ISSN 1004-4140
CN 11-3017/P

下肢动脉CE-MRA血管成像钆对比剂最佳用量研究

王旭, 杨英, 殷硕, 吴戈, 邓刚, 尹晓明, 曾庆玉, 邓茂松

王旭, 杨英, 殷硕, 等. 下肢动脉CE-MRA血管成像钆对比剂最佳用量研究[J]. CT理论与应用研究, 2022, 31(2): 203-210. DOI: 10.15953/j.ctta.2021.033.
引用本文: 王旭, 杨英, 殷硕, 等. 下肢动脉CE-MRA血管成像钆对比剂最佳用量研究[J]. CT理论与应用研究, 2022, 31(2): 203-210. DOI: 10.15953/j.ctta.2021.033.
WANG X, YANG Y, YIN S, et al. Study on the optimal dosage of gadolinium contrast agent for lower extremity artery CE-MRA angiography[J]. CT Theory and Applications, 2022, 31(2): 203-210. DOI: 10.15953/j.ctta.2021.033. (in Chinese).
Citation: WANG X, YANG Y, YIN S, et al. Study on the optimal dosage of gadolinium contrast agent for lower extremity artery CE-MRA angiography[J]. CT Theory and Applications, 2022, 31(2): 203-210. DOI: 10.15953/j.ctta.2021.033. (in Chinese).

下肢动脉CE-MRA血管成像钆对比剂最佳用量研究

详细信息
    作者简介:

    王旭: 女,应急总医院影像科主治医师,主要从事影像诊断方面工作,E-mail:xuwanging@126.com

    吴戈: 男,应急总医院影像科主任医师,主要从事CT及MRI影像诊断与介入治疗,E-mail:wudalu4983@163.com

  • 中图分类号: R 445;R 144

Study on the Optimal Dosage of Gadolinium Contrast Agent for Lower Extremity Artery CE-MRA Angiography

