ISSN 1004-4140
CN 11-3017/P

拉梅参数直接反演方法在东海N构造致密储层烃类检测中的应用

张岩, 秦德文, 黄鋆

张岩, 秦德文, 黄鋆. 拉梅参数直接反演方法在东海N构造致密储层烃类检测中的应用[J]. CT理论与应用研究, 2022, 31(3): 305-316. DOI: 10.15953/j.ctta.2021.088.
引用本文: 张岩, 秦德文, 黄鋆. 拉梅参数直接反演方法在东海N构造致密储层烃类检测中的应用[J]. CT理论与应用研究, 2022, 31(3): 305-316. DOI: 10.15953/j.ctta.2021.088.
ZHANG Y, QIN D W, HUANG J. Application of lame parameter direct inversion in hydrocarbon detection of low-porosity and low-permeability reservoirs in N structure in East China Sea basin[J]. CT Theory and Applications, 2022, 31(3): 305-316. DOI: 10.15953/j.ctta.2021.088. (in Chinese).
Citation: ZHANG Y, QIN D W, HUANG J. Application of lame parameter direct inversion in hydrocarbon detection of low-porosity and low-permeability reservoirs in N structure in East China Sea basin[J]. CT Theory and Applications, 2022, 31(3): 305-316. DOI: 10.15953/j.ctta.2021.088. (in Chinese).

拉梅参数直接反演方法在东海N构造致密储层烃类检测中的应用

基金项目: 中国海油“七年行动计划”东海专项课题“西湖凹陷西部地区勘探开发关键技术研究”(CNOOC-KJ 135 ZDXM39 SH01)。
详细信息
    作者简介:

    张岩: 男,硕士,中海石油(中国)有限公司上海分公司物探工程师,主要从事油气地球物理技术研究工作,E-mail:zy1987555@163.com

  • 中图分类号: P  315;P  631

Application of Lame Parameter Direct Inversion in Hydrocarbon Detection of Low-porosity and Low-permeability Reservoirs in N Structure in East China Sea Basin

  • 摘要: 东海N构造主要目的层为强水动力环境下发育的三角洲平原分流河道砂体。平面砂层分布不连续,横向非均质性强。受埋深压实和成岩作用等影响,储层呈低孔渗特征,岩石物理规律叠置严重。此外,深部地震数据存在缺乏大角度入射信息等问题,落实研究区致密储层流体分布范围对于勘探开发设计部署具有重要意义。本文引入一种基于拉梅参数直接反演的地震流体描述方法,通过实测井数据的岩石物理定性和定量判析,优选流体敏感参数,进而结合拉梅参数的两项AVO模型参数化方程,从叠前道集中分别提取拉梅参数的AVO属性体。然后利用有色反演技术直接提取流体敏感弹性信息,以指导地震流体描述。实例应用表明,该方法的烃检结果与测井解释成果匹配度高,能够有效刻画研究区致密储层流体展布规律,可为新领域油气资源发现提供重要技术支撑。
    Abstract: The main target layer of the N structure in the East China Sea is a delta subaqueous distributary channel sand body developed under a strong hydrodynamic environment. The distribution of planar sand layer is discontinuous and the lateral heterogeneity is very strong. Under the influence of deep burial compaction and diagenesis, the reservoir is characterized by low porosity and low permeability, and the properties of rock-physics are overlapped seriously. In addition, the lack of large angle information of deep seismic data is a common problem. It is of great importance to implement the fluid distribution range of tight reservoir in the study area for the design and deployment of exploration and development. In this paper, a new method of deep seismic fluid description is introduced based on direct inversion of lame parameters. Through qualitative and quantitative analysis of rock-physics of measured well data, optimal highly sensitive hydrocarbon detection factor is selected. Furthermore, the AVO properties of Lambda parameters are extracted from the pre-stack trace set by combining with the parametric equations of the two AVO models of Lambda parameters. Then, the AVO properties are directly transformed into the interlayer elastic information by using the colored inversion technique. Finally, the seismic fluid sensitive elastic data is obtained to guide the seismic fluid description. The practical application shows that the hydrocarbon detection results of this method are compatible with the logging interpretation achievement, and can effectively describe the low-porosity and low-permeability reservoirs fluid development law of the study area, and can provide important technical support for the discovery of oil and gas resources in new fields.
  • 图  1   含水砂岩底界面反射系数对比

    Figure  1.   Comparison of reflection coefficients of the bottom interface of water-bearing sandstone

    图  2   利用拉梅参数直接反演方法进行烃类检测流程图

    Figure  2.   The flow chart of hydrocarbon detection using lame parameters direct inversion

