classification of deep learning-based LDCT image post-processing algorithms

    图  4   人体不同部位CT示意图

    Figure  4.   A schematic diagram CT different parts of the human body

    图  5   不同剂量piglet数据集CT示意图

    Figure  5.   Schematic of CT data sets piglet different doses

    1   典型的CT成像算法在现有数据集上性能比较

    方法主要特点优点缺点
    传统 CT 重建算法FBP解析类且最基础的重建算法成像速度快,鲁棒性好对稀疏角度 CT 重建质量不佳
    TV-POCS迭代重建类算法,使用了 TV 正则化项进行约束研究对象为原始数据,不容易丢失信息,降噪效果优于 FBP 算法降噪结果容易产生块状伪影,且部分重要的细微结构被平滑
    传统 CT 后处理算法BM3D基于块匹配的后处理细节保留能力优于 TV- POCS降噪结果出现了模糊与失真
    K-SVD基于字典学习的后处理算法运算时间较长,降噪结果中仍然存在部分伪影
    基于深度学习的 CT 重建算法iCT-Net用 CNN 学习 FBP:投影数据扩展;滤波;反投影;求和对稀疏角度、短扫描内部扫描 CT 重建效果良好并未解决锥束 CT 重建问题,网络参数较多
    LEARN迭代展开类算法,对“fields of experts”进行展开,并用 CNN 进行学习重建结果保留了更多的边缘与细节,比传统迭代算法更高效鲁棒性较差,对正则化函数具有一定的限制
    DRONE双域残差优化网络重建精度高需要更多数据集进行训练
    基于深度学习的 CT 后处理算法RED-CNNCNN 网络,包括 5 层编码与 5 层解码,其中初始输入、第 2、4 层编码端特征通过残差连接并入相应解码端降噪效果优于传统后处理算法,降噪结果中伪影残留量较少 降噪结果容易产生图像过平滑现象,丢失了一些细微信息,如血管等
    WGAN-VGGGAN 网络,G:8 层 conv,D:6 层 conv,2 层 FC,损失函数:WGAN+VGG训练稳定性较好,能够有效缓解图像过平滑问题在抑制伪影的过程中易破坏图像原有结构,引入新的噪声
    SACNNCNN 网络,同时采用自注意力与自编码模块在伪影抑制与结构保留方面实现了较好的平衡降噪结果中仍然存在部分噪声,细微结构产生了失真
    下载: 导出CSV

    表  1   典型的CT成像算法在现有数据集上性能比较

    Table  1   Performance comparison of typical CT imaging algorithms on existing data sets

    方法 主要特点 优点 缺点
    传统 CT 重建算法 FBP 解析类且最基础的重建算法 成像速度快,鲁棒性好 对稀疏角度 CT 重建质量不佳
    TV-POCS 迭代重建类算法,使用了 TV 正则化项进行约束 研究对象为原始数据,不容易丢失信息,降噪效果优于 FBP 算法 降噪结果容易产生块状伪影,且部分重要的细微结构被平滑
    传统 CT 后处理算法 BM3D 基于块匹配的后处理 细节保留能力优于 TV- POCS 降噪结果出现了模糊与失真
    K-SVD 基于字典学习的后处理 算法运算时间较长,降噪结果中仍然存在部分伪影
    基于深度学习的 CT 重建算法 iCT-Net 用 CNN 学习 FBP:投影数据扩展;滤波;反投影;求和 对稀疏角度、短扫描内部扫描 CT 重建效果良好 并未解决锥束 CT 重建问题,网络参数较多
    LEARN 迭代展开类算法,对“fields of experts”进行展开,并用 CNN 进行学习 重建结果保留了更多的边缘与细节,比传统迭代算法更高效 鲁棒性较差,对正则化函数具有一定的限制
    DRONE 双域残差优化网络 重建精度高 需要更多数据集进行训练
    基于深度学习的 CT 后处理算法 RED-CNN CNN 网络,包括 5 层编码与 5 层解码,其中初始输入、第 2、4 层编码端特征通过残差连接并入相应解码端 降噪效果优于传统后处理算法,降噪结果中伪影残留量较少 降噪结果容易产生图像过平滑现象,丢失了一些细微信息,如血管等
    WGAN-VGG GAN 网络,G:8 层 conv,D:6 层 conv,2 层 FC,损失函数:WGAN+VGG 训练稳定性较好,能够有效缓解图像过平滑问题 在抑制伪影的过程中易破坏图像原有结构,引入新的噪声
    SACNN CNN 网络,同时采用自注意力与自编码模块 在伪影抑制与结构保留方面实现了较好的平衡 降噪结果中仍然存在部分噪声,细微结构产生了失真
    下载: 导出CSV
  • [1]

