ISSN 1004-4140
CN 11-3017/P

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于增强CT纹理分析联合机器学习鉴别腮腺腺淋巴瘤与混合瘤

茅枭骁 马树声 卢亮 施久刚 张磊

茅枭骁, 马树声, 卢亮, 等. 基于增强CT纹理分析联合机器学习鉴别腮腺腺淋巴瘤与混合瘤[J]. CT理论与应用研究, 2023, 32(1): 74-80. DOI: 10.15953/j.ctta.2022.027
引用本文: 茅枭骁, 马树声, 卢亮, 等. 基于增强CT纹理分析联合机器学习鉴别腮腺腺淋巴瘤与混合瘤[J]. CT理论与应用研究, 2023, 32(1): 74-80. DOI: 10.15953/j.ctta.2022.027
MAO X X, MA S S, LU L, et al. Enhanced CT Based Texture Analysis and Machine Learning for Differentiation between Adenolymphoma and Mixed Tumors of the Parotid Gland[J]. CT Theory and Applications, 2023, 32(1): 74-80. DOI: 10.15953/j.ctta.2022.027. (in Chinese)
Citation: MAO X X, MA S S, LU L, et al. Enhanced CT Based Texture Analysis and Machine Learning for Differentiation between Adenolymphoma and Mixed Tumors of the Parotid Gland[J]. CT Theory and Applications, 2023, 32(1): 74-80. DOI: 10.15953/j.ctta.2022.027. (in Chinese)

基于增强CT纹理分析联合机器学习鉴别腮腺腺淋巴瘤与混合瘤

doi: 10.15953/j.ctta.2022.027
详细信息
    作者简介:

    茅枭骁:男,硕士,靖江市人民医院影像科主治医师,主要从事CT诊断及介入治疗,E-mail:maoxiaoxiao0@163.com

    卢亮:靖江市人民医院影像科副主任医师,主要从事CT影像诊断与研究,E-mail:620063218@qq.com

    通讯作者:

    靖江市人民医院影像科副主任医师,主要从事CT影像诊断与研究,E-mail:620063218@qq.com

  • 中图分类号: R  814

Enhanced CT Based Texture Analysis and Machine Learning for Differentiation between Adenolymphoma and Mixed Tumors of the Parotid Gland

  • 摘要: 目的:探究基于增强CT纹理分析技术联合机器学习在腮腺腺淋巴瘤与混合瘤鉴别中的应用。方法:回顾性分析40例于本院手术并有完整病理资料的腮腺腺淋巴瘤与混合瘤患者,其中腺淋巴瘤组21例,混合瘤组19例。运用Mazda软件在增强CT静脉期图像上手动勾画病灶最大层面ROI区;应用Fisher系数、POE+ACC、MI及三者联合应用(FPM)的方法,筛选出最佳纹理参数,通过ROC曲线评估其诊断效能;最后采用RDA、PCA和LDA、NDA四种机器学习算法进行分类分析,并分析不同算法的诊断效能。结果:纹理特征参数中腺淋巴瘤组的WavEnHH_s-4、GrVariance、45dgr_Fraction低于混合瘤组,WavEnLL_s-4、GrSkewness高于混合瘤组,且均在组间有统计学意义。ROC曲线显示WavEnLL_s-4的敏感性与特异性较为平衡,AUC值、敏感性、特异性分别为0.797、84.2%、76.2%,具有良好诊断效能;RDA、PCA、LDA、NDA算法的误判率范围分别为30.0%~37.5%、30.0%~37.5%、7.5%~37.5%、5.0%~12.5%,其中误判率最低的是FPM联合NDA分类分析法,为5.0%;准确率、敏感性、特异性、阳性预测值、阴性预测值分别为95.0%、95.2%、94.7%、95.2%和94.7%,分类效能最佳。结论:增强CT纹理分析提取的最佳特征参数在腮腺腺淋巴瘤与混合瘤间具有显著差异,FPM联合NDA分类分析法误判率最低,有助于鉴别腮腺腺淋巴瘤与混合瘤。