    图  3   多井地震岩石物理交会

    Figure  3.   Seismic rock-physics crossplot of wells

    图  4   多种弹性参数的流体敏感指示系数

    1-AI;2-SI;3-σ;4-ρ;5-K;6-M;7-λ;8-μ;9-λ/μ;10-EEI30°;11-ρλ;12-ρμ

    Figure  4.   Fluid sensitivity indicator coefficient for various elastic parameters

    图  5   拉梅模量岩石物理量板分析

    Figure  5.   The analysis of rock-physics template of Lame modulus

    图  6   研究区连井线不同烃类检测结果

    Figure  6.   Different hydrocarbon detection results in research area

    图  7   主力层M1沿层拉梅参数比值 λ/μ 烃类检测平面属性

    Figure  7.   The plane attribute of λ/μ hydro- carbon detection of main layer M1

    表  1   含气砂岩和含水砂岩模型弹性参数

    Table  1   Parameters of the sandstone model

    地层Kdry/GPaμ/GPa$\gamma ^2_{{\rm{dry}}}$$\gamma ^2_{{\rm{sat}}} $$\rho $/(g/c3VP/(m/s)VS/(m/s)
    含水砂(上层)332.324.481.926801265
    含气砂(下层)332.303.511.725201345
    下载: 导出CSV
  • [1] 张世鑫. 基于地震信息的流体识别方法研究与应用[D]. 青岛: 中国石油大学(华东), 2012.

    ZHANG S X. Methodology and application of fluid identification with seismic information[D]. Qingdao: China University of Petroleum (East China), 2012. (in Chinese).

    [2] 印兴耀, 宗兆云, 吴国忱. 岩石物理驱动下的地震流体识别研究[J]. 中国科学:地球科学, 2015,58(1): 159−171.

    YIN X Y, ZONG Z Y, WU G C. Research on seismic fluid identification driven by rock-physics[J]. Science China: Earth Sciences, 2015, 58(1): 159−171. (in Chinese).

    [3] 印兴耀, 曹丹平, 王保丽, 等. 基于叠前地震反演的流体识别方法研究进展[J]. 石油地球物理勘探, 2014,49(1): 22−34.

    YIN X Y, CAO D P, WANG B L, et al. Research progress on fluid discrimination with pre-stack seismic inversion[J]. Oil Geophysical Prospecting, 2014, 49(1): 22−34. (in Chinese).

    [4]

    OSTRANDER W J. Plane-wave reflection coefficients for gas sands at nonnormal angles of incidence[C]//SEG Annual Meeting Expanded Abstracts, 1982: 216-218.

    [5]

    CHIBURIS E F. Analysis of amplitude versus offset to detected gas/oil contacts in the Arabian Gulf[C]//SEG Annual Meeting Expanded Abstracts, 1984: 669-670.

    [6]

    SMITH G C, GIDLOW P M. Weighted stacking for rock property estimation and detection of gas[J]. Geophysical Prospecting, 1987, 35(9): 993−1014. doi: 10.1111/j.1365-2478.1987.tb00856.x

    [7]

    GIDLOW P M, SMITH G C, VAIL P J. Hydrocarbon detection using fluid factor traces, a case study: How useful is AVO analysis?[C]//Technical Program and Abstracts, 1992: 78-89.

    [8]

    FATTI J L, SMITH G C, VAIL P J, et al. Detection of gas in sandstone reservoirs using AVO analysis: A 3-D seismic case history using the geo-stack technique[J]. Geophysics, 1994, 59(9): 1362−1276. doi: 10.1190/1.1443695

    [9]

    WALLACE R, YOUNG R. Pre-stack inversion: Evolving the science of inversion[C]//SEG Annual Meeting Expanded Abstracts, 1996: 12-23.

    [10]

    SMITH G C, GIDLOW P M. The fluid factor angle[C]//EAGE 65 th Conference & Exhibition, 2003: 2-5.

    [11]

    GOODWAY B, CHEN T, DOWNTON J. Improved AVO fluid detection and lithology discrimination using Lame petro-physical parameters[C]//SEG Technical Program Expanded Abstracts, 1997, 16: 183-186.

    [12]

    GOODWAY B. AVO and lame constants for rock parameterization and fluid detection[C]//CSEG Recorder December. 2001: 39-60.

    [13]

    HELDLIN K. Pore space modulus and extraction using AVO[C]//SEG Annual Meeting Expanded Abstracts, 2000, 19: 170-173.

    [14]

    BATZLE M L. Optimal hydrocarbon indicators[C]//SEG Annual Meeting Expanded Abstracts, 2001, 20: 1697-1700.