    BRENNER D J, HALL E J. Computed tomography: An increasing source of radiation exposure[J]. New England Journal of Medicine, 2007, 357(22): 2277−2284.

    [2]

    SMITH-BINDMAN R, LIPSON J, MARCUS R, et al. Radiation dose associated with common computed tomography examinations and the associated lifetime attributable risk of cancer[J]. Archives of Internal Medicine, 2009, 169(22): 2078−2086. doi: 10.1001/archinternmed.2009.427

    [3]

    HART D, WALL B F. UK population dose from medical X-ray examinations[J]. European Journal of Radiology, 2004, 50(3): 285−291. doi: 10.1016/S0720-048X(03)00178-5

    [4]

    HSIEH J. Computed tomography: Principles, design, artifacts, and recent advances[M]. SPIE Press, 2003.

    [5]

    SHRIMPTON P C, HILLIER M C, LEWIS M A, et al. Doses from computed tomography (CT) examinations in the UK-2003 review[M]. National Radiological Protection Board, 2005.

    [6]

    SIGAL-CINQUALBRE A B, HENNEQUIN R, ABADA H T, et al. Low-kilovoltage multi-detector row chest CT in adults: Feasibility and effect on image quality and iodine dose[J]. Radiology, 2004, 231(1): 169−174. doi: 10.1148/radiol.2311030191

    [7]

    YEDDER H B, CARDOEN B, HAMARNEH G. Deep learning for biomedical image reconstruction: A survey[J]. Artificial Intelligence Review, 2021, 54(1): 215−251.

    [8] 柳澄, 秦维昌. 多层螺旋CT(一)[J]. 医学影像学杂志, 2000,10(3): 194−195.
    [9]

    SHANGGUAN H. Study on statistical iterative reconstruction methods for low-dose X-ray CT[D]. Taiyuan: North University of China, 2016.

    [10]

    MA J, LIANG Z, FAN Y, et al. Variance analysis of X-ray CT sinograms in the presence of electronic noise background[J]. Medical Physics, 2012, 39(7): 4051−4065.

    [11]

    ZHANG H, OUYANG L, MA J, et al. Noise correlation in CBCT projection data and its appli-cation for noise reduction in low-dose CBCT[J]. Medical Physics, 2014, 41(3): 031906. doi: 10.1118/1.4865782

    [12]

    XIE S P, LUO L M, YANG L F, et al. Scatter correction method for cone beam CT using beam attenuation grid[C]//Key Engineering Materials. Trans Tech Publications Ltd, 2011, 480: 341-346.

    [13]

    HSIEH J. Adaptive streak artifact reduction in computed tomography resulting from excessive X-ray photon noise[J]. Medical Physics, 1998, 25(11): 2139−2147.

    [14]

    KACHELRIEβ M, WATZKE O, KALENDER W A. Generalized multi-dimensional adaptive filtering for conventional and spiral single-slice, multi-slice, and cone-beam CT[J]. Medical Physics, 2001, 28(4): 475−490.