     

  • 图  1  腮腺肿瘤CT静脉期图像以及ROIs

    (a)和(b)腺淋巴瘤,男,45岁;(c)和(d)多形性腺瘤,男,40岁。

    Figure  1.  Enhanced CT images (with ROIs) of a parotid tumor

    图  2  腮腺腺淋巴瘤与混合瘤组间WavEnHH_s-4、WavEnLL_s-4、GrVariance、GrSkewness、45 dgr_Fraction的ROC曲线

    Figure  2.  ROC curves for WavEnHH_s-4, WavEnLL_s-4, GrVariance, GrSkewness, 45 dgr_Fraction for differentiating between adenolymphomas and mixed tumors of the parotid gland

    表  1  腮腺腺淋巴瘤与混合瘤间最佳纹理特征参数比较

    Table  1.   Comparison of the optimal texture feature parameters between parotid adenolymphomas and mixed tumors

    参数 组别 统计检验
    腺淋巴瘤组混合瘤组t/Z  P  
    WavEnHH_s-44.162±1.9087.493±3.157 -4.084<0.01
    WavEnLL_s-421044.469±3887.16416649.289±4309.2263.3920.002
    GrVariance0.185±0.0460.236±0.033-4.055<0.01
    GrSkewness1.996±0.5161.475±0.295-3.2910.001
    45 dgr_Fraction0.328±0.0800.422±0.074-3.854<0.01
    下载: 导出CSV

    表  2  腮腺腺淋巴瘤与混合瘤间最佳纹理特征参数的诊断效能

    Table  2.   Diagnostic performance of the optimal texture feature parameters for parotid adenolymphomas and mixed tumors

    参数AUC阈值敏感性/%特异性/%P
     WavEnHH_s-40.8274.97984.266.7<0.01
     WavEnLL_s-40.79719227.148  84.276.20.001
     GrVariance0.8150.20089.566.70.001
     GrSkewness0.8051.81994.761.90.001
     45 dgr_Fraction0.8020.38473.771.40.001
    下载: 导出CSV

    表  3  腮腺腺淋巴瘤与混合瘤间不同机器学习算法的误判率

    Table  3.   False-positive rates of different machine-learning algorithms for parotid adenolymphomas and mixed tumors

    组别RDA/%PCA/%LDA/%NDA/%
     Fisher37.5(15/40)37.5(15/40)   10.0(4/40)    7.5(3/40)
     POE+ACC35.0(14/40)30.0(12/40)   22.5(9/40)   10.0(4/40)
     MI30.0(12/40)30.0(12/40)   37.5(15/40)   12.5(5/40)
     FPM35.0(14/40)32.5(13/40)    7.5(3/40)    5.0(2/40)
    下载: 导出CSV

    表  4  腮腺腺淋巴瘤与混合瘤间不同机器学习算法的效能比较

    Table  4.   Comparison of the performance of different machine-learning algorithms for parotid adenolymphomas and mixed tumors

