ISSN 1004-4140
CN 11-3017/P

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

深度学习重建算法的图像质量体模研究

刘方韬 刘隺是 陈勇 姜江 王凌云 董海鹏 张勇 张璇 孔德艳 常蕊

刘方韬, 刘隺是, 陈勇, 等. 深度学习重建算法的图像质量体模研究[J]. CT理论与应用研究, 2022, 31(3): 351-356. DOI: 10.15953/j.ctta.2021.061
引用本文: 刘方韬, 刘隺是, 陈勇, 等. 深度学习重建算法的图像质量体模研究[J]. CT理论与应用研究, 2022, 31(3): 351-356. DOI: 10.15953/j.ctta.2021.061
LIU F T, LIU H S, CHEN Y, et al. Image quality assessment for deep learning image reconstruction algorithm: A phantom study[J]. CT Theory and Applications, 2022, 31(3): 351-356. DOI: 10.15953/j.ctta.2021.061. (in Chinese)
Citation: LIU F T, LIU H S, CHEN Y, et al. Image quality assessment for deep learning image reconstruction algorithm: A phantom study[J]. CT Theory and Applications, 2022, 31(3): 351-356. DOI: 10.15953/j.ctta.2021.061. (in Chinese)

深度学习重建算法的图像质量体模研究

doi: 10.15953/j.ctta.2021.061
详细信息
    作者简介:

    刘方韬:男,上海交通大学附属瑞金医院放射科主管技师、技师长助理,主要从事放射技术工作,擅长CT、MR影像学科研工作,E-mail:lft40620@rjh.com.cn

    刘隺是:男,上海交通大学医学院附属瑞金医院放射科主管技师,主要从事医学图像采集及重建工作,E-mail:lhs40432@rjh.com.cn

  • 中图分类号: O  242;TP  391.41

Image Quality Assessment for Deep Learning Image Reconstruction Algorithm: A Phantom Study

  • 摘要: 目的:使用体模比较CT深度学习重建算法和迭代重建算法的图像质量。方法:使用GE Revolution Apex扫描ACR质量控制体模Gammex 464,分别测量module 1~module 4的5种物质CT值准确性、低对比度分辨率、图像均匀性和高对比度分辨率。通过指标比较高剂量下(20 mGy)深度学习重建算法TrueFedelityTM(TFI)3种等级(DL、DM及DH)和自适应统计迭代重建算法V(AV)3种等级(30%、60% 及90%)的图像质量。两种算法的各指标比较采用单因素方差分析。结果:所有6组图像的高/低分辨率均一致(高对比度分辨率:10 lp/cm;低对比度分辨率:6 mm);两种算法都轻微高估聚乙烯、空气以及丙烯酸的CT值,各物质间CT值差异不具有统计学意义。两种算法均低估骨和固态水的CT值,其中,TFI算法对固态水的CT值较AV更接近真实值,但各组图像间不具有统计学差异。6组图像中,TFIDH的图像均匀性最佳;同等级条件下,深度学习重建算法相较IR算法的图像均匀性更佳。结论:深度学习重建算法在高剂量水平下可以在保持图像空间分辨率和CT值准确性的基础上,进一步降低图像噪声。

     

  • 图  1  ACR Gammex 464体模

    Figure  1.  The ACR Gammex 464 phantom

    表  1  各组图像5种物质CT值与图像均匀性测量结果

    Table  1.   The measurment results of CT values of the five materials and image uniformnity   

    物质/指标A组(AV 30%)B组(AV 60%)C组(AV 90%)D组(TFI DL)E组(TFI DM)F组(TFI DH)P
    聚乙烯-94.9±0.3-95.0±0.3-94.9±0.3-95.0±0.4-94.9±0.3-94.9±0.30.994
    881.8±0.7881.8±0.6881.7±0.6881.9±0.7881.9±0.7881.8±0.80.999
    空气-994.1±0.8-994.3±0.7-994.3±0.6-994.3±0.7-994.3±0.6-994.4±0.50.996
    丙烯酸121.5±0.8121.6±0.4121.6±0.4121.1±0.7121.1±0.5121.1±0.40.640
    固态水-2.1±1.0-2.0±1.0-2.2±1.2-1.9±0.7-1.7±0.6-1.7±0.70.979
    均匀性 4.0 3.7 2.9 3.8 3.3 2.7
     注:聚乙烯、骨、空气、丙烯酸和固态水的理论值分别为 -95、950、-1000 、120和0 HU,图像均匀性的单位是HU。
    下载: 导出CSV
  • [1] BEREGI J P, GREFFIER J. Low and ultra-low dose radiation in CT: Opportunities and limitations[J]. Diagnostic and Interventional Imaging, 2019, 100(2): 63−64. DOI: 10.1016/j.diii.2019.01.007.
    [2] MACRI F, GREFFIER J, KHASANOVA E, et al. Minor blunt thoracic trauma in the emergency department: Sensitivity and specificity of chest ultralow-dose computed tomography compared with conventional radiography[J]. Annals of Emergency Medicine, 2019, 73(6): 665−670. DOI: 10.1016/j.annemergmed.2018.11.012.
    [3] KIM H G, LEE H J, LEE S K, et al. Head CT: Image quality improvement with ASIR-V using a reduced radiation dose protocol for children[J]. European Radiology, 2017, 27(9): 3609−3617. DOI: 10.1007/s00330-017-4733-z.
    [4] LARBI A, ORLIAC C, FRANDON J, et al. Detection and characterization of focal liver lesions with ultra-low dose computed tomography in neoplastic patients[J]. Diagnostic and Interventional Imaging, 2018, 99(5): 311−320. DOI: 10.1016/j.diii.2017.11.003.
    [5] TANG H, LIU Z, HU Z, et al. Clinical value of a new generation adaptive statistical iterative reconstruction (ASIR-V) in the diagnosis of pulmonary nodule in low-dose chest CT[J]. British Journal of Radiology, 2019, 92(1103): 20180909. DOI: 10.1259/bjr.20180909.
    [6] 仵腾辉, 查云飞, 杨峰. 不同螺距联合ASIR重建技术在COVID-19胸部低剂量CT扫描中的应用研究[J]. CT理论与应用研究, 2022,31(2): 194−201. DOI: 10.15953/j.1004-4140.2022.31.02.05.