    [15]

    SAHINER B, YAGLE A E. Image reconstruction from projections under wavelet constraints[J]. IEEE Transactions on Signal Processing, 1993, 41(12): 3579−3584. doi: 10.1109/78.258101

    [16]

    YAZDI M, BEAULIEU L. Artifacts in spiral X-ray CT scanners: Problems and solutions[J]. International Journal of Biological and Medical Sciences, 2008, 4(3): 135−139.

    [17]

    DEMIRKAYA O. REDUCTION of noise and image artifacts in computed tomography by nonlinear filtration of projection images[C]//Medical Imaging 2001. International Society for Optics and Photonics, 2001: 917-923.

    [18]

    WANG J, LL T, LU H, et al. Penalized weighted least-squares approach for low-dose X-ray computed tomography[C]//Medical Imaging 2006: Physics of Medical Imaging. International Society for Optics and Photonics, 2006, 6142: 614247.

    [19]

    ZHANG Q, GUI Z, CHEN Y, et al. Bayesian sinogram smoothing with an anisotropic diffusion weighted prior for low-dose X-ray computed tomography[J]. Optik-International Journal for Light and Electron Optics, 2013, 124(17): 2811−2816. doi: 10.1016/j.ijleo.2012.08.045

    [20]

    RUDIN L I, OSHER S, FATEMI E. Nonlinear total variation based noise removal algorithms[J]. Physica D: Nonlinear Phenomena, 1992, 60(1): 259−268.

    [21] 梁宁宁, 李子恒, 王林元, 等. 一种基于GAN网络投影补全的有限角度CT重建算法[J]. 中国体视学与图像分析, 2019,24(1): 1−8.

    LIANG N, LI Z, WANG L, et al. A limited-angle computed tomography reconstruction algorithm based on projection completion via generative adversarial networks[J]. Chinese Journal of Stereology and Image Analysis, 2019, 24(1): 1−8. (in Chinese).

    [22]

    GORDON R, BENDER R, HERMAN G T. Algebraic reconstruction techniques (ART) for three- dimensional electron microscopy and X-ray photography[J]. Journal of Theoretical Biology, 1970, 29(3): 471−481. doi: 10.1016/0022-5193(70)90109-8

    [23]

    ZHANG H, WANG J, MA J, et al. Statistical models and regularization strategies in statistical image reconstruction of low-dose X-ray CT: A survey[J]. arXiv preprint arXiv: 1412.1732, 2014.

    [24]

    LEVITAN E, HERMAN G T. A maximum a posteriori probability expectation maximization algorithm for image reconstruction in emission tomography[J]. IEEE Transactions on Medical Imaging, 1987, 6(3): 185−192. doi: 10.1109/TMI.1987.4307826

    [25]

    HSIAO T, RANGARAJAN A, GINDI G. A new convex edge-preserving median prior with applications to tomography[J]. IEEE Transactions on Medical Imaging, 2003, 22(5): 580−585. doi: 10.1109/TMI.2003.812249

    [26]

    LU Y, ZHAO J, WANG G. Few-view image reconstruction with dual dictionaries[J]. Physics in Medicine & Biology, 2011, 57(1): 173.

    [27]

    BAI T, MOU X, XU Q, et al. Low-dose CT reconstruction based on multiscale dictionary[C]//International Society for Optics and Photonics. Medical Imaging 2013: Physics of Medical Imaging, 2013, 8668: 86683L.

    [28]

    NIU S, GAO Y, BIAN Z, et al. Sparse-view X-ray CT reconstruction via total generalized variation regularization[J]. Physics in Medicine and Biology, 2014, 59(12): 2997. doi: 10.1088/0031-9155/59/12/2997

    [29]

    LIU Y, LIANG Z, MA J, et al. Total variation-stokes strategy for sparse-view X-ray CT image reconstruction[J]. IEEE Transactions on Medical Imaging, 2013, 33(3): 749−763.