    [15]

    RUSSELL B H, HEDLIN K, HILTERMAN F J, et al. Fluid-property discrimination with AVO: A Biot-Gassmann perspective[J]. Geophysics, 2003, 68(1): 29−39. doi: 10.1190/1.1543192

    [16]

    RUSSELL B H, GRAY D, HAMPSON D P, et al. Linearized AVO and poroelasticity[J]. Geophysics, 2011, 76(1): C19−C29.

    [17] 李英, 秦德海. 基于流体替代的敏感弹性参数优选级流体识别在渤海B油田的应用[J]. 物探与化探, 2018,42(4): 662−667.

    LI Y, QIN D H. The optimization of sensitive elastic parameters based on fluid substitution and the application of fluid identification to Bohai B oilfield[J]. Geophysical and Geochemical Exploration, 2018, 42(4): 662−667. (in Chinese).

    [18] 苏世龙, 贺振华, 王九栓, 等. 利用叠前弹性参数同时反演预测储层的含油气性[J]. 物探与化探, 2013,37(6): 1008−1013.

    SU S L, HE Z H, WANG J S, et al. The application of pre-stack simultaneous inversion to prognosis of gas and oil potential in the reservoir[J]. Geophysical and Geochemical Exploration, 2013, 37(6): 1008−1013. (in Chinese).

    [19] 王保丽, 印兴耀, 张繁昌. 基于Gray近似的弹性阻抗方程及反演[J]. 石油地球物理勘探, 2007,42(4): 435−439. doi: 10.3321/j.issn:1000-7210.2007.04.014

    WANG B L, YIN X Y, ZHANG F C. Gray approximation based elastic wave impedance equation and inversion[J]. Oil Geophysical Prospecting, 2007, 42(4): 435−439. (in Chinese). doi: 10.3321/j.issn:1000-7210.2007.04.014

    [20] 宗兆云, 印兴耀, 吴国忱. 基于叠前地震纵横波模量直接反演的流体检测方法[J]. 地球物理学报, 2012,55(1): 284−292. doi: 10.6038/j.issn.0001-5733.2012.01.028

    ZONG Z Y, YIN X Y, WU G C. Fluid identification method based on compressional and shear modulus direct inversion[J]. Chinese Journal of Geophysics, 2012, 55(1): 284−292. (in Chinese). doi: 10.6038/j.issn.0001-5733.2012.01.028

    [21] 印兴耀, 张世鑫, 张峰. 针对深层流体识别的两项弹性阻抗反演与Russell流体因子直接估算方法研究[J]. 地球物理学报, 2013,56(7): 2378−2390. doi: 10.6038/cjg20130724

    YIN X Y, ZHANG S X, ZHANG F. Two-term elastic impedance inversion and Russell fluid direct estimation method for deep reservoir fluid identification[J]. Chinese Journal of Geophysics, 2013, 56(7): 2378−2390. (in Chinese). doi: 10.6038/cjg20130724

    [22] 杨培杰, 董兆丽, 刘昌毅, 等. 敏感流体因子定量分析与直接提取[J]. 石油地球物理勘探, 2016,51(1): 158−164.

    YANG P J, DONG Z L, LIU C Y, et al. Quantitative analysis and direct extraction of sensitive fluid factors[J]. Oil Geophgsical Prospecting, 2016, 51(1): 158−164. (in Chinese).

    [23] 邓炜, 印兴耀, 宗兆云, 等. 效流体体积模量直接反演的流体识别方法[J]. 石油地球物理勘探, 2017,52(2): 315−325.

    DENG W, YIN X Y, ZONG Z Y, et al. Fluid identification based on direct inversion of equivalent fluid bulk modulus[J]. Oil Geophgsical Prospecting, 2017, 52(2): 315−325. (in Chinese).

    [24] 贾凌云, 李琳, 王千遥, 等. 基于广义弹性阻抗的流体因子反演方法研究与应用[J]. 石油物探, 2018,57(2): 302−311. doi: 10.3969/j.issn.1000-1441.2018.02.016

    JIA L Y, LI L, WANG Q Y, et al. Fluid identification factor inversion based on generalized elastic impedance[J]. Geophysical Prospecting for Petroleum, 2018, 57(2): 302−311. (in Chinese). doi: 10.3969/j.issn.1000-1441.2018.02.016

    [25] 周家雄, 马光克, 隋波, 等. 储层参数岩石物理反演在“甜点”储层预测中应用研究—以W17油田为例[J]. 地球物理学进展, 2019,34(3): 1159−1169. doi: 10.6038/pg2019CC0166

