Comparison of Image Quality between Virtual Monochromatic Images and Conventional CT Images
-
摘要: 目的:对比双源双能CT的虚拟单能图像与常规CT图像的图像质量。方法:采用西门子SOMATOM Force双源双能CT扫描图像质量控制体模Catphan 500的高对比度分辨率CTP 528组件和低对比度分辨率CTP 515组件,分别采用双球管扫描方案重建低、中、高3档虚拟单能能谱图像(A组:40 keV,B组:70 keV,C组:100 keV)和一种单球管扫描方案图像(D组:120 kVp)。两名放射科医师分别测量CTP 528的高对比分辨率(最佳线对数)和CTP 515的低对比度分辨率(1% 对比度浓度下的最小孔径);随后测量各组图像的平均噪声、信噪比(SNR)及对比噪声比(CNR)。结果:两名医师的图像一致性评价良好(高/低对比度分辨率:Kappa系数为0.667;噪声参数:Spearman相关系数r=0.920。各组图像中,D组高对比度分辨率最佳(线对6 lp/cm);A、B组图像低对比度分辨率最佳(孔径均为4 mm)。C组图像平均噪声最低(2.333±0.289),SNR表现最佳(37.944±3.949);噪声和SNR在各组图像间差异有统计学意义。B组图像CNR最高(3.361±0.875),但各组图像间CNR差异不具有统计学意义。结论:双能CT虚拟单能图像相比常规CT图像可以在保持低对比度分辨率的基础上,改善图像噪声;随着虚拟单能能级的增加,图像噪声减小,信噪比增加。Abstract: Objective: To compare the image quality between virtual monochromatic images (VMI) of dual-source dual-energy CT (DECT) and conventional CT images. Siemens SOMATOM Force dual source dual energy CT was adopted in the scanning of the high contrast resolution CTP 528 component and low contrast resolution CTP 515 component of image quality control phantom catphan 500. Dual-tube dual-energy scanning scheme was used to reconstruct low, medium and high-level VMI (group A: 40 keV, group B: 70 keV, group C: 100 keV) and a single tube scanning scheme was used to reconstruct conventional images (Group D: 120 kVp). Two radiologiss carried out the measurement of high resolution by the smallest line pair one could distinguish and low-contrast sensitivity was measured by the smallest diameter under 1% contrast. Mean noise, signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were also evaluated for each group. Results: The image consistency of the two radiologists turned out well (high reolution and low-contrast sensitivity: Kappa coefficient=0.667; noise parameter: Spearman r = 0.920). Among all images, D group performed the best in high resolution (6 lp/cm) and A and B groups showed the best low-contrast sensitivity (diameter of 4 mm). C group had the lowest noise (2.333±0.289) and highest SNR (37.944±3.949). Mean noise and SNR were found significantly difference among the four groups. B group showed the highest CNR (3.361±0.875), but no statistical significance was found among the groups. Conclusion: Compared with conventional CT, VMI images from DECT could improve image quality while retain low-contrast sensitivity; image noise decreases while SNR increases as VMI elevates.
-
Keywords:
- dual-energy CT /
- virtual monochromatic image /
- phantom
-
-
表 1 四组图像高对比度分辨率和低对比度分辨率比较
Table 1 Comparison of high-contrast resolution and low-contrast resolution of four groups of images
对比度分辨率 A组
(40 keV)B组
(70 keV)C组
(100 keV)D组
(120 kVp)高对比对分辨率(线对/(lp/cm)) 5 5 5 6 低对比度分辨率(孔径直径/mm) 4 4 5 5 表 2 四组图像图噪声参数评价结果比较
Table 2 Comparison of the evaluation results of the noise parameters of the five groups of images
组别 SD/HU SNR CNR A组(40 keV) 4.167±0.289 10.942±0.465 2.383±0.336 B组(70 keV) 2.500±0.500 24.028±5.000 3.361±0.875 C组(100 keV) 2.333±0.289 37.944±3.949 3.139±0.337 D组(120 kVp) 2.500±0.000 30.806±1.398 2.778±0.241 $P $ <0.001 <0.001 0.179 -
[1] SUN H, QIU S, LOU S, et al. A correction method for nonlinear artifacts in CT imaging[C]//IEEE Engineering in Medicine and Biology Society. Conference Proceedings 2004, 2004: 1290-1293.