  • 摘要: 目的:探讨三维动态增强磁共振血管成像(3D CE-MRA)在双下肢动脉病变成像中对比剂最佳用量。方法:45例我院进行双下肢动脉3D CE-MRA血管成像的患者,根据就诊顺序随机分为A、B和C三组,三组钆对比剂用量分别为0.1、0.2和0.3 mmol/kg,分别与盐水进行1∶1配比,分别对不同对比剂用量的后处理图像进行主观及客观评分,并对小腿及足部血管进行整体静脉重叠评分,最后采用Wilcoxon检验比较3种扫描方案差异。客观评分是对3组的原始增强图像进行信号强度(SI)、信噪比(SNR)、对比噪声比(CNR)的测量及计算,比较股动脉、腘动脉及小腿动脉水平信号强度差异,进行t检验比较 3种扫描方案差异。结果:对比剂用量为0.1 mmol/kg时股动脉、腘动脉及小腿动脉的图像质量评分分别为(3.35±0.25)、(2.97±0.25)、(2.35±1.15);对比剂用量为0.2 mmol/kg时,上述部位的评分分别为(3.75±0.35)、(3.55±0.32)、(2.97±0.70);对比剂用量为0.3 mmol/kg时,上述部位的评分分别为(3.90±0.41)、(3.83±0.52)、(3.10±0.75)。A组有33.33%图像不满足诊断需要,B组和C组图像全部满足诊断需要,A组与B组差异有统计学意义,B组与C组差异无统计学意义。B和C组的股动脉、腘动脉的SI、SNR、CNR明显高于A组,且B组和C组差异无统计学意义。B组和C组图像优于A组。结论:适当提高对比剂用量有助于提高患者双下肢动脉全程的3D CE-MRA成像质量,0.2 mmol/kg的对比剂用量对血管的评估是可靠准确的,能够为临床外周动脉疾患的治疗方案提供准确可靠的影像依据。
    Abstract: Objective: To investigate the optimal dosage of contrast agent in three-dimensional dynamic enhanced magnetic resonance angiography (3D CE-MRA) in the imaging of arterial lesions of both lower limbs. Methods: 45 patients who underwent 3D CE-MRA angiography of lower extremity arteries in our hospital were randomly divided into three groups A, B and C. The gadolinium dosages of the three groups were respectively 0.1 mmol/kg, 0.2 mmol/kg and 0.3 mmol/kg. They were injected intravenously with saline at the ratio of 1:1. The images of different dose scanning schemes were scored subjectively and objectively. Subjective scoring: the lower limb arteries were divided into femoral artery, popliteal artery and calf artery (posterior tibial artery, anterior tibial artery and common peroneal artery). The quality of MIP reconstruction images was evaluated, and the overall venous overlap scoring of calf and foot vessels was also carried out. Finally, the differences of the three scanning schemes were compared by Wilcoxon test.The objective scoring is to measure and calculate the signal intensity Si, signal-to-noise ratio SNR and contrast-to-noise ratio of the original enhanced images of the three groups, compare the horizontal signal intensity differences of femoral artery, popliteal artery and calf artery, and compare the differences of the three scanning schemes by t-test. Results: When the contrast medium dosage was 0.1 mmol/kg, the image quality scores of femoral artery, popliteal artery and calf artery were (3.35±0.25), (2.97±0.25), (2.35±1.15) respectively; When the dosage of contrast agent was 0.2 mmol/kg, the scores of the above parts were (3.75±0.35), (3.55±0.32), (2.97±0.70) respectively; When the dosage of contrast agent was 0.3 mmol/kg, the scores of the above parts were (3.90±0.41), (3.83±0.52), (3.10±0.75) respectively. 33.33% of the images in group A did not meet the diagnostic needs, while all the images in group B and C met the diagnostic needs. There was significant difference between group A and group B, and there was no significant difference between group B and group C. B The Si, SNR and CNR of femoral artery and popliteal artery in group C were significantly higher than those in group A, and there was no significant difference between group B and C. The images of group B and C were better than those of group A. Conclusion: Appropriate increase of the contrast medium dosage is helpful to improve the 3D CE-MRA imaging quality of both lower limb arteries. The contrast medium dosage of 0.2 mmol/kg is reliable and accurate for the evaluation of blood vessels, and can provide accurate and reliable imaging basis for the formulation of treatment plan for patients with peripheral artery diseases.
  • 腮腺肿瘤中约80% 为良性肿瘤,最常见的为腮腺混合瘤与腺淋巴瘤[1]。腮腺混合瘤虽然是良性肿瘤,但具有潜在恶性的生物学行为,术后局部复发及恶变风险均高于腺淋巴瘤[2]。因此术前精准诊断对临床手术方式与预后具有指导意义,腮腺混合瘤与腺淋巴瘤影像学表现具有一定交叉[3],常规影像学检查手段对两者之间鉴别困难。

    CT纹理分析技术是一种能够进行定量分析的后处理技术,目前已广泛应用于良恶性鉴别、术前分期、疗效评价[4-5]等方面,已有研究应用CT平扫图像纹理分析用于腮腺肿瘤鉴别[6-7],但关于增强CT纹理分析对腮腺肿瘤的异质性研究较少。

    本研究基于CT增强图像,探讨纹理分析技术联合机器学习算法鉴别腮腺混合瘤与腺淋巴瘤的可行性。

    回顾性分析2016年1月至2021年12月于本院经手术病理确诊为腮腺腺淋巴瘤与混合瘤的患者40例。其中腮腺腺淋巴瘤21例,男性18例,女性3例,年龄40~77岁,平均年龄(62.24±11.17)岁,术前误诊混合瘤4例;腮腺混合瘤19例,男性6例,女性13例,年龄21~67岁,平均年龄(46.63±12.28)岁,术前误诊腺淋巴瘤1例。每个患者均有完整的病理资料,术前2周内均行增强CT检查。