    [30]

    LIANG K, YANG H, XING Y. Comparison of projection domain, image domain, and comprehensive deep learning for sparse-view X-ray CT image reconstruction[J]. arXiv preprint arXiv: 1804.04289, 2018.

    [31]

    PELT D M, BATENBURG K J. Improving filtered backprojection reconstruction by data-dependent filtering[J]. IEEE Transactions on Image Processing, 2014, 23(11): 4750−4762. doi: 10.1109/TIP.2014.2341971

    [32]

    WANG B, LIU H. FBP-Net for direct reconstruction of dynamic PET images[J]. Physics in Medicine & Biology, 2020, 65(23): 235008.

    [33]

    ZHANG Q, LIANG D. Visualization of fully connected layer weights in deep learning CT reconstruction[J]. arXiv preprint arXiv: 2002.06788, 2020.

    [34]

    ZHU B, LIU J Z, CAULEY S F, et al. Image reconstruction by domain-transform manifold learning[J]. Nature, 2018, 555(7697): 487−492. doi: 10.1038/nature25988

    [35]

    FU L, DE MAN B. A hierarchical approach to deep learning and its application to tomographic reconstruction[C]//International Society for Optics and Photonics. 15th International Meeting on Fully Three-Dimensional Image Reconst- ruction in Radiology and Nuclear Medicine, 2019, 11072: 1107202.

    [36]

    YE D H, BUZZARD G T, RUBY M, et al. Deep back projection for sparse-view CT reconstruction[C]//2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP). IEEE, 2018: 1-5.

    [37]

    TAO X, ZHANG H, WANG Y, et al. VVBP-tensor in the FBP algorithm: Its properties and application in low-dose CT reconstruction[J]. IEEE transactions on medical imaging, 2019, 39(3): 764−776.

    [38]

    TAO X, WANG Y, LIN L, et al. Learning to reconstruct CT images from the VVBP-tensor[J]. IEEE Transactions on Medical Imaging, 2021.

    [39]

    LI Y, LI K, ZHANG C, et al. Learning to reconstruct computed tomography images directly from sinogram data under a variety of data acquisition conditions[J]. IEEE Transactions on Medical Imaging, 2019, 38(10): 2469−2481. doi: 10.1109/TMI.2019.2910760

    [40]

    HE J, WANG Y, MA J. Radon inversion via deep learning[J]. IEEE Transactions on Medical Imaging, 2020, 39(6): 2076−2087. doi: 10.1109/TMI.2020.2964266

    [41]

    WU W, HU D, NIU C, et al. DRONE: Dual-domain residual-based optimization network for sparse-view CT reconstruction[J]. IEEE Transactions on Medical Imaging, 2021.

    [42]

    GE Y, SU T, ZHU J, et al. ADAPTIVE-NET: Deep computed tomography reconstruction network with analytical domain transformation knowledge[J]. Quantitative Imaging in Medicine and Surgery, 2020, 10(2): 415. doi: 10.21037/qims.2019.12.12

    [43]

    ZHANG Q, HU Z, JIANG C, et al. Artifact removal using a hybrid-domain convolutional neural network for limited-angle computed tomography imaging[J]. Physics in Medicine & Biology, 2020, 65(15): 155010.

    [44]

    LIN W A, LIAO H, PENG C, et al. Dudonet: Dual domain network for CT metal artifact reduction[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 10512-10521.

    [45]

    WANG T, XIA W, HUANG Y, et al. DAN-Net: Dual-domain adaptive-scaling non-local network for CT metal artifact reduction[J]. arXiv Preprint arXiv: 2102.08003, 2021.

    [46]

    WANG T, XIA W, LU Z, et al. IDOL-Net: An interactive dual-domain parallel network for CT metal artifact reduction[J]. arXiv Preprint arXiv: 2104.01405, 2021.