[2] RODRÍGUEZ-GRANILLO G A, ROSALES M A, DEGROSSI E, et al. Signal density of left ventricular myocardial segments and impact of beam hardening artifact: Implications for myocardial perfusion assessment by multidetector CT coronary angiography[J]. International Journal of Cardiovascular Imaging, 2010, 26(3): 345−354. doi: 10.1007/s10554-009-9531-5
[3] 任国庆, 滑炎卿, 李剑颖. CT能谱成像的基本原理及临床应用[J]. 国际医学放射学杂志, 2011,34(6): 559−563. doi: 10.3784/j.issn.1674-1897.2011.06.Z0612 REN G Q, HUA Y Q, LI J Y. The basic principle and clinical application of CT spectrum. imaging[J]. International Journal of Medical Radiology, 2011, 34(6): 559−563. (in Chinese). doi: 10.3784/j.issn.1674-1897.2011.06.Z0612
[4] Mc COLLOUGH C H, LENG S, YU L, et al. Dual- and multi-energy CT: Principles, technical approaches, and clinical applications[J]. Radiology, 2015, 276(3): 637−653. doi: 10.1148/radiol.2015142631
[5] 王文杰, 陈平, 潘晋孝, 等. 基于参考组分的双能CT成像方法[J]. CT理论与应用研究, 2021,30(1): 61−69. DOI: 10.15953/j.1004-4140.2021.30.01.06. WANG W J, CHEN P, PAN J X, et al. Dual-energy CT imaging method based on reference components[J]. CT Theory and Applications, 2021, 30(1): 61−69. DOI: 10.15953/j.1004-4140.2021.30.01.06. (in Chinese).
[6] 许伟雄, 黄旭璇, 林顺发, 等. 腹部动脉能谱CT混合能量与单能量图像的比较研究[J]. 中国CT和MRI杂志, 2014,12(8): 91−94. doi: 10.3969/j.issn.1672-5131.2014.08.30 XU W Q, HUANG X X, LIN S F, et al. Comparative study of abdominal artery energy spectrum CT mixed energy and single energy image[J]. Chinese Journal of CT and MRI, 2014, 12(8): 91−94. (in Chinese). doi: 10.3969/j.issn.1672-5131.2014.08.30
[7] 朱晓红, 刘斌, 周勇, 等. 冠状动脉能谱CT单能量成像与混合能量成像质量的比较−静态模型的实验研究[J]. 临床放射学杂志, 2012,31(5): 738−742. ZHU X H, LIU B, ZHOU Y, et al. Comparison of the quality of coronary artery energy spectrum CT single-energy imaging and mixed-energy imaging−An experimental study of a static model[J]. Journal of Clinical Radiology, 2012, 31(5): 738−742. (in Chinese).
[8] 韦炜, 邓克学, 赵英明, 等. 腹部双能量能谱CT成像中混合能量模式与单能量模式重建图像的比较研究[J]. 安徽医科大学学报, 2016,51(11): 1650−1653. WEI W, DENG K X, ZHAO Y M, et al. A comparative study of mixed energy mode and single energy mode in dual-energy spectrum CT imaging of the abdomen[J]. Journal of Anhui Medical University, 2016, 51(11): 1650−1653. (in Chinese).
[9] 李林坤, 王秋燕, 丛湘华, 等. 双下肢单能量60 keV与混合能量120 kVp CTA应用价值比较[J]. 临床放射学杂志, 2019,38(11): 2180−2184. LI L K, WANG Q Y, CONG X H, et al. Comparison of the application value of single energy 60 keV and mixed energy 120 kVp CTA for both lower limbs[J]. Journal of Clinical Radiology, 2019, 38(11): 2180−2184. (in Chinese).
[10] 王伟新, 张秋奂, 郭鹏德, 等. 能谱CT单能量结合ASiR技术对腹部静脉成像质量的优化研究[J]. CT理论与应用研究, 2019,28(1): 61−72. DOI: 10.15953/j.1004-4140.2019.28.01.07. WANG W X, ZHANG Q H, GUO P D, et al. Study on the optimization of energy spectrum CT single energy combined with ASiR technology on the quality of abdominal vein imaging[J]. CT Theory and Applications, 2019, 28(1): 61−72. DOI: 10.15953/j.1004-4140.2019.28.01.07. (in Chinese).