    排除标准:①CT检查前已治疗过或其他肿瘤病史;②存在明显伪影而影响观察。

    采用Siemens或Philips多层螺旋CT对患者进行增强扫描,扫描范围从外耳孔至锁骨上平面。检查参数:球管电压120 kV,管电流200 mA,螺距1.0,层厚5 mm,重建矩阵512×512,重建层厚1 mm。

    增强扫描按2.5 mL/s速率,静脉团注对比剂碘海醇1 mL/kg,动脉期于注射后25 s扫描,静脉期于注射后50 s扫描。

    从PACS工作站中将患者病灶最大层面图像导出,导出图像保存为BPM格式,导出时确保所有图像窗宽窗位均为W250/L50。随后将图像导入Mazda软件,由两名高年资医师协商,沿病灶边缘1 mm左右勾画ROI(图1),尽量避开坏死、钙化及血管。

    图  1  腮腺肿瘤CT静脉期图像以及ROIs
    (a)和(b)腺淋巴瘤,男,45岁;(c)和(d)多形性腺瘤,男,40岁。
    Figure  1.  Enhanced CT images (with ROIs) of a parotid tumor

    运用Mazda软件自动获取6类纹理特征(包括直方图、灰度共生矩阵、游程矩阵、绝对梯度、自回归模型及小波转换),共312项纹理特征。采用Fisher系数、POE+ACC、MI 4种降维筛选方式以及3种降维方式的联合运用(FPM)。

    运用Mazda软件的B11模块,对获得的纹理特征进行分类分析。该软件主要包括原始数据分析(RDA)、主要成分分析(PCA)、线性判别分析(LDA)和非线性判别分析(NDA)4种机器学习算法。计算不同降维方式联合不同机器学习算法的误判率、准确率、敏感性、特异性、阳性预测值、阴性预测值。

    采用SPSS 22.0统计分析软件进行分析,计量资料的表示方式为均数±标准差,即($\bar x \pm s $),对本次研究的4种纹理特征筛选方法中出现3次以上的特征参数进行统计分析。符合正态分布的采用独立样本的t检验,不符合正态分布的运用Wilcoxon秩和检验,以P<0.05认为差异具有统计学意义。

    建立ROC曲线,并计算其AUC值,获得研究所需的诊断阈值,并计算敏感性和特异性,比较其诊断效能。

    运用Fisher、POE+ACC、MI以及FPM分别提取的最有代表性的纹理特征参数各10、10、10、30项,其中出现3次以上的参数共5项(表1)。其中WavEnHH_s-4、WavEnLL_s-4为小波转换参数;GrVariance、GrSkewness为绝对梯度参数,45dgr_Fraction为游程矩阵参数。

    表  1  腮腺腺淋巴瘤与混合瘤间最佳纹理特征参数比较
    Table  1.  Comparison of the optimal texture feature parameters between parotid adenolymphomas and mixed tumors
    参数 组别 统计检验
    腺淋巴瘤组混合瘤组t/Z  P  
    WavEnHH_s-44.162±1.9087.493±3.157 -4.084<0.01
    WavEnLL_s-421044.469±3887.16416649.289±4309.2263.3920.002
    GrVariance0.185±0.0460.236±0.033-4.055<0.01
    GrSkewness1.996±0.5161.475±0.295-3.2910.001
    45 dgr_Fraction0.328±0.0800.422±0.074-3.854<0.01
    下载: 导出CSV 
    | 显示表格

    腮腺腺淋巴瘤组的WavEnHH_s-4、GrVariance、45 dgr_Fraction低于混合瘤组,WavEnLL_s-4、GrSkewness高于混合瘤组,且均在组间有统计学意义。

    本研究针对具有统计学意义的纹理参数建立ROC曲线,并对其诊断效能进行分析,结果见表2图2。鉴别腮腺腺淋巴瘤与混合瘤AUC最高的是WavEnHH_s-4,为0.827,其相应的敏感性、特异性分别为84.2%、66.7%;鉴别腮腺腺淋巴瘤与混合瘤敏感性最高的是GrSkewness,其AUC值、敏感性、特异性分别为0.805、94.7%、61.9%,特异性较低;鉴别腮腺腺淋巴瘤与混合瘤特异性最高的是WavEnLL_s-4,其AUC值、敏感性、特异性分别为0.797、84.2%、76.2%,敏感性与特异性较为平衡,具有良好诊断效能。