    [47]

    RAN M, XIA W, HUANG Y, et al. Md-recon-net: A parallel dual-domain convolutional neural network for compressed sensing MRI[J]. IEEE Transactions on Radiation and Plasma Medical Sciences, 2020, 5(1): 120−135.

    [48]

    CHEN H, ZHANG Y, CHEN Y, et al. LEARN: Learned experts'assessment-based reconstruction network for sparse-data CT[J]. IEEE Transactions on Medical Imaging, 2018, 37(6): 1333−1347. doi: 10.1109/TMI.2018.2805692

    [49]

    WU D, KIM K, El Fakhri G, et al. Iterative low-dose CT reconstruction with priors trained by artificial neural network[J]. IEEE Transactions on Medical Imaging, 2017, 36(12): 2479−2486. doi: 10.1109/TMI.2017.2753138

    [50]

    KANG E, CHANG W, YOO J, et al. Deep convolutional framelet denosing for low-dose CT via wavelet residual network[J]. IEEE Transactions on Medical Imaging, 2018, 37(6): 1358−1369. doi: 10.1109/TMI.2018.2823756

    [51]

    GAO Y, LIANG Z, MOORE W, et al. A feasibility study of extracting tissue textures from a previous full-dose CT database as prior knowledge for Bayesian reconstruction of current low-dose CT images[J]. IEEE Transactions on Medical Imaging, 2019, 38(8): 1981−1992. doi: 10.1109/TMI.2018.2890788

    [52]

    VENKATAKRISHNAN S V, BOUMAN C A, WOHLBERG B. Plug-and-play priors for model based reconstruction[C]//2013 IEEE Global Conference on Signal and Information Processing. IEEE, 2013: 945-948.

    [53]

    SREEHARI S, VENKATAKRISHNAN S V, WOHLBERG B, et al. Plug-and-play priors for bright field electron tomography and sparse interpolation[J]. IEEE Transactions on Computational Imaging, 2016, 2(4): 408−423.

    [54]

    CASCARANO P, PICCOLOMINI E L, MOROTTI E, et al. Plug-and-play external and internal priors for image restoration[J]. arXiv e-prints, 2021, arXiv: 2102.07510.

    [55]

    ADLER J, OKTEM O. Learned Primal-dual reconstruction[J]. IEEE Transactions on Medical Imaging, 2017: 1322−1332.

    [56]

    XIA W, LU Z, HUANG Y, et al. MAGIC: Manifold and graph integrative convolutional network for low-dose CT reconstruction[J]. IEEE Transactions on Medical Imaging, 2021.

    [57]

    CHEN G, HONG X, DING Q, et al. AirNet: Fused analytical and iterative reconstruction with deep neural network regularization for sparse-data CT[J]. Medical Physics, 2020, 47(7): 2916−2930. doi: 10.1002/mp.14170

    [58]

    GUPTA H, JIN K H, NGUYEN H Q, et al. CNN-based projected gradient descent for consistent CT image reconstruction[J]. IEEE Transactions on Medical Imaging, 2018, 37(6): 1440−1453. doi: 10.1109/TMI.2018.2832656

    [59]

    ZHANG H, LIU B, YU H, et al. MetaInv-net: Meta inversion network for sparse view CT image reconstruction[J]. IEEE Transactions on Medical Imaging, 2020, 40(2): 621−634.

    [60]

    BUADES A, COLL B, MOREL J M. A non-local algorithm for image denoising[C]//2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05). IEEE, 2005, 2: 60-65.

    [61]

    CHEN Y, YANG Z, HU Y, et al. Thoracic low-dose CT image processing using an artifact suppressed large-scale nonlocal means[J]. Physics in Medicine & Biology, 2012, 57(9): 2667.