    分类算法  准确率/%敏感性/%特异性/%阳性预测值阴性预测值
    Fisher/RDA62.561.963.265.060.0
    Fisher/PCA62.561.963.265.060.0
    Fisher/LDA90.095.284.287.094.1
    Fisher/NDA92.590.594.795.090.0
    POE+ACC/RDA65.076.252.664.066.7
    POE+ACC/PCA70.076.263.269.670.6
    POE+ACC/LDA77.576.278.980.075.0
    POE+ACC/NDA90.085.794.794.785.7
    MI/RDA70.076.263.269.670.6
    MI/PCA70.076.263.269.670.6
    MI/LDA62.566.757.963.661.1
    MI/NDA87.581.094.794.481.8
    FPM/RDA65.066.763.266.763.2
    FPM/PCA67.571.463.268.266.7
    FPM/LDA92.595.289.590.994.4
    FPM/NDA95.095.294.795.294.7
    下载: 导出CSV
  • [1] YAMAMOTO T, KIMURA H, HAYASHI K, et al. Pseudo-continuous arterial spin labeling MR images in Warthin tumors and pleomorphic adenomas of the parotid gland: Qualitative and quantitative analyses and their correlation with histopathologic and DWI and dynamic contrast enhanced MRI findings[J]. Neuroradiology, 2018, 60(8): 803−812. doi: 10.1007/s00234-018-2046-9
    [2] ZHENG C Y, CAO R, GAO M H, et al. Comparison of surgical techniques for benign parotid tumours: A multicentre retrospective study[J]. International Journal of Oral & Maxillofacial Surgery, 2018, 48(2): 187−192.
    [3] 胡涛, 刘琼, 邹玉坚, 等. 扩散峰度成像及动态增强MRI鉴别腮腺多形性腺瘤与Warthin瘤[J]. 放射学实践, 2021,36(9): 1089−1094.

    HU T, LIU Q, ZOU Y J, et al. Application value of DKI and DEC-MRI in the differential diagnosis of parotid pleomorphic adenoma and Warthin tumor[J]. Journal of Radiology Practice, 2021, 36(9): 1089−1094. (in Chinese).
    [4] PARK H J, LEE S M, SONG J W, et al. Texture-based automated quantitative assessment of regional patterns on initial CT in patients with idiopathic pulmonary fibrosis: Relationship to decline in forced vital capacity[J]. American Journal of Roentgenology, 2016, 207(5): 976−983. doi: 10.2214/AJR.16.16054
    [5] AHN S J, KIM J H, PARK S J, et al. Prediction of the therapeutic response after FOLFOX and FOLFIRI treatment for patients with liver metastasis from colorectal cancer using computerized CT texture analysis[J]. European Journal of Radiology, 2016, 85: 1867−1874. doi: 10.1016/j.ejrad.2016.08.014
    [6] 刘文华, 张衡, 李敏, 等. CT图像纹理分析鉴别诊断腮腺混合瘤与腺淋巴瘤[J]. 临床放射学杂志, 2019,38(12): 2271−2274.

    LIU W H, ZHANG H, LI M, et al. CT texture analysis in the differential diagnosis of mixed tumor of parotid gland and adenolymphoma[J]. Journal of Clinical Radiology, 2019, 38(12): 2271−2274. (in Chinese).
    [7] 任思桐, 李小虎, 刘斌, 等. CT平扫图像纹理分析鉴别腮腺多形性腺瘤与恶性肿瘤的初步研究[J]. CT理论与应用研究, 2019,28(6): 685−691. DOI: 10.15953/j.1004-4140.2019.28.06.06.

    REN S T, LI X H, LIU B, et al. Preliminary study on differentiating pleomorphic adenoma and malignant tumors of the parotid gland by texture analysis of non-enhanced CT images[J]. CT Theory and Applications, 2019, 28(6): 685−691. DOI: 10.15953/j.1004-4140.2019.28.06.06. (in Chinese).
    [8] 茂盛, 王嗣伟, 晋丹丹, 等. 腮腺多形性腺瘤与腺淋巴瘤的CT影像特征及对比分析[J]. 实用放射学杂志, 2019,33(1): 28−46.

    MAO S, WANG S W, JIN D D, et al. CT imaging characteristics and comparative analysis of parotid pleomorphic adeonoma and adenolymphoma[J]. Journal of Practical Radiology, 2019, 33(1): 28−46. (in Chinese).
    [9] 茅枭骁, 征锦. CT纹理分析技术在甲状腺结节影像研究中的应用进展[J]. 医疗卫生装备, 2020,41(12): 97−100.