    表  2  腮腺腺淋巴瘤与混合瘤间最佳纹理特征参数的诊断效能
    Table  2.  Diagnostic performance of the optimal texture feature parameters for parotid adenolymphomas and mixed tumors
    参数AUC阈值敏感性/%特异性/%P
     WavEnHH_s-40.8274.97984.266.7<0.01
     WavEnLL_s-40.79719227.148  84.276.20.001
     GrVariance0.8150.20089.566.70.001
     GrSkewness0.8051.81994.761.90.001
     45 dgr_Fraction0.8020.38473.771.40.001
    下载: 导出CSV 
    | 显示表格
    图  2  腮腺腺淋巴瘤与混合瘤组间WavEnHH_s-4、WavEnLL_s-4、GrVariance、GrSkewness、45 dgr_Fraction的ROC曲线
    Figure  2.  ROC curves for WavEnHH_s-4, WavEnLL_s-4, GrVariance, GrSkewness, 45 dgr_Fraction for differentiating between adenolymphomas and mixed tumors of the parotid gland

    运用B11模块中4种机器学习方法对不同纹理筛选方式进行分类分析。RDA、PCA、LDA、NDA算法的误判率范围分别为30.0%~37.5%、30.0%~37.5%、7.5%~37.5%、5.0%~12.5%,其中误判率最低的是FPM联合NDA算法,为5.0%,低于本研究放射科术前诊断误诊率12.5%(5/40);其准确率、敏感性、特异性、阳性预测值、阴性预测值分别为95.0%、95.2%、94.7%、95.2%、94.7%,结果见表3表4

    表  3  腮腺腺淋巴瘤与混合瘤间不同机器学习算法的误判率
    Table  3.  False-positive rates of different machine-learning algorithms for parotid adenolymphomas and mixed tumors
    组别RDA/%PCA/%LDA/%NDA/%
     Fisher37.5(15/40)37.5(15/40)   10.0(4/40)    7.5(3/40)
     POE+ACC35.0(14/40)30.0(12/40)   22.5(9/40)   10.0(4/40)
     MI30.0(12/40)30.0(12/40)   37.5(15/40)   12.5(5/40)
     FPM35.0(14/40)32.5(13/40)    7.5(3/40)    5.0(2/40)
    下载: 导出CSV 
    | 显示表格
    表  4  腮腺腺淋巴瘤与混合瘤间不同机器学习算法的效能比较
    Table  4.  Comparison of the performance of different machine-learning algorithms for parotid adenolymphomas and mixed tumors
    分类算法  准确率/%敏感性/%特异性/%阳性预测值阴性预测值
    Fisher/RDA62.561.963.265.060.0
    Fisher/PCA62.561.963.265.060.0
    Fisher/LDA90.095.284.287.094.1
    Fisher/NDA92.590.594.795.090.0
    POE+ACC/RDA65.076.252.664.066.7
    POE+ACC/PCA70.076.263.269.670.6
    POE+ACC/LDA77.576.278.980.075.0
    POE+ACC/NDA90.085.794.794.785.7
    MI/RDA70.076.263.269.670.6
    MI/PCA70.076.263.269.670.6
    MI/LDA62.566.757.963.661.1
    MI/NDA87.581.094.794.481.8
    FPM/RDA65.066.763.266.763.2
    FPM/PCA67.571.463.268.266.7
    FPM/LDA92.595.289.590.994.4
    FPM/NDA95.095.294.795.294.7
    下载: 导出CSV 
    | 显示表格

    腮腺腺淋巴瘤与混合瘤为腮腺最常见的良性肿瘤,两者在CT平扫上均表现为颌面部包块,形态规则,边界清晰。增强扫描时,腮腺混合瘤多呈轻度延迟强化;腺淋巴瘤多呈快进快出方式强化,但也有部分影像表现有交叉[8],且影像诊断主观性强,诊断经验和诊断标准不一。