    [62]

    CHEN Y, CHEN W, YIN X, et al. Improving low-dose abdominal CT images by weighted intensity averaging over large-scale neighborhoods[J]. European Journal of Radiology, 2011, 80(2): e42−e49. doi: 10.1016/j.ejrad.2010.07.003

    [63]

    ZHONG J, NING R, CONOVER D. Image denoising based on multiscale singularity detection for cone beam CT breast imaging[J]. IEEE Transactions on Medical Imaging, 2004, 23(6): 696−703. doi: 10.1109/TMI.2004.826944

    [64]

    FERUGLIO P F, VINEGONI C, GROS J, et al. Block matching 3D random noise filtering for absorption optical projection tomography[J]. Physics in Medicine & Biology, 2010, 55(18): 5401.

    [65]

    CHEN Y, SHI L, FENG Q, et al. Artifact suppressed dictionary learning for low-dose CT image processing[J]. IEEE Transactions on Medical Imaging, 2014, 33(12): 2271−2292. doi: 10.1109/TMI.2014.2336860

    [66]

    ZAMYATIN A, KATSEVICH G, KRYLOV R, et al. Adaptive multi-scale total variation minimization filter for low dose CT imaging[C]//SPIE Medical Imaging. International Society for Optics and Photonics, 2014: 903426-903426-7.

    [67]

    MENG B, JIANG H, LIU Z, et al. Curvelet-based bilinear interpolation method for low-dose CT[C]//International Society for Optics and Photonics. Fifth International Conference on Digital Image Processing, 2013: 88783X-88783X-5.

    [68]

    CHEN H, ZHANG Y, ZHANG W H. Low dose CT via convolutional neural network[J]. Biomedical Optics Express, 2017, 8(2): 679−694. DOI: 10.1364/BOE.8.000679.

    [69]

    SHAN H M, ZHANG Y, YANG Q S, et al. 3-D convolutional encoder-decoder network for low-dose CT via transfer learning from a 2-D trained network[J]. IEEE Transactions on Medical Imaging, 2018, 37(6): 1522−1534. DOI: 10.1109/TMI.2018.2832217.

    [70]

    YANG Q S, YAN P K, ZHANG Y B, et al. Low-dose CT image denoising using a generative adversarial network with wasserstein distance and perceptual loss[J]. IEEE Transactions on Medical Imaging, 2018, 36(7): 1348−1357. DOI: 10.1109/TMI.2018.2827462.

    [71]

    ZHU J Y, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]//Proceedings of the IEEE international conference on computer vision. 2017: 2223-2232.

    [72]

    CHEN Y. CT-LSTM: Detection & estimation duplexed system for robust object tracking[C]//Proceedings of the 2nd International Conference on Computer Science and Application Engineering, 2018: 1-7.

    [73]

    BURGER H C, SCHULER C J, HARMELING S. Image denoising: Can plain neural networks compete with BM3D?[C]//2012 IEEE conference on computer vision and pattern recognition. IEEE, 2012: 2392-2399.

    [74]

    CHEN H, ZHANG Y, KALRA M, et al. Low-dose CT with a residual encoder-decoder convolutional neural network[J]. IEEE Transactions on Medical Imaging, 2017, 2(3): 2524−2535. DOI: 10.1109/TMI.2017.2715284.

    [75]

    HEINRICH M P, STILLE M, BUZUG T M. Residual U-net convolutional neural network architecture for low-dose CT denoising[J]. Current Directions in Biomedical Engineering, 2018, 4(1): 297−300. doi: 10.1515/cdbme-2018-0072

    [76]

    WU D F, KIM K, FAKHRI G E, et al. A cascaded convolutional neural network for X-ray low-dose CT image denoising[OL]. https://arxiv.org/abs/1705.04267, 2017.5.

    [77]

    SHAN H, PADOLE A, HOMAYOUNIEH F, et al. Competitive performance of a modularized deep neural network compared to commercial algorithms for low-dose CT image reconstruction[J]. Nature Machine Intelligence, 2019, 1(6): 269−276. doi: 10.1038/s42256-019-0057-9

    [78]

    WOLTERINK J M, LEINER T, VIERGEVER M A, et al. Generative adversarial networks for noise reduction in low-dose CT[J]. IEEE Transactions on Medical Imaging, 2017, 36(12): 2536−2545. DOI: 10.1109/TMI.2017.2708987.