[11] ALBRECHT M H, VOGL T J, MARTIN S S, et al. Review of clinical applications for virtual monoenergetic dual-energy CT[J]. Radiology, 2019, 293(2): 260−271. doi: 10.1148/radiol.2019182297
[12] LEITHNER D, MAHMOUDI S, WICHMANN J L, et al. Evaluation of virtual monoenergetic imaging algorithms for dual-energy carotid and intracerebral CT angiography: Effects on image quality, artefacts and diagnostic performance for the detection of stenosis[J]. European Journal Radiology, 2018, 99: 111−117. doi: 10.1016/j.ejrad.2017.12.024
[13] KAUP M, SCHOLTZ J E, ENGLER A, et al. Dual-energy computed tomography virtual monoenergetic imaging of lung cancer: Assessment of optimal energy levels[J]. Journal of Computer Assisted Tomography, 2016, 40(1): 80−85. doi: 10.1097/RCT.0000000000000319
[14] MARTIN S S, WICHMANN J L, PFEIFER S, et al. Impact of noise-optimized virtual monoenergetic dual-energy computed tomography on image quality in patients with renal cell carcinoma[J]. European Journal Radiology, 2017, 97: 1−7. doi: 10.1016/j.ejrad.2017.10.008
[15] BODANAPALLY U K, ARCHER-ARROYO K, DREIZIN D, et al. Dual-energy computed tomography imaging of head: Virtual high-energy monochromatic (190 keV) images are more reliable than standard 120 kV images for detecting trau-matic intracranial hemorrhages[J]. Journal of Neurotrauma, 2019, 36(8): 1375−1381. doi: 10.1089/neu.2018.5985
[16] LEE S M, KIM S H, AHN S J, et al. Virtual monoenergetic dual-layer, dual-energy CT enterography: Optimization of keV settings and its added value for Crohn’s disease[J]. European Radiology, 2018, 28(6): 2525−2534. doi: 10.1007/s00330-017-5215-z
[17] SYMONS R, CHOI Y, CORK T E, et al. Optimized energy of spectral coronary CT angiography for coronary plaque detection and quantification[J]. Journal of Cardiovascular Computed Tomography, 2018, 12(2): 108−114. doi: 10.1016/j.jcct.2018.01.006
[18] APFALTRER P, SUDARSKI S, SCHNEIDER D, et al. Value of monoenergetic low-kV dual energy CT datasets for improved image quality of CT pulmonary angiography[J]. European Journal Radiology, 2014, 83(2): 322−328. doi: 10.1016/j.ejrad.2013.11.005
[19] Mc NAMARA M M, LITTLE M D, ALEXANDER L F, et al. Multireader evaluation of lesion conspicuity in small pancreatic adenocarcinomas: Complimentary value of iodine material density and low keV simulated monoenergetic images using multiphasic rapid kVp-switching dual energy CT[J]. Abdominal Imaging, 2015, 40(5): 1230−1240. doi: 10.1007/s00261-014-0274-y
[20] DARRAS K E, Mc LAUGHLIN P D, KANG H, et al. Virtual monoenergetic reconstruction of contrast-enhanced dual energy CT at 70 keV maximizes mural enhance-ment in acute small bowel obstruction[J]. European Journal Radiology, 2016, 85(5): 950−956. doi: 10.1016/j.ejrad.2016.02.019
[21] MATSUMOTO K, JINZAKI M, TANAMI Y, et al. Virtual monochromatic spectral imaging with fast kilovoltage switching: Improved image quality as compared with that obtained with conventional 120-kVp CT[J]. Radiology, 2011, 259(1): 257−62. doi: 10.1148/radiol.11100978
[22] 周旸, 曾勇明, 周蜜, 等. 双能CT单能谱70 keV图像与常规CT 120 kVp图像的等效性[J]. 中国医学影像技术, 2015,31(7): 1100−1105. ZHOU Y, CENG Y M, ZHOU M, et al. The equivalence of dual-energy CT single energy spectrum 70 keV image and conventional CT 120 kVp image[J]. China Medical Imaging Technology, 2015, 31(7): 1100−1105. (in Chinese).