    CT纹理分析技术是对医学图像像素分布特征进行数学统计的图像后处理技术,能够定量评估肿瘤的异质性[9]。刘文华等[6]通过CT平扫纹理分析技术发现,纹理参数偏度、峰度在鉴别腮腺混合瘤与腺淋巴瘤中具有统计学意义;任思桐等[7]研究发现基于CT平扫图像的纹理特征中位数、均值、体素值和、标准差、偏度可以鉴别腮腺混合瘤和恶性肿瘤。两者均以CT平扫图像为研究对象,且选取的是低阶纹理参数,而增强图像能够通过强化方式的不同反应病灶内组织差异,更好地体现纹理参数的差异性。本文基于增强CT图像选取高阶纹理参数联合机器学习的方式,探讨鉴别腮腺腺淋巴瘤与混合瘤的可行性。

    本研究通过4种降维方式筛选出最佳纹理特征5个,腮腺腺淋巴瘤组的WavEnHH_s-4、GrVariance、45 dgr_Fraction低于混合瘤组,WavEnLL_s-4、GrSkewness高于混合瘤组,且均在组间有统计学意义。45 dgr_Fraction即45°方向游程图像分数,属于游程矩阵参数,反应的是该矩阵的像素在一定方向上出现的频率。

    任继亮等[10]研究发现基于游程矩阵纹理参数能够用于鉴别眼眶淋巴瘤与炎性假瘤,不同病理类型的肿瘤游程矩阵参数也有差异。GrVariance即绝对梯度方差、GrSkewness即绝对梯度偏度,属于绝对梯度参数,反应病灶内部像素分布的复杂程度[11]。WavEnHH_s-4即高高频小波转换系数、WavEnLL即低低频小波转换系数[12],反应的是区域内像素在高高频、低低频率能量的空间分布情况。绝对梯度参数与小波转换系数属于高阶纹理参数,徐圆等[13]发现小波转换系数在不同分化程度肾透明细胞癌中具有统计学差异,低频量越丰富图像纹理越模糊,与本研究结果相符。

    本研究中腮腺腺淋巴瘤由上皮样和淋巴样组织构成,内富含粘液成分,且易囊变并有胆固醇结晶,混合瘤由上皮细胞、变异肌上皮细胞、黏液样或软骨样组织构成[14];增强后腺淋巴瘤强化更显著,更易囊变,内部密度分布不均,导致图像纹理粗糙模糊;两者组织学上的不同反映为纹理参数的差异性。

    机器学习算法中,从降维方式来看FPM算法的误诊例总数最少,而MI误诊例总数最多。从机器学习算法来看,NDA算法的误诊例总数最少,而RDA误诊例总数最多。且FPM联合NDA分类分析法误诊率最低(5.0),低于本研究放射科术前诊断误诊率(12.5),能够帮助放射科诊断医师提高诊断准确率。

    余先超等[15]基于CT平扫图像机器学习算法对腮腺腺淋巴瘤与混合瘤的鉴别中,MI/NDA算法具有最高的特异度,MI/RDA、MR/PCA灵敏度最高,但该研究缺少了纹理特征参数最多的FPM降维方式。FPM降维方式选择的参数为3种降维方式的联合应用,包含的纹理参数最多、最优,能够充分的反应腮腺肿瘤的纹理信息,这与既往研究相符。尹进学等[16]的研究结果显示,基于常规T2 WI图像纹理特征,NDA分类联合FPM纹理降维方法对预测早期宫颈鳞癌盆腔淋巴结转移的误判率最低;徐圆等[17]的研究结果表明,基于常规胸部增强CT图像纹理特征,NDA纹理特征分类方法对预测肺腺癌淋巴结转移的正确率最高,明显优于RDA、PCA和LDA,具有较好的诊断效能。由此可见,FPM联合NDA算法可以用于鉴别腮腺腺淋巴瘤与混合瘤。