    [79]

    YI X, BABYN P. Sharpness-aware low-dose CT denoising using conditional generative adversarial network[J]. Journal of Digital Imaging, 2018, 31(5): 655−669. doi: 10.1007/s10278-018-0056-0

    [80]

    ISOLA P, ZHU J Y, ZHOU T, et al. Image-to-image translation with conditional adversarial networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017: 1125-1134.

    [81]

    YANG L, SHANGGUAN H, ZHANG X, et al. High-frequency sensitive generative adversarial network for low-dose CT image denoising[J]. IEEE Access, 2019, 8: 930−943.

    [82]

    YOU C, YANG L, ZHANG Y, et al. Low-dose CT via deep CNN with skip connection and network-in- network[C]//Developments in X-ray Tomography XII. International Society for Optics and Photonics, 2019, 11113: 111131W.

    [83]

    ARJOVSKY M, CHINTALA S, BOTTOU L. Wasserstein gan[J]. arXiv Preprint arXiv: 1701.07875, 2017.

    [84]

    LI X, YE C, YAN Y, et al. Low-dose CT image denoising based on improved WGAN-gp[J]. Journal of New Media, 2019, 1(2): 75. doi: 10.32604/jnm.2019.06259

    [85]

    MAO X, LI Q, XIE H, et al. Least squares generative adversarial networks[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 2794-2802.

    [86]

    MIYATO T, KATAOKA T, KOYAMA M, et al. Spectral normalization for generative adversarial networks[J]. arXiv Preprint arXiv: 1802.05957, 2018.

    [87]

    PARK H S, BAEK J, YOU S K, et al. Unpaired image denoising using a generative adversarial network in X-ray CT[J]. IEEE Access, 2019, 7: 110414−110425. doi: 10.1109/ACCESS.2019.2934178

    [88]

    DU W, CHEN H, LIAO P, et al. Visual attention network for low-dose CT[J]. IEEE Signal Processing Letters, 2019, 26(8): 1152−1156. doi: 10.1109/LSP.2019.2922851

    [89]

    RAJEEV R, SAMATH J A, KARTHIKEYAN N K. An intelligent recurrent neural network with long short-term memory (LSTM) BASED batch normalization for medical image denoising[J]. Journal of Medical Systems, 2019, 43(8): 234. doi: 10.1007/s10916-019-1371-9

    [90]

    YANG Q, YAN P, KALRA M K, et al. CT image denoising with perceptive deep neural networks[J]. arXiv Preprint arXiv: 1702.07019, 2017.

    [91]

    YOU C, YANG Q, SHAN H, et al. Structurally-sensitive multi-scale deep neural network for low-dose CT denoising[J]. IEEE Access, 2018, 6: 41839−41855. doi: 10.1109/ACCESS.2018.2858196

    [92]

    GU J, YE J C. AdaIN-based tunable cycleGAN for efficient unsupervised low-dose CT denoising[J]. IEEE Transactions on Computational Imaging, 2021, 7: 73−85. doi: 10.1109/TCI.2021.3050266

    [93]

    KWON T, YE J C. Cycle-free cycleGAN using invertible generator for unsupervised low-dose CT denoising[J]. arXiv Preprint arXiv: 2104.08538, 2021.

    [94]

    LIAO H, LIN W A, ZHOU S K, et al. Adn: Artifact disentanglement network for unsupervised metal artifact reduction[J]. IEEE Transactions on Medical Imaging, 2019, 39(3): 634−643.