    MAO X X, ZHENG J. Research progress of CT texture analysis for imaging studies of thyroid nodules[J]. Medical and Health Equipment, 2020, 41(12): 97−100. (in Chinese).
    [10] 任继亮, 吴颖为, 陶晓峰, 等. 常规MRI纹理分析鉴别诊断眼眶淋巴瘤与炎性假瘤[J]. 中国医学影像技术, 2017,33: 980−984.

    REN J L, WU Y W, TAO X F, et al. MRI texture analysis in differential diagnosis of orbital lymphoma and inflammatory pseudotumor[J]. Chinese Journal of Medical Imaging Technology, 2017, 33: 980−984. (in Chinese).
    [11] DODGSON T, MEDICINES M D, SCHEDAR N, et al. Can quantitative CT texture analysis be used to differentiate fat-poor renal policewoman from renal cell carcinoma on enhancement CT images[J]. Radiology, 2015, 276(3): 787−796. doi: 10.1148/radiol.2015142215
    [12] SUDARSHAN V K, MOOKIAH M R, ACHARYA U R, et al. Application of wavelet techniques for cancer diagnosis using ultrasound images: A review[J]. Computers in Biology & Medicine, 2016, 69: 97−111.
    [13] 徐圆, 段钰, 吴晶涛, 等. 基于CT增强扫描的纹理分析技术鉴别肾脏透明细胞癌恶性程度的可行性研究[J]. 临床放射学杂志, 2019,38: 1693−1697.

    XU Y, DUAN Y, WU J T, et al. Preoperative assessment of pathological grade of clear cell renal cell carcinoma by texture analysis based on CT enhanced images[J]. Journal of Clinical Radiology, 2019, 38: 1693−1697. (in Chinese).
    [14] 周明, 钱斌, 翟晓东. 腮腺腺淋巴瘤与多形性腺瘤的双期增强CT表现与鉴别[J]. 临床放射学杂志, 2012,31: 1243−1246.

    ZHOU M, QIAN B, ZHAI X D. CT differential diagnosis between parotid gland lymphoma and pleomorphic adenoma[J]. Journal of Clinical Radiology, 2012, 31: 1243−1246. (in Chinese).
    [15] 余先超, 孙宇凤, 李鹏, 等. 影像组学在腮腺多形性腺瘤与腺淋巴瘤鉴别诊断中的应用[J]. 现代肿瘤医学, 2021,29(5): 837−840. doi: 10.3969/j.issn.1672-4992.2021.05.025

    YU X C, SUN Y F, LI P, et al. Application of radiomics in the differential diagnosis of parotid pleomorphic adenoma and adenolymphoma of the parotid gland[J]. Modern Oncology, 2021, 29(5): 837−840. (in Chinese). doi: 10.3969/j.issn.1672-4992.2021.05.025
    [16] 尹进学, 汤日杰, 钟熹, 等. 常规T2WI纹理分析预测早期宫颈鳞癌盆腔淋巴结转移的价值[J]. 临床放射学杂志, 2020,39: 358−362.

    YIN J X, TANG R J, ZHONG X, et al. Value of conventional T2-weighted images texture analysis in predicting pelvic lymph node metastasis in early-stage cervical cancer[J]. Journal of Clinical Radiology, 2020, 39: 358−362. (in Chinese).
    [17] 徐圆, 段钰, 曹正业, 等. CT纹理组学联合机器学习预测肺腺癌淋巴结转移[J]. 临床放射学杂志, 2020,39: 691−695.

    XU Y, DUAN Y, CAO Z Y, et al. Value of texture analysis combined with machine learning based on enhanced CT of lung adenocarcinoma in prediction of lymph node metastasis[J]. Journal of Clinical Radiology, 2020, 39: 691−695. (in Chinese).
  • 加载中
图(2) / 表(4)
计量
  • 文章访问数:  104
  • HTML全文浏览量:  67
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-22
  • 修回日期:  2022-03-23
  • 录用日期:  2022-03-24
  • 网络出版日期:  2022-04-18
  • 刊出日期:  2023-01-31

目录

    /

    返回文章
    返回