    本研究还存在的局限性:①本研究为回顾性分析,样本量偏小,病例可能存在选择偏倚;②本研究仅对腮腺肿瘤的最大层面进行分析,没有勾画三维ROI区,会缺乏一些纹理信息;③纹理参数的提取缺乏操作规范,提高研究的可重复性。下一步本研究将加大样本量、多中心的影像组学研究验证。

    综上所述,增强CT纹理分析提取的最佳特征参数在腮腺腺淋巴瘤与混合瘤间具有显著差异,其中WavEnLL_s-4的敏感性与特异性较为平衡,具有良好的诊断效能,且FPM联合NDA算法误判率最低,有助于鉴别腮腺腺淋巴瘤与混合瘤,能够帮助放射科诊断医师提高诊断准确率。

  • 图  1   不同对比剂用量条件下双下肢动脉成像显示

    Figure  1.   Arterial imaging of both lower limbs under different dosage of contrast medium

    图  2   下肢动脉血管信号强度的测量

    Figure  2.   Measurement of arterial signal intensity of lower extremity study on the optimal dosage of gadolinium CE-MRA contrast

    表  1   45例患者不同对比剂用量条件下MRA图像质量结果比较(分,$\bar x \pm s $

    Table  1   Comparison of MRA image quality results of 45 patients with different dosage of contrast agents (points, $\bar x \pm s $)

    扫描方案图像质量评分
    股动脉腘动脉小腿动脉静脉污染
    A组3.35±0.252.97±0.252.35±1.150.98±0.75
    B组3.75±0.353.55±0.322.97±0.701.16±0.65
    C组3.90±0.413.83±0.523.10±0.751.42±0.35
    A组与B组$z $值 0.63 1.86 3.21 0.32
    $P $>0.05<0.05<0.05<0.05
    B组与C组$z $值 1.11 3.06 2.71 0.56
    $P $>0.05>0.05>0.05>0.05
    下载: 导出CSV

    表  2   45例患者下肢动脉在不同造影剂用量条件下客观评价结果($\bar x \pm s $

    Table  2   Objective evaluation results of lower limb arteries of 45 patients under different dosage of contrast media ($\bar x \pm s $)

    扫描方案A组B组C组A组与
    B组t
    PB组与
    C组t
    P
    股动脉SI364.38±21.43619.81±36.33766.72±47.303.74<0.052.65>0.05
    SNR181.09±16.34303.43±19.45409.33±23.124.89<0.051.07>0.05
    CNR152.73±11.22271.70±15.53340.56±15.982.77<0.051.98>0.05
    腘动脉SI336.19±30.73607.43±28.12760.31±57.923.28<0.051.01>0.05
    SNR179.67±14.59302.20±17.42374.53±27.275.69<0.052.18>0.05
    CNR149.29±16.38272.35±12.76319.21±24.743.96>0.053.04>0.05
    胫前/
    后动脉
    SI91.67±9.40214.40±22.17416.44±38.331.78<0.051.05>0.05
    SNR47.74±4.76107.73±12.31223.65±16.743.72<0.052.67<0.05
    CNR35.20±4.7986.43±6.93199.46±7.472.99>0.052.04<0.05
    下载: 导出CSV
  • [1] 张磊, 畅坚, 吴云, 等. 对比增强MR血管成像诊断糖尿病下肢动脉闭塞症膝以下动脉狭窄的价值[J]. 中华放射学杂志, 2014,(8): 664−669. doi: 10.3760/cma.j.issn.1005-1201.2014.08.011

    ZHANG L, CHANG J, WU Y, et al. Value of contrast-enhanced MR angiography in diagnosis of lower extremity arterial stenosis in diabetic patients with lower extremity arterial occlusive disease[J]. Chinese Journal of Radiology, 2014, (8): 664−669. (in Chinese). doi: 10.3760/cma.j.issn.1005-1201.2014.08.011