    [95]

    KO Y, MOON S, BAEK J, et al. Rigid and non-rigid motion artifact reduction in X-ray CT using attention module[J]. Medical Image Analysis, 2021, 67: 101883. doi: 10.1016/j.media.2020.101883

    [96]

    LI M, HSU W, XIE X, et al. SACNN: Self-attention convolutional neural network for low-dose CT denoising with self-supervised perceptual loss network[J]. IEEE Transactions on Medical Imaging, 2020, 39(7): 2289−2301. doi: 10.1109/TMI.2020.2968472

    [97]

    ZHANG H, PATEL V M. Density-aware single image de-raining using a multi-stream dense network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 695-704.

    [98]

    HU X, FU C W, ZHU L, et al. Depth-attentional features for single-image rain removal[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 8022-8031.

    [99]

    GUO S, YAN Z, ZHANG K, et al. Toward convolutional blind denoising of real photographs[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 1712-1722.

    [100]

    WANG Y, GONG D, YANG J, et al. An effective two-branch model-based deep network for single image deraining[J]. arXiv Preprint arXiv: 1905.05404, 2019.

    [101]

    WANG Y, ZHANG H, LIU Y, et al. Gradient information guided deraining with a novel network and adversarial training[J]. arXiv Preprint arXiv: 1910.03839, 2019.

    [102]

    MCCOLLOUGH C L, CHEN B, HOLMES D, et al. Low dose CT image and projection data (LDCT-and-Projection-data)[DB/OL]. The Cancer Imaging Archive, 2020. (2020-00-00) [2021-05-20]. https://doi.org/10.7937/9npb-2637.

    [103]

    The American Association of Physicists in Medicine (AAPM). Low dose CT grand challenge[DB/OL]. (2017-00-00) [2021-05-20]. http://www.aapm.org/GrandChallenge/LowDoseCT/.

    [104]

    National biomedical imaging archive[DB/OL]. (2021-00-00) [2021-05-20]. NCIP/national-biomedical-image-archive.

    [105]

    CLARK K, VENDT B, SMITH K, et al. The cancer imaging archive (TCIA) maintaining and operating a public information repository[J]. Journal of Digital Imaging, 2013, 26(6): 1045-1057.

    [106]

    LINGLE W, ERICKSON B, ZULEY M, et al. Radiology data from the cancer genome atlas breast invasive carcinoma [TCGA-BRCA] collection[DB/OL]. The Cancer Imaging Archive, (2016-00-00) [2021-05-20]. http://wiki.cancerimagingarchive.net/.

    [107]

    YI X. Piglet Dataset[DB/OL]. (2019-00-00)[2021-05-20] http://homepage.usask.ca/~xiy525/.

  • 期刊类型引用(5)

    1. 上官宏,任慧莹,张雄,韩兴隆,桂志国,王燕玲. 基于双编码器双解码器GAN的低剂量CT降噪模型. 计算机应用. 2025(02): 624-632 . 百度学术
    2. 陈辉艳,王映飞,梁莎,许大幸. 孕妇儿童肺部疾病多模态磁共振扫描应用研究进展. 实用医学影像杂志. 2023(05): 373-375 . 百度学术
    3. 朱元正,吕启闻,官瑜,刘且根. 基于深度能量模型的低剂量CT重建. CT理论与应用研究. 2022(06): 709-720 . 本站查看
    4. 栗乔新,金科,庞志峰. 一种去除CT图像中同心椭圆伪影的变分模型. CT理论与应用研究. 2022(06): 773-781 . 本站查看
    5. 吴凡,刘进,张意,陈阳,陆志凯. 面向CT成像的深度重建算法研究进展. 中国体视学与图像分析. 2022(04): 387-404 . 百度学术

    其他类型引用(12)

图(10)  /  表(2)
计量
  • 文章访问数:  3097
  • HTML全文浏览量:  728
  • PDF下载量:  520
  • 被引次数: 17
出版历程
  • 收稿日期:  2021-05-19
  • 网络出版日期:  2021-11-11
  • 刊出日期:  2022-01-31

目录

/

返回文章
返回
x 关闭 永久关闭