ISSN 1004-4140
CN 11-3017/P
温德英, 杨杰尹, 汪琴, 等. 深度学习重建算法在上腹部CT成像中的应用[J]. CT理论与应用研究, 2022, 31(3): 329-336. DOI: 10.15953/j.ctta.2021.005.
引用本文: 温德英, 杨杰尹, 汪琴, 等. 深度学习重建算法在上腹部CT成像中的应用[J]. CT理论与应用研究, 2022, 31(3): 329-336. DOI: 10.15953/j.ctta.2021.005.
WEN D Y, YANG J Y, WANG Q, et al. Application of deep learning reconstruction algorithm in upper abdomen CT[J]. CT Theory and Applications, 2022, 31(3): 329-336. DOI: 10.15953/j.ctta.2021.005. (in Chinese).
Citation: WEN D Y, YANG J Y, WANG Q, et al. Application of deep learning reconstruction algorithm in upper abdomen CT[J]. CT Theory and Applications, 2022, 31(3): 329-336. DOI: 10.15953/j.ctta.2021.005. (in Chinese).

深度学习重建算法在上腹部CT成像中的应用

Application of Deep Learning Reconstruction Algorithm in Upper Abdomen CT

  • 摘要: 目的:通过分析比较自适应统计迭代重建(ASIR)算法和深度学习重建(DLIR)算法在上腹部CT成像中的图像质量,探讨DLIR算法在上腹部CT成像中的应用价值。方法:回顾性纳入75例患者上腹部CT平扫图像,利用自适应统计迭代重建算法ASIR(30%、50%、70%、90%)和深度学习重建算法(DL-L、DL-M、DL-H)重建图像,共7组。测量每组图像肝脏、胰腺、竖脊肌的CT值和SD值,并计算信噪比(SNR)和对比噪声比(CNR),采用单因素方差分析对各指标进行客观评价;同时由两位放射医师对图像质量和噪声评分,采用Friedman <i<M</i<检验进行比较。结果:①七组重建图像的SD值、SNR、肝脏CNR差异有统计学意义。②DL-L与ASIR 50%、DL-M与ASIR 70%、DL-H与ASIR 90% 间各ROI处CT值、SD值、SNR值、CNR值无差异。③三种深度学习重建算法间随等级升高,SNR值升高,差异有统计学意义;且DL-H 算法的SNR值高于ASIR 30%、ASIR 50%,SD值低于除ASIR 90% 外的其余5组重建算法。④七组图像主观评分差异有统计学意义,算法DL-H具有最佳的图像质量和最低的噪声,DL-M、ASIR 90%、DL-L、ASIR 70%、ASIR 50%、ASIR 30% 图像噪声依次增加。结论:深度学习重建算法能够降低上腹部图像噪声,提高图像质量,且随等级升高,图像噪声降低、质量提高、信噪比升高。

     

    Abstract: Objective: To explore the application of deep learning image reconstruction (DLIR) algorithm in upper abdominal CT imaging by analyzing the image quality of adaptive statistical iterative reconstruction (ASIR) algorithm and DLIR. Methods: Retrospectively included 75 patients’ upper abdominal CT plain scan images, using adaptive statistical iterative reconstruction algorithm ASIR (30%, 50%, 70%, 90%) and deep learning reconstruction algorithm (DL-L, DL-M, DL-H) to reconstruct images, a total of 7 groups. Measured the CT and SD values of the liver, pancreas, and erector spinae , and calculated the signal to noise ratio (SNR) and contrast to noise ratio (CNR). Objective indicators were evaluated by one-way ANOVA. Two radiologists scored the image quality and noise, and compared them with Friedman <i<M</i< test. Results: (1) The SD value, SNR, and liver CNR of the seven reconstructed images had statistically significant differences. (2) The difference in CT value, SD value, SNR value and CNR value at each ROI between DL-L and ASIR 50%, DL-M and ASIR 70%, DL-H and ASIR 90% was small. (3) The SNR value of the three DLIR algorithms increased as the level increased, and the difference was statistically significant; and the SNR value of the DL-H algorithm was higher than ASIR 30% and ASIR 50%, and the SD value was lower than the other five reconstruction algorithms except for the ASIR 90%. (4) The difference in the subjective scores of the seven groups of images was statistically significant. The algorithm DL-H had the best image quality and the lowest noise, DL-M, ASIR 90%, DL-L, ASIR 70%, ASIR 50%, ASIR 30% image noise in sequence increased. Conclusion: The DLIR algorithm can reduce the image noise of the upper abdomen and improve the image quality. As the level increased, the image noise decreased, the quality improved, and the signal-to-noise ratio increased.

     

/

返回文章
返回