    [2] 吴戈, 张藜莉, 霍健伟, 等. 64排螺旋CT血管造影在下肢动脉病变人工血管旁路移植术后随访的价值[J]. 实用放射学杂志, 2007,(5): 639−642. doi: 10.3969/j.issn.1002-1671.2007.05.018

    WU G, ZHANG L L, HUO J W, et al. The application of 64-detector helical CT angiography in the evaluation of artery of lower extremity in follow-up after artificial vascular graft[J]. Journal of Practical Radiology, 2007, (5): 639−642. (in Chinese). doi: 10.3969/j.issn.1002-1671.2007.05.018

    [3] 吴戈, 张藜莉, 邓刚, 等. 下肢动脉硬化闭塞症的多层螺旋(HD750) CTA和3.0T磁共振3DCE-MRA的对比研究[J]. 中国CT和MRI杂志, 2016,(5): 112−113. doi: 10.3969/j.issn.1672-5131.2016.05.035

    WU G, ZHANG L L, DENG G, et al. Compariative Study of multi-sliceshelical (HD750) CT angiography and 3.0T Three dimensional dynamic contrast-enhanced MRA inLower extremities arteriosclerotic occlusive disease[J]. Chinese Journal of CT and MRI, 2016, (5): 112−113. (in Chinese). doi: 10.3969/j.issn.1672-5131.2016.05.035

    [4] 孙凤, 舒政. 非对比增强MR下肢动脉成像技术研究进展[J]. 医学综述, 2018,(17): 3487−3491. doi: 10.3969/j.issn.1006-2084.2018.17.031

    SUN F, SHU Z. Technological development of non-contrast enhanced MR angiography in lower extremity[J]. Medical Recapitulate, 2018, (17): 3487−3491. (in Chinese). doi: 10.3969/j.issn.1006-2084.2018.17.031

    [5] 张玲, 李大鹏. 低剂量对比剂在下肢动脉疾病3D CE-MRA中的应用[J]. 医疗卫生装备, 2017,(4): 74−77.

    ZHANG L, LI D P. Application of low-dose contrast agent in 3D dynamic contrast enhanced MR angiography of lower extremity arterial disease[J]. Chinese Medical Equipment Journal, 2017, (4): 74−77. (in Chinese).

    [6]

    HIATT W R. Medical treatment of peripheral arterial disease and claudication[J]. New England Journal of Medicine, 2001, 344(21): 1608−1621. doi: 10.1056/NEJM200105243442108

    [7]

    HABIBI R, KRISHNAM M S, LOHAN D G, et al. High-spatial-resolution lower extremity MR angiography at 3.0T: Contrast agent dose comparison study[J]. Radiology, 2008, 248(2): 680−692. doi: 10.1148/radiol.2482071505

    [8] 唐辉. 多模态磁共振成像在下肢缺血性疾病中的应用研究[D]. 上海: 上海交通大学, 2019.

    TANG H. Multi-modal medical imaging methods in assessment and prediction of lower limb ischemic disease[D]. Shanghai: Shanghai Jiaotong University, 2019. (in Chinese).

    [9] 王洁, 李小鹰, 何耀, 等. 北京市万寿路地区老年人群周围动脉硬化闭塞病横断面调查[J]. 中华流行病学杂志, 2004,25(3): 221−224. doi: 10.3760/j.issn:0254-6450.2004.03.010

    WANG J, LI X Y, HE Y, et al. A cross-sectional study of peripheral arterial occlusive disease in Wanshoulu area[J]. Chinese Journal of Epidemiology, 2004, 25(3): 221−224. (in Chinese). doi: 10.3760/j.issn:0254-6450.2004.03.010

    [10]

    GUAN H, LI Y J, XU Z R, et al. Prevalence and risk factors of peripheral arterial disease in diabetic patients over 50 years old in China[J]. China Medical Sciences Journal, 2007, 22(2): 83−88.