    ZHOU J X, MA G K, SUI B, et al. Application of reservoir parameters rock physics inversion in the prediction of “Sweet spot”: A case study in W17 oilfield[J]. Progress in Geophysics, 2019, 34(3): 1159−1169. (in Chinese). doi: 10.6038/pg2019CC0166

    [26] 周林, 廖建平, 李景叶, 等. 基于精确Zoeppritz方程的储层含油气性预测方法[J]. 地球物理学报, 2021,64(10): 3788−3806. doi: 10.6038/cjg2021P0099

    ZHOU L, LIAO J P, LI J Y, et al. Predction method of reservoir oil-gas potential based on exact Zoeppritz equations[J]. Chinese Journal of Geopgysics, 2021, 64(10): 3788−3806. (in Chinese). doi: 10.6038/cjg2021P0099

    [27]

    MA Z Q, Yin X Y, ZONG Z Y, et al. Azimuthally variation of elastic impedances for fracture weakness[J]. Journal of Petroleum Science and Engineering, 2019, 5(63): 181−187.

    [28]

    PAN X P, LI L, ZHANG G Z, et al. Elastic-impedance-based fluid/porosity term and fracture weakness inversion in transversely isotropic media with a tilted axis of symmetry[J]. Geofluids, 2020, 86(1): C1−C18.

    [29] 刘力辉, 陈珊, 倪长宽. 叠前有色反演技术在地震岩性学研究中的应用[J]. 石油物探, 2013,52(2): 171−176. doi: 10.3969/j.issn.1000-1441.2013.02.009

    LIU L H, CHEN S, NI C K. Application of pre-stack color inversion in seismic lithology[J]. Geophysical Prospecting for Petroleum, 2013, 52(2): 171−176. (in Chinese). doi: 10.3969/j.issn.1000-1441.2013.02.009

    [30] 李红梅. 弹性参数直接反演技术在储层流体识别中的应用[J]. 物探与化探, 2014,38(5): 970−975.

    LI H M. The application of elastic parameters direct inversion to reservoir fluid identification[J]. Geophysical and Geochemical Exploration, 2014, 38(5): 970−975. (in Chinese).

    [31] 刘晓晶, 印兴耀, 吴国忱, 等. 基于基追踪弹性阻抗反演的深部储层流体识别方法[J]. 地球物理学报, 2016,59(1): 277−286. doi: 10.6038/cjg20160123

    LIU X J, YIN X Y, WU G C, et al. Identification of deep reservoir fluids based on basis pursuit inversion for elastic impedance[J]. Chinese Journal of Geophysics, 2016, 59(1): 277−286. (in Chinese). doi: 10.6038/cjg20160123

    [32] 毕俊凤, 杨培杰. 有色反演技术在少井区岩性体预测中的应用[J]. 物探与化探, 2014,38(3): 558−565.

    BI J F, YANG P J. The application of colored inversion to reservoir prediction in sparse well zone[J]. Geophysical and Geochemical Exploration, 2014, 38(3): 558−565. (in Chinese).

    [33] 秦德海, 李德郁, 蔡纪琰, 等. 扩展弹性阻抗在低孔、低渗砂砾岩储层物性预测中的应用[J]. 地球物理学进展, 2018,33(5): 2148−2152. doi: 10.6038/pg2018BB0390

    QIN D H, LI D Y, CAI J Y, et al. Application of extended elastic impedance for physical prediction of low porosity and low permeability glutenite reservoirs[J]. Progress in Geophysics, 2018, 33(5): 2148−2152. (in Chinese). doi: 10.6038/pg2018BB0390

    [34] 宗兆云, 孙乾浩, 陈维涛, 等. 惠西南地区储层含油气性叠前地震固液解耦识别[J]. 中国海上油气, 2020,32(4): 56−64.

    ZONG Z Y, SUN Q H, CHEN W T, et al. Pre-stack seismic solid-liquid decoupling identification for oil-gas reservoirs in southwestern Huizhou area[J]. China Offshore Oil and Gas, 2020, 32(4): 56−64. (in Chinese).

    [35]

    DILLON L, SCHWEDERSKY G, VASQUEZ G, et al. A multi-scale DHI elastic attributes evaluation[J]. The Leading Edge, 2003, 22(10): 1024−1029. doi: 10.1190/1.1623644

图(7)  /  表(1)
计量
  • 文章访问数:  795
  • HTML全文浏览量:  377
  • PDF下载量:  84
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-24
  • 录用日期:  2022-03-03
  • 网络出版日期:  2022-03-14
  • 发布日期:  2022-05-22

目录

    /

    返回文章
    返回
    x 关闭 永久关闭