    WU T H, ZHA Y F, YANG F. The application and study of different pitch combined with ASIR in low-dose chest CT screening on COVID-19[J]. CT Theory and Applications, 2022, 31(2): 194−201. DOI: 10.15953/j.1004-4140.2022.31.02.05. (in Chinese).
    [7] VERDUN F R, RACINE D, OTT J G, et al. Image quality in CT: From physical measurements to model observers[J]. Physica Medica, 2015, 31(8): 823−843. DOI: 10.1016/j.ejmp.2015.08.007.
    [8] OTT J G, BECCE F, MONNIN P, et al. Update on the non-prewhitening model observer in computed tomography for the assessment of the adaptive statistical and model-based iterative reconstruction algorithms[J]. Physics in Medicine and Biology, 2014, 59(15): 4047−4064. DOI: 10.1088/0031-9155/59/4/4047.
    [9] SAMEI E, BAKALYAR D, BOEDEKER K L, et al. Performance evaluation of computed tomography systems: Summary of AAPM task group 233[J]. Medical Physics, 2019, 46(11): e735−e756. DOI: 10.1002/mp.13763.
    [10] GEYER L L, SCHOEPF U J, MEINEL F G, et al. State of the art: Iterative CT reconstruction techniques[J]. Radiology, 2015, 276(2): 339−357. DOI: 10.1148/radiol.2015132766.
    [11] GREFFIER J, HAMARD A, PEREIRA F, et al. Image quality and dose reduction opportunity of deep learning image reconstruction algorithm for CT: A phantom study[J]. European Radiology, 2020, 30(7): 3951−3959. DOI: 10.1007/s00330-020-06724-w.
    [12] LYU P, NEELY B, SOLOMON J, et al. Effect of deep learning image reconstruction in the prediction of resectability of pancreatic cancer: Diagnostic performance and reader confidence[J]. European Journal of Radiology, 2021, 141: 109825. DOI: 10.1016/j.ejrad.2021.109825.
    [13] FRANCK C, ZHANG G, DEAK P, et al. Preserving image texture while reducing radiation dose with a deep learning image reconstruction algorithm in chest CT: A phantom study[J]. Physica Medica, 2021, 81: 86−93. DOI: 10.1016/j.ejmp.2020.12.005.
    [14] GREFFIER J, FRANDON J, Si-MOHAMED S, et al. Comparison of two deep learning image reconstruction algorithms in chest CT images: A task-based image quality assessment on phantom data[J]. Diagnostic and Interventional Imaging, 2021, S2211-5684(21): 00174−1. DOI: 10.1016/j.diii.2021.08.001.
    [15] 温德英, 杨杰尹, 汪琴, 等. 深度学习重建算法在上腹部CT成像中的应用[J]. CT理论与应用研究, 2021,31(3): 329−336. DOI: 10.15953/j.ctta.2021-005.

    WEN D Y, YANG J Y, WANG Q, et al. Application of deep learning reconstruction algorithm in upper abdomen CT[J]. CT Theory and Applications, 2021, 31(3): 329−336. DOI: 10.15953/j.ctta.2021-005. (in Chinese).
    [16] ICHIKAWA Y, KANII Y, YAMAZAKI A, et al. Deep learning image reconstruction for improvement of image quality of abdominal computed tomography: Comparison with hybrid iterative reconstruction[J]. Japanese Journal of Radiology, 2021, 39(6): 598−604. DOI: 10.1007/s11604-021-01089-6.
    [17] PARK C, CHOO K S, JUNG Y, et al. CT iterative vs deep learning reconstruction: Comparison of noise and sharpness[J]. European Radiology, 2021, 31(5): 3156−3164. DOI: 10.1007/s00330-020-07358-8.
  • 加载中
图(1) / 表(1)
计量
  • 文章访问数:  92
  • HTML全文浏览量:  13
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-06
  • 录用日期:  2022-01-12
  • 网络出版日期:  2022-01-21
  • 刊出日期:  2022-05-23

目录

    /

    返回文章
    返回