    [11]

    KOELEMAY M J, LIJMER J G, STOKER J, et al. Magnetic resonance angiography for the evaluation of lower extremity arterial disease: A meta-analysis[J]. Journal of the American Medical Association, 2001, 285(10): 1338−1345. doi: 10.1001/jama.285.10.1338

    [12] 杨敏星, 李选, 金斌, 等. 3.0T磁共振下肢动脉3D CE-MRA对比剂用量[J]. 中国介入影像与治疗学, 2010,7(4): 358−362.

    YANG M X, LI X, JIN B, et al. Dose of contrast agent in 3D CE-MRA of lower extremity arteries at 3.0T MR system[J]. Chinese Journal of Interventional Imaging and Therapy, 2010, 7(4): 358−362. (in Chinese).

    [13]

    GROBNER T. Gadolinium A—Specific trigger for the development of nrphrogenic fibrosing dermopathy and nephrogenic systemic fibrosis?[J]. Nephrology Dialysis Transplantion, 2006, 21(6): 1104−1108. DOI: 10.1093/ndt/gfk062.

    [14]

    BROOME D R, GIRGUIS M S, BARON P W, et al. Gadodiamide associated nephrogenic systemivfibrosis: Why radiologists should be concerned?[J]. American Journal of Roentgenology, 2007, 188(2): 586−592. doi: 10.2214/AJR.06.1094

    [15]

    PRINCE M R, ZHANG H, MORRIS M, et al. Incidence of nephrogenic systemic fibrosis at two large medical centers[J]. Radiology, 2008, 248(3): 807−816. doi: 10.1148/radiol.2483071863

    [16] 张春秋. 三维增强磁共振血管成像在下肢动脉硬化病变中临床应用[J]. 当代医学, 2012,18(30): 48−49.
    [17] 孟祥水, 侯金文, 曾庆师, 等. 3.0T磁共振CE-MRA在腹部至下肢动脉疾病中的应用价值[J]. 实用放射学杂志, 2007,(5): 633−638. doi: 10.3969/j.issn.1002-1671.2007.05.017

    MENG X S, HOU J W, ZENG Q S, et al. Diagnostic value of three dimensional dynamic contrast-enhanced MRA in arterial lesions of abdomen and lower extremities with 3.0 MR[J]. Journal of Practical Radiology, 2007, (5): 633−638. (in Chinese). doi: 10.3969/j.issn.1002-1671.2007.05.017

    [18]

    XU Y, WANG L, HE J, et al. Prevalence and control of diabetes in Chinese adults[J]. Journal of the American Medical Association, 2013, 310(9): 948−959. doi: 10.1001/jama.2013.168118

    [19] 张艺, 邓力刚, 靳二虎, 等. 全下肢动脉磁共振血管成像技术的临床应用[J]. CT理论与应用研究, 2010,(3): 75−81.

    ZHANG Y, DENG L G, JIN E H, et al. Clinical application of MR angiography of whole lower extremity artery[J]. CT Theory and Applications, 2010, (3): 75−81. (in Chinese).

  • 期刊类型引用(3)

    1. 郭虎. 多层螺旋CT在腮腺肿瘤性质鉴别诊断中的应用价值分析. 临床研究. 2025(03): 28-32 . 百度学术
    2. 施久刚,茅枭骁,唐银,马树声,张磊,卢亮. 基于CT平扫纹理分析预测腮腺多形性腺瘤包膜浸润的初步研究. 影像研究与医学应用. 2024(03): 67-69 . 百度学术
    3. 孟宪鑫,王栋,庞华军,徐瑞辰. CT纹理分析对腮腺肿瘤良恶性的鉴别价值. 影像研究与医学应用. 2024(15): 68-70 . 百度学术

    其他类型引用(1)

图(2)  /  表(2)
计量
  • 文章访问数:  277
  • HTML全文浏览量:  159
  • PDF下载量:  17
  • 被引次数: 4
出版历程
  • 收稿日期:  2021-11-07
  • 录用日期:  2022-01-06
  • 网络出版日期:  2022-01-18
  • 发布日期:  2022-03-31

目录

/

返回文章
返回
x 关闭 